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Fluctuation determinants in the presence of instantons

Rasmus Nielsen
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These are a complimentary set of notes for the Lattice Journal Club presentation, held on

Friday November 18th, 2022. The notes largely cover the same material presented during

the journal club meeting, but also discuss further details on certain topics. Additional

information on derivations and related topics can be found in the references. Enjoy!
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1 Topological susceptibility in QCD

In the context of QCD with a non-zero θ-term, we known that a given field configuration

will contribute to the partition function differently, according to its topological charge Q:

Q =
1

16π2

∫
d4x trFµνF̃µν ∈ Z (1)

The quantity F̃µν is known as the dual field strength, and is given in terms of Fµν in the

following way:

F̃µν =
1

2
εµνσρFσρ (2)

For reasons which will be explained momentarily, it is of particular interest to quantify the

fluctuations of the topological charge Q. To this end, we introduce a quantity known as

the topological susceptibility in the following way:

χ(T ) =
∂2F (θ, T )

∂θ2

∣∣∣∣
θ=0

(3)

It turns out that the topological susceptibility χ(T ) is related to the QCD axion mass in

the following simple way:

m2
a = χ(T )/f 2

a (4)

With fa being the axion scale. This relation holds true because the effective axion potential

V (a, T ), is fundamentally related to the free energy density F (θ, T ) in the following way:

V (a, T ) = F (a/fa, T )− F (0, T ) (5)

Similarly to equation (4), higher order moments of the topological charge can used to

extract further information about the effective axion potential [3], which is important in

understanding the dynamics of inflation in the presence of axions.

In what follows, we will discuss how to compute the topological susceptibility χ(T ), at

high temperatures T , such that QCD might be described reliably by perturbative methods.

We start by extracting the leading order θ-dependent contribution to the partition function

Z(θ, T ), which is of course related to the free energy density by: F (θ, T ) = −T lnZ(θ, T )/V ,

with V being the volume of space.
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1.1 The QCD partition function

In Euclidean signature, the standard SU(N) Yang Mills action, minimally coupled to Nf

fermion species, takes the following form:

SQCD =
1

g2

∫
d4x

1

2
trFµνFµν +

Nf∑
s=1

ψ̄s( /D +ms)ψs

 (6)

where Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. Additionally, we need to include the so called θ-term

in perturbation theory, to account for the topological structure of the QCD vacuum:

Sθ =

∫
d4x

[
− iθ

16π2
trFµνF̃µν

]
(7)

As per usual when dealing with non-Abelian gauge theories, we also obtain two additional

contributions to the total action from the Faddeev-Popov gauge-fixing procedure. These are

the gauge fixing contribution Sgf and the ghost fields contribution Sgh. The precise forms

of these contributions depend on our choice of gauge fixing functional G(Aµ):

Sgf =
1

g2

∫
d4x tr

[
−1

2
G2(Aµ)

]
(8)

Sgh =
1

g2

∫
d4x tr

[
c̄
δG(Aµ +Dµω)

δω
c

]
(9)

Where Aµ is the gauge field, c and c̄ is the ghost field and anti ghost field respectively,

ω ∈ su(N), and Dµ = ∂µ + [Aµ, · ] is the covariant derivative for adjoint fields.

As stated above, we want to extract the leading θ-dependent part of the total partition

function, in order to approximate the topological susceptibility χ(T ). In the perturbative

regime, this leading order contribution will come from field configurations which minimize

the total action and have non-zero topological charge Q. Thus, we need to compute the

partition function around these minimizing configurations, and subsequently add up the

individual contributions to obtain the leading order θ-dependence.

