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Classical Electrodynamics

In classical electrodynamics we work with the electromagnetic field
tensor F = dA.
Choosing a frame we get

Fµν = ∂µAν − ∂νAµ.

And in the cartesian coordinates we can get a simple expression for
the electric field Ei ∝ F0i . In particular, in the axial gauge
(Ai = 0):

Ei = −∂iA0. (1)
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Lattice QCD

In the QFT formalism we work with the following Lagrangian
density of the QCD:

LQCD = +LGF + LFP (2)

In the lattice QCD we introduce gauge fields as link variables[2]:

Dµψ → 1

2a

(
Uµ(n)ψ(n + µ̂)− U†

µ(n − µ̂)ψ(n − µ̂)
)
, (3)

where

Uµ = exp(iagAµ(n)). (4)
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Introducing electric fields

We can introduce an electric field:

Dµ = ∂µ + igAµ + iqAEM
µ (5)

In the lattice approach this introduces extra factors of the U(1)
link variable, exp(±iqAem

µ ) respectively.
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Chemical potential

Due to equation 1, electric field enters the lattice action as
exp(aqA0(x)). Notice that this is similar to the way one would
introduce a chemical potential µ in the exponential form. In fact,
external electric field can be treated as a coordinate-dependent
chemical potential, so these settings share a lot of similarities and
common problems.
At finite temperatures one has to consider both the electric field
and the chemical potential.
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Sign problem

Non-zero real chemical potential introduces a highly oscillatory
complex phase, which makes it very hard to sample the theory.
This is the so-called sign problem[2]. A simple way to see the
problem is to note that the γ5-Hermiticity of the Wilson-Dirac
operator is broken for the non-zero real chemical potential.
Plugging extra factors of exp(±aµ) into the temporal hopping
factor of the Dirac-Wilson operator, we get[2]:

γ5D(µ)γ5 = D†(−µ) ̸= D†(µ). (6)
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Sign problem

Lorenzo Dini mentioned some general reasons of the occurrence of
this problem, which indicate that it might not be possible to
circumvent the sign problem completely. He also discussed some
commmon prescriptions of working around it in some settings.

https://www2.physik.uni-bielefeld.de/fileadmin/user_upload/endrodi/template/JournalClub/Dini_ChemicalPotential_Notes.pdf
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Workarounds

The article features two methods of circumventing the sign problem
in the presence of an electric field, both of which were motivated
by the similar approaches to the non-zero chemical potetial, which
preserve the γ5-Hermiticity of the Wilson-Dirac operator[3].
In particular,
imaginary chemical potential ∼ Euclidian electric field
isospin chemical potential in two-flavour QCD ∼ isospin electric
charge:

q3 ≡ e
σ3
2

=

(
e
2 0
0 − e

2

)
(7)
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Workarounds

Note that the full Minkowskian treatment can only be done in the
quenched lattice QCD[4]. Moreover, a constant Minkowskian
electric field is impossible, as the vector potential must be a real
number.
The author wanted to study some non-perturbative properties of
the quark-antiquark pair creation so he didn’t use an Euclidean
electric field as it cannot describe particle generation.
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Periodic boundary conditions

The author used the Minkowskian electric field in a finite box with
periodic boundary conditions. The vector potential in the axial
gauge is set to be:

A0(z) =

{
+E0(z − L

4 ) for (
L
2 > z ≥ 0)

−E0(z − 3L
4 ) for (

L
2 > z ≥ 0)

So that the corresponding electric field is given by:

E (z) = −∂zA0 =

{
−E0 for (L2 > z ≥ 0)

+E0 for (L2 > z ≥ 0)
(8)

and the voltage difference is V = E0L/2
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Periodic boundary conditions
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Effects of the electric field

When a strong external electric field is applied, quark-antiquark
pairs are created by the Schwinger mechanism[5]. This process,
however, cannot be observed directly in lattice QCD[1].
In the confinement phase there are two ways to separate the
charged particles:
meson condensation → this process has a voltage threshold of
m+

π +m−
π

deconfinement → threshold of m0
π
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Effects of the electric field
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Effects of the electric field

Note that the latter effect is sensitive to the system volume. When
the quark mass is small, the spatial size of the quark-antiquark pair
gradually increases. Thus, the charge density gradually appears in
a finite volume even if the electric field is smaller than the
confining force, while this effect is suppressed in a larger volume.



