Aktuelle Veranstaltungen

Kolloquium

Antrittsvorlesung: Calculating the properties of extremely hot end dense matter

Thema:

Datum: 25.06.18

Uhrzeit: 16:15

Ort: H6

Vortragender: PD Dr. Christian Schmidt-Sonntag

Universität Bielefeld

Exploring the properties and phase structure of strong interaction matter from first principles is an extremely active and numerically intense field of research. The last 15 years have seen tremendous progress in the quality of lattice regularized Quantum Chromodynamics (QCD) calculations. It is now possible to perform QCD calculations with physical quark masses and reliable continuum extrapolations for bulk thermodynamic quantities at nonzero temperatures. A small baryon number density can be introduced by a Taylor expansion approach. In this accessible region the QCD phase diagram can now be explored in detail, with some applications to heavy ion physics and cosmology. What remains to be an important and unsolved issue are calculations at large baryon number densities. I will review recent lattice QCD results on bulk thermodynamics at nonzero temperature and small baryon number densities, which includes the equation of state as well as recent results on the density dependence of the QCD transition temperature. I will further discuss how thermal fluctuations of baryon number, electric charge and strangeness can be used to connect QCD calculations with heavy ion experiments conducted at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven. Finally, I will sketch some strategies for QCD calculations that might help to go beyond a Taylor expansion and overcome the infamous sign problem that is faced in numerical QCD calculations.

Ansprechpartner: Dekan
Upper and lower Lipschitz bounds for the perturbation of edges of the essential spectrum

Datum: 01.06.18

Uhrzeit: 16:15

Ort: V3-204

Vortragender: Ivan Veselic

TU Dortmund

Let A be a selfadjoint operator, B a bounded symmetric operator and $A+tB$ a perturbation. I will present upper and lower Lipschitz bounds on the function of t which locally describes the movement of edges of the essential spectrum. Analogous bounds apply also for eigenvalues within gaps of the essential spectrum. The bounds hold for an optimal range of values of the coupling constant t. This is result is applied to Schroedinger operators on unbounded domains which are perturbed by a non-negative potential which is mostly equal to zero. Unique continuation estimates nevertheless ensure quantitative bounds on the lifting of spectral edges due to this semidefinite potential. This allows to perform spectral engineering in certain situations. The talks is based on the preprint https://arxiv.org/abs/1804.07816

Ansprechpartner: G. Akemann
Inhalt:

Ansprechpartner: F. Karsch

Seminar Kondensierte Materie

Thema: tba

Datum: 28.06.18

Uhrzeit: 14:15

Ort: D5-153

Vortragender: Maria-Bernadette Riedl

Universität Bielefeld

Inhalt:

Ansprechpartner: Jürgen Schnack

Seminar Mathematische Physik

Thema: Eigenvector-related correlation functions and their connection with generalized chiral random matrix ensembles with a source

Datum: 11.01.18

Uhrzeit: 16:00

Ort: D5-153

Vortragender: Jacek Grela
Inhalt:

Ansprechpartner: Gernot Akemann

Seminar AG Zufallsmatrizen

Thema: The Random Normal Matrix Model: Insertion of a Point Charge

Datum: 27.06.18

Uhrzeit: 16:15

Ort: V3-201

Vortragender: Yacin Ameur

Lund University

We study conditional two-dimensional log-gases in the determinantal case, given that there is a point charge in the interior of the support of the equilibrium measure (the "droplet"). On a microscopic level, we obtain near the inserted charge a family of universal point-fields, depending on the strength of the charge and so on, which are
Inhalt: We study conditional two-dimensional log-gases in the determinantal case, given that there is a point charge in the interior of the support of the equilibrium measure (the ''droplet''). On a microscopic level, we obtain near the inserted charge a family of universal point-fields, depending on the strength of the charge and so on, which are characterized by special entire functions -- Mittag-Leffler functions. The charge also affects the microscopic behaviour near the boundary of the droplet, where it gives rise to a kind of balayage operation. One motivation for studying this kind of conditional point-processes is that they are closely related to the characteristic polynomial of a random normal matrix -- an object of interest for field theories and multiplicative chaos. The talk is based on joint work with Kang and Seo.

Ansprechpartner: Gernot Akemann