It turns out that the minimizing solutions in question exactly corresponds to classical field

configurations Acl with non-zero topological charge. Such solutions are known as topological

instantons, the properties of which we shall now discuss in further detail.
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1.2 Instanton solutions

We now wish to identify the classical solutions for the gauge field Aµ, with non-zero topo-

logical charge, under the assumption that all other fields vanish. In this case, the only part

of the action which contribute to the classical equations of motion is SQCD. It yields the

following result:

DµFµν = ∂µFµν + [Aµ, Fµν ] = 0 (10)

The above equations are horribly complicated second order non-linear equations in Aµ, and

attempting to find solutions would most certainly be a rather painful process. Fortunately,

there exists for our case a better approach. The trick is to rewrite SQCD as follow:

SQCD =
1

4g2

∫
d4 tr

[
Fµν ∓ F̃µν

]2

± 1

2g2

∫
d4 trFµνF̃µν (11)

Given that we are looking for solutions with a some fixed topological charge Q, we see that

the second integral is unchanging, implying that SQCD is minimal exactly when:

F̃µν = ±Fµν (12)

The above equations are first order non-linear in Aµ; a considerable improvement from the

second order non-linear equation one gets from the standard Euler-Lagrange approach. So-

lutions for which F̃µν = Fµν are said to be selfdual, and solutions which satisfy F̃µν = −Fµν
said to be anti-selfdual.

The most general solution to (12) can be found via the Atiyah Drinfeld Hitchin Manin

(ADHM ) construction [6]. We will not go into the details on this construction here. For

our purposes, it will be sufficient to consider the following subset of solutions to (12):

Selfdual : Acl
µ = −1

2
η̄aµνσ

a∂ν ln Π (13)

Anti-selfdual : Acl
µ = −1

2
ηaµνσ

a∂ν ln Π (14)

where σa are the standard Pauli matrices, and the quantity Π is given by:

Π = 1 +

|Q|∑
n=1

ρ2
n

(x− xn)2
(15)
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The objects ηaµν and η̄aµν are known as ’t Hooft symbols. They are respectively selfdual

and anti-selfdual. One can think of these symbols as 4-dimensional representations of the

su(2) generators. The free parameters xn and ρn are known as collective coordinates of

the classical solutions (the more general solutions found via the ADHM construction turns

out to depend on exactly the same collective coordinates as the (86,87) solutions). We will

later see the appearance of additional collective coordinates, related to the embedding of

the 2× 2 matrix valued solutions (86,87) into N ×N matrices.

1.3 The dilute instanton gas approximation (DIGA)

Now that we identified (at least a subset of ) all classical solutions of the total action, we

are now in a position to say something quantitative about the θ-dependence of the total

partition function Z(θ, T ). In order to do this, we employ an approximation method known

as the dilute instanton gas approximation (DIGA), which we shall now discuss in more detail.

It turns out that, given certain assumptions, we can treat all classical solutions with |Q| > 1

(also the more general ones found via the ADHM construction), as super-positions of solu-

tions with |Q| = 1. This method of approximation works well when all individual instanton

sizes ρn, are much smaller than the distances |xn − xm| between the individual instantons.

This is known as the small constituent instanton (SCI) limit [6].

You might object to the idea of only including instanton configurations in the path in-

tegral, which obey the SCI limit. After all, there are no a priori reasons why this would

make for a reasonable approximation, since we are excluding a large part of the collective

coordinate space. It turns out however, that at finite temperature T , single instantons with

size greater than (πT )−1 are exponentially suppressed in the path integral [8]. Thus, at

high temperatures, only a small region of collective coordinate space will have constituent

instantons close enough together to see significant deviations between single-instanton su-

per positions and genuine multi-instanton configurations.
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Now that we discussed the justifications for employing the DIGA, we can use it to ap-

proximate the total partition function as a product of single instanton and anti-instanton

partition functions:

Z(θ, T ) ≈
∞∑
n=0

∞∑
n̄=0

1

n!n̄!
Zn
I (T )Z n̄

Ī (T )ei(n−n̄)θ (16)

The objects ZI(T ) and ZĪ(T ) are the partitions function computed around the background

of a single instanton and anti-instanton respectively. The contributions from Sθ are ac-

counted for separately via the exponential factors. The factorial factors are there to account

for the fact that the (anti)-instantons are indistinguishable from one another.

