Emergence of quadrature domains for the GEF on the hole event

Aron Wennman
Tel Aviv University

Joint work in progress with Alon Nishry, TAU

XV Brunel-Bielefeld Workshop
Random Matrix Theory and Applications
Bielefeld, Dec 5 – 7, 2019
The (relative) potential

- Z – a finite point configuration from some (constrained) Weyl polynomial or Ginibre ensemble.

- Empirical measure:
 $$\mu_Z = \frac{1}{|Z|} \sum_{z \in Z} \delta_z,$$

- The (relative) potential
 $$R_Z(z) = U^{\mu_Z}(z) - \frac{1}{2}|z|^2 = \sum_{\lambda \in Z} \log |z - \lambda| - \frac{1}{2}|z|^2$$
The truncated GEF (Weyl Polynomial)

Figure. The potential of the zero process for a Weyl Polynomial, with 400 zeros.
The conditional Weyl Polynomial

Figure. The potential of a typical configuration on the hole event.
Figure. The potential associated to two well-separated disks.
Figure. The potential associated to two touching disks. The forbidden region is a two-point quadrature domain.
Figure. The two inner disks have been merged, are close enough that the domain is almost circular.
The Neumann oval scale

Figure. View of $-u$, showing the thin obstacle.
Thank you for listening!