Introduction Sign problem QCD in external electric field - qualitative description Numerical calculations Summary References

Setting

The author performed the two-flavour, full QCD simulation with
the plaquette gauge action and the Wilson fermion action [1].
For a rectangular R × T Wilson loop (in the z − t plane) and the
vector potential given in we get:

⟨WC (R,T )⟩ = ⟨WSU(3)(R,T )⟩exp(e
2
E0RT ) (9)
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Charged heavy-quark potential

From equation 9 we get the charged heavy-quark potential:

VC (R) = VSU(3)(R)−
e

2
E0R

In this setting it turns out to be consistent with its quenched QCD
analogue Cornell potential :

VC (R) =
(
σ − e

2
E0

)
R +

A

R
+ const (10)

The electric field suppresses the linear confining potential.
At aeV = 0.96, the linear confining potential disappears because
the electric field is almost the same as the string tension,
a2eE0/2 = 0.08 ≈ a2σ.
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Charged heavy-quark potential
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Charge density distribution

Next the author calculated the charge density:

n3(z) ≡
1

e

∂lnZ

∂A0(z)
. (11)

It is equivalent to an isospin density[3].
Non-zero charge density signifies the appearance of the charged
particles in the regions of high voltage, u- and d̄- quarks for
positive n3 and ū- and d- quarks for negative.
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Charge density distribution
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Charge density distribution

In the final figure the author explores the dependence of n3(z = 0)
on voltage V .
In the deconfinement phase, charge density grows monotonically as
the created particles flow freely.
The pion mass at V = 0 is amπ ≈ 0.26. The charge density in the
region eV < 2mπ = 0.52 is generated not by the meson
condensation but by the deconfinement in a finite volume.
Asymptotic L → ∞ suggests that the deconfinement happens for
eE/2 ≥ σ in equation 10.
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Charge density distribution
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Summary

An external electric field is equivalent to the
coordinate-dependent chemical potential. Thus in the general
setting it suffers from the sign problem.

Two common ways to circumvent the sigh problem are to
consider an Euclidian electric field or an isospin charge in
two-flavour QCD.

External electric field induces the creation of the
quark-antiquark pairs via the Schwinger mechanism, this is a
non-equilibrium process

There are two ways to separate the particles: deconfinement
and meson condensation.



Introduction Sign problem QCD in external electric field - qualitative description Numerical calculations Summary References

References I

[1] Arata Yamamoto. “Lattice QCD with Strong External Electric
Fields”. In: Physical Review Letters 110.11 (Mar. 2013). issn:
1079-7114. doi: 10.1103/physrevlett.110.112001. url:
http://dx.doi.org/10.1103/PhysRevLett.110.112001.

[2] Christof Gattringer and Christian B. Lang. Quantum
Chromodynamics on the Lattice. Springer Berlin Heidelberg,
2010. doi: 10.1007/978-3-642-01850-3. url:
https://doi.org/10.1007/978-3-642-01850-3.

[3] J. B. Kogut and D. K. Sinclair. “Lattice QCD at finite isospin
density at zero and finite temperature”. In: Physical Review D
66.3 (Aug. 2002). issn: 1089-4918. doi:
10.1103/physrevd.66.034505. url:
http://dx.doi.org/10.1103/PhysRevD.66.034505.

https://doi.org/10.1103/physrevlett.110.112001
http://dx.doi.org/10.1103/PhysRevLett.110.112001
https://doi.org/10.1007/978-3-642-01850-3
https://doi.org/10.1007/978-3-642-01850-3
https://doi.org/10.1103/physrevd.66.034505
http://dx.doi.org/10.1103/PhysRevD.66.034505


Introduction Sign problem QCD in external electric field - qualitative description Numerical calculations Summary References

References II

[4] E. Shintani, S. Aoki, and Y. Kuramashi. “Full QCD
calculation of neutron electric dipole moment with the
external electric field method”. In: Physical Review D 78.1
(July 2008). issn: 1550-2368. doi:
10.1103/physrevd.78.014503. url:
http://dx.doi.org/10.1103/PhysRevD.78.014503.

[5] Julian Schwinger. “On Gauge Invariance and Vacuum
Polarization”. In: Phys. Rev. 82 (5 June 1951), pp. 664–679.
doi: 10.1103/PhysRev.82.664. url:
https://link.aps.org/doi/10.1103/PhysRev.82.664.

https://doi.org/10.1103/physrevd.78.014503
http://dx.doi.org/10.1103/PhysRevD.78.014503
https://doi.org/10.1103/PhysRev.82.664
https://link.aps.org/doi/10.1103/PhysRev.82.664

	Introduction
	Sign problem
	QCD in external electric field - qualitative description
	Numerical calculations
	Summary
	References