Using that ZI(T ) = ZĪ(T ) (this follows from the fact that the action is time-reversal in-

variant, and that anti-instantons are time-reversed instantons), the expression (16) can be

evaluated explicitly, yielding the following result:

Z(θ, T ) ≈ exp
{
ZI(T )eiθ

}
exp
{
ZI(T )e−iθ

}
= exp{2ZI(T ) cos θ} (17)

We can now readily find an expression for the topological susceptibility χ(T ) in the DIGA,

by employing the formula (3):

χ(T ) =
∂2F (θ, T )

∂θ2

∣∣∣∣
θ=0

≈ 2T

V
ZI(T ) (18)

Thus, we see that (given we work in the DIGA), the topological susceptibility χ(T ) is

proportional to the single-instanton partition function ZI(T ). With this result in mind, we

now move on to discuss how to approximate this object in a consistent manner.

2 Fluctuation determinants and zero modes

Our goal is now to approximate the single-instanton partition function ZI(T ), at finite

temperature T . In these notes, we will only discuss how to do this up to quadratic order in

field fluctuations around the instanton background. This might initially sound like a trivial

task, since any quadratic action yields a Gaussian path integral, which when evaluated

yields the determinant of the quadratic form M describing the action:∫
DΦ exp

{
−Scl −

1

2
Φ ·M · Φ

}
= e−Scl [detM ]−1/2 (19)
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Where Φ is the field contents of the theory in question, and Scl ≡ S[Φcl] (the above result

assumes the fields Φ to be bosonic. A similar result of course holds for fermionic fields).

On the surface of things, equation (19) seems to be the end of the story, concerning quadratic

approximations to path integrals. There is however an important caveat to the result (19);

it only holds when M is invertible, e.i. when M has no eigenvectors with zero eigenvalues.

There are many physically interesting examples in which this assumptions does not hold.

Critically, the single-instanton partition function is one of those examples! In fact, every

time we expand the action of a theory around some classical solutions Φcl which depend on

some set of free parameters γi, the quadratic form will have zero modes (eigenvectors with

zero eigenvalues) of the form:

Zi =
∂Φcl

∂γi
(20)

The above result is straight forwardly proven, using the following two facts:

δS[Φcl]

δΦ(x)
= 0 (21)

δ2S[Φcl]

δΦ(x)δΦ(y)
= M(x, y) (22)

Combining the two results above, we readily obtain the desired result:

0 =
∂

∂γi

δS[Φcl]

δΦ(x)
=

∫
ddy

δ2S[Φcl]

δΦ(x)δΦ(y)
· ∂Φcl(y)

∂γi
=

∫
ddy M(x, y) · Zi(y) (23)

Now that we know to be wary of any potential zero modes, we need to discuss how to

systematically handle them for our present case of computing ZI(T ). Before we do so

however, it will be useful to look at a slightly simpler example, without the complicating

factor of gauge symmetry.

2.1 Zero mode fixing and collective coordinates

Consider a theory with a single scalar field φ̃. Let this theory posses a set of classical

solutions φcl, parametrized by a single collective coordinate γ. For convenience , we make

the following field redefinition:

φ̃(x) = φcl(x, γ) + φ(x) (24)
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The action up to quadratic order, is given in terms of the quadratic form M(φcl):

S = Scl +
1

2g2
φ ·M(φcl) · φ (25)

Where g is some coupling constant. As already discussed, we can obtain the zero modes of

the theory by taking the derivative of φcl with respect to the collective coordinate γ:

Z ≡ F0 = g
∂φcl

∂γ
, λ0 = 0 (26)

The quadratic form will have a number of other eigenvectors with non-zero eigenvalues. We

collectively denote all eigenvectors Fα and their corresponding eigenvalues λα:

M · Fα = λαFα (27)

Since the quadratic form M can be taken to be symmetric (Hermitian), we can expand the

field φ in terms of the eigenvectors of M :

φ =
∑
α

ξαFα (28)

We can also define an inner product 〈 · | · 〉 between the eigenvectors Fα via the usual L2 inner

product. With respect to this inner product, we take the eigenvectors to be orthogonal:

〈Fα|Fβ〉 =
1

g2

∫
ddx Fα(x)Fβ(x) = uαδαβ (29)

Given the orthogonality condition with respect to the above inner product, we can rewrite

the quadratic order action in terms of ξα and uα:

S = Scl +
1

2

∑
α

λαuαξαξα (30)

With this form of the action in mind, we can define the path integral measure Dφ, to have

the following form:

Dφ ≡
∏
α

dξα

√
uα
2π

(31)

Using the above measure, it is straight forward to integrate the quadratic order action S.

