Hintergrund-oben
Home | Studium | Forschung | Organisation | Highlights | Personen | 
  
change language

Aktuelle Veranstaltungen

 

Kolloquium

Thema:

Sehen wie zum ersten Mal - zur Physik des Alltäglichen

Datum:

03.12.18

Uhrzeit:

16:15

Ort:

H6

Vortragender:

Prof. Dr. Hans Joachim Schlichting

Universitaet Muenster

Inhalt:

Anhand von ganz unterschiedlichen Beispielen wird dargelegt, dass das Alltägliche und Vertraute zu einer neuen Realität werden kann, wenn man lernt, es unter einer physikalischen Perspektive zu sehen. Auf diese Weise kann erfahren werden, dass die Physik nicht nur das zeigt, was wir noch nicht kennen, sondern auch das, was wir kennen, wie wir es noch nicht kennen. Neben einer Bereicherung alltäglicher Wahrnehmungen werden dadurch für Lernende Wiederbegegnungen mit physikalischen Sachverhalten ermöglicht, die aus lerntheoretischer Sicht zur Förderung und Nachhaltigkeit des Gelernten beitragen können.

Ansprechpartner:

B. Fromme

Kolloquium Mathematische Physik

Thema:

tba

Datum:

01.02.19

Uhrzeit:

16:15

Ort:

U2-228

Vortragender:

Martin Zirnbauer

University of Cologne

Inhalt:

Ansprechpartner:

G. Akemann

Seminar Hochenergiephysik

Thema:

Measurement of Neutral Hydrogen Bias and Redshift Space Distortions with Cosmological Hydrodynamical Simulations

Datum:

15.11.18

Uhrzeit:

14:15

Ort:

D6-135

Vortragender:

Atsushi Nishizawa

Nagoya Univ.

Inhalt:

Ansprechpartner:

D. Schwarz

Seminar Kondensierte Materie

Thema:

tba

Datum:

30.11.18

Uhrzeit:

14:15

Ort:

D2-240

Vortragender:

Terry Farrelly

Universität Hannover

Inhalt:

Ansprechpartner:

Peter Reimann

Seminar Mathematische Physik

Thema:

Symmetry Transition from GUE to chGUE protecting Chirality

Datum:

12.07.18

Uhrzeit:

14:15

Ort:

D5-153

Vortragender:

Mario Kieburg

Bielefeld University

Inhalt:

Symmetry transitions of systems have been always of particular interest in physics. There are only few real systems, that are pure and ideal yielding the desired results predicted by simplified, analytically feasible models. This is also the case for the spectral statistics of linear operators corresponding to such realistic systems, which are usually described by random matrices. Especially the global symmetries can be well-captured by random matrices, since the local spectral statistics on the level of the mean level spacing is extremly sensitive to these symmetries. Therefore, the question arises what the statistics would look like when a symmetry transition takes place to compare these results efficiently with physical measurements. Exactly this has been the goal of my joint work with Takuya Kanazawa when we studied an interpolation between the Gaussian unitary ensemble (GUE) and the chiral Gaussian unitary ensemble (chGUE) while protecting the chirality of the matrix. This transition is motivated by several QCD applications. Particularly the protection of the chirality leads to surprising effects. I am going to report on these results which comprise finite matrix size as well as the limit of large matrix dimensions.

Ansprechpartner:

Gernot Akemann

Seminar AG Zufallsmatrizen

Thema:

Local laws for polynomials of Wigner matrices

Datum:

14.11.18

Uhrzeit:

16:15

Ort:

V3-201

Vortragender:

Yuriy Nemish

Institute of Science and Technology Austria

Inhalt:

We consider general self-adjoint polynomials in several independent random matrices whose entries are centered and have constant variance. Under some numerically checkable conditions, we establish the optimal local law, i.e., we show that the empirical spectral distribution on scales just above the eigenvalue spacing follows the global density of states which is determined by free probability theory. First, we give a brief introduction to the linearization technique that allows to transform the polynomial model into a linear one, which has simpler correlation structure but higher dimension. After that we show that the local law holds up to the optimal scale for the generalized resolvent of the linearized model, which also yields the local law for polynomials. Finally, we show how the above results can be applied to prove the optimal bulk local law for two concrete families of polynomials: general quadratic forms in Wigner matrices and symmetrized products of independent matrices with i.i.d. entries. This is a joint work with Laszlo Erdös and Torben Krüger.

Ansprechpartner:

Gernot Akemann



  • @ 2008 Uni Bielefeld
  • | Letzte Änderung: 23.11.2011
  •  Olaf Kaczmarek
  • | Kontakt
  • | Impressum
  • | Druckansicht PDF