We obtain the following, deceptively familiar looking result:∫
Dφ e−S[φ] =

∫
dξ0

√
u0

2π
e−Scl [det′M ]−1/2 (32)
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The notation det′M reminds us to leave out λ0 = 0 from the product of eigenvalues. It is

not a priori clear how to carry out the integration over ξ0, and so we would like to exchange

it for an integration over the collective coordinate γ. We achieve this by using a trick similar

to the well known Faddeev-Popov procedure. First, we introduce a constraint function f(γ):

f(γ) = −〈φ|Z〉 = −
〈
φ̃− φcl(γ)

∣∣∣Z〉 (33)

Next, we make use of the following delta-function identity:

1 =

∫
dγ δ(f(γ))

∂f(γ)

∂γ
=

∫
dγ δ(〈φ|Z〉)

[
1

g
〈Z|Z〉 −

〈
φ

∣∣∣∣∂Z∂γ
〉]

=

∫
dγ δ(ξ0u0)

[
u0

g
−
〈
φ

∣∣∣∣∂Z∂γ
〉]

(34)

Since the term proportional to
〈
φ
∣∣∣∂Z∂γ 〉 is sub-leading compared to the term proportional

to u0, we will ignore it in what follows. Inserting (34) into the path integral (32), we find

that it now takes the following form:∫
Dφ e−S[φ] =

∫
dγ√
2πg2

[u0]1/2 e−Scl [det′M ]−1/2 (35)

For the case of multiple zero modes Zi, a very similar result holds [4]:∫
Dφ e−S[φ] =

∫ [∏
i

dγi√
2πg2

]
[detU ]1/2 e−Scl [det′M ]−1/2 (36)

Where the matrix U ij is simply given by the inner products of the individual zero modes:

U ij = 〈Zi|Zj〉. The above result is the one we will need in our continued discussion of the

single-instanton partition function ZI(T ).

2.2 The single-instanton partition function

We now proceed to the task of expanding the action S = SQCD+Sgf+Sgh to quadratic order.

Similarly to the example from the previous subsection, we start by making a convenient

field redefinition; this time from the complete field Ãµ to the fluctuation Aµ:

Ãµ = Acl
µ + Aµ (37)

Page 9 of 19

mailto:rskn@physik.uni-bielefeld.de


rskn@physik.uni-bielefeld.de Lattice Journal Club, 18/11/2022

We now need to choose an appropriate gauge-fixing functional G(Aµ). It will be convenient

to choose a gauge fixing functional which preserves the gauge symmetry of the classical field

Acl
µ [9]. One such choice looks as follow:

G(Aµ) = Dcl
µAµ (38)

Where Dcl
µ = ∂µ + [Acl

µ , · ], when acting on adjoint fields like Aµ. From this point onwards,

we will only be working with Dcl
µ , and so we will drop the superscript and just write Dµ.

With the above choice of gauge fixing functional, the gauge fixing Sgf, and ghost field actions

Sgh, take the following forms respectively:

Sgf =
1

g2

∫
d4x

[
−1

2
(DµAµ)2

]
(39)

Sgh =
1

g2

∫
d4x

[
c̄ D2 c+ Aµ [c̄, Dµ c]

]
(40)

The total action S = SQCD + Sgf + Sgh, can now be expanded to quadratic order, yielding

the following result:

S = Scl +
1

g2

[
1

2
A ·MA · A+ c̄ ·Mgh · c+

∑
s

ψ̄s ·Mψs · ψs

]
(41)

Where, for the single instanton and anti-instanton solutions:

Scl =
8π2

g2
(42)

The particular form of each of the quadratic forms MA, Mgh and Mψs , are all list below for

future reference [8]:

MA = (−D2δµν − 2Fµν)adj (43)

Mgh = (−D2)adj (44)

Mψs = ( /D +ms)fund (45)

Where in the above, the subscripts adj and fund denotes whether Dµ is taken to act in the

adjoint or fundamental representation of SU(N) respectively.
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2.3 The instanton zero modes

In order to compute the zero mode matrix U ij = 〈Zi|Zj〉, we first have to identify the exact

zero modes of the single-instanton background. This mostly comes down to a straight

forward computation of the derivatives of the single instanton solution AIµ, with respect to

the collective coordinates. There is however one complication to this simple task, which

arise from the presence of gauge symmetry. In the previous subsection, we chose a gauge-

fixing functional G(Aµ), which in turn force us to work in the gauge given by:

G(Aµ) = DµAµ = 0 (46)

It is not a priori guaranteed that the collective coordinate derivatives will respect this

particular gauge choice, but we can make them conform by acting with appropriate gauge

transformations ωi:

Zi
µ =

∂AIµ
∂γi

+Dµω
i (47)

For convenience, we will write out the single-instaton solution AIµ explicitly:

AIµ(x) = −1

2
η̄aµνσ

a∂ν ln

[
1 +

ρ2

(x−X)2

]
(48)

Let us first tackle the zero modes associated with the collective coordinates Xν . In this

case, taking ω(ν) = AIν will shift us back to the right gauge:

Z(ν)
µ =

∂AIµ
∂Xν

+DµA
I
ν = −

∂AIµ
∂xν

+DµA
I
ν = F I

µν (49)

Which, on the basis of the equations of motion DµF
I
µν = 0, obeys the correct gauge. Next,

we turn to the zero mode associated with the collective coordinate ρ. For this case, no gauge

transformation is needed to shift the zero mode back to the correct gauge, e.i. ω(ρ) = 0. By

explicit computation, one finds [4]:

Z(ρ)
µ = −2

ρ η̄iµνσ
i xν

(x2 + ρ2)2
(50)

At this point, we have to address a comment made back in subsection (86), about the

existence of additional collective coordinates beyond, for the present case, the five given by
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Xν , ρ. Since the solution (48) is only su(2)-valued, we have to embed this solution into an

su(N) element. One particular way of doing this looks as follow:

(AIµ)su(N) =

 (AIµ)su(2) 02×(N−2)

0(N−2)×2 0(N−2)×(N−2)

 (51)

The above embedding is clearly not unique. One can change between all possible embed-

dings by acting with global SU(N) transformations on the embedding chosen above. Some

SU(N) transformations however, leaves the above embedding unchanged. These are the

SU(N − 2) transformation acting on the lower right corner, and the U(1) transformations

generated by the last remaining Cartan generator of SU(N). Thus, the subgroup of SU(N)

which transform between distinct embeddings is given by.

SU(N)

SU(N − 2)× U(1)
(52)

The coordinates on the above group manifold, of which there are 4N −5, acts as additional

collective coordinates. Any element Ω of the algebra, associated to the above subgroup,

can of course be expressed in terms of its generators:

Ω = θaT
a + θkT

k , a = 1, 2, 3 , k = 4, 5, . . . , 4N − 5 (53)

Here, the 3 generators T a generate the SU(2) of the upper left corner, whereas the 4(N−2)

generators T k generate what remains. The zero modes associated with the coordinates θa

and θk take the following forms [4]:

Z(a)
µ =

∂AIµ
∂θa

+Dµω
(a) = [AIµ, T

a] +Dµω
(a) = Dµ

[
x2

x2 + ρ2
T a
]

(54)

where

ω(a) = − ρ2

x2 + ρ2
T a (55)

Z(k)
µ =

∂AIµ
∂θk

+Dµω
(k) = [AIµ, T

k] +Dµω
(k) = Dµ

[√
x2

x2 + ρ2
T k

]
(56)

where

ω(k) =

[√
ρ2

x2 + ρ2
− 1

]
T k (57)
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With all the instanton zero modes now computed, we move on to the computation of

U ij = 〈Zi|Zj〉. For the setup in question, the exact form of the inner product is given by:〈
Zi|Zj

〉
=

2

g2

∫
d4x trZi

µZ
j
µ (58)

Given this inner product, we can now evaluate all elements of U ij. Remarkable, it turns

out that most elements of U ij vanish, leaving only non-zero inner products between zero

modes of the same "type". All these non-zero elements are listed below [4]:

U (µν) =
8π2

g2
δµν (59)

U (ρρ) =
16π2

g2
(60)

U (ab) =
4π2ρ2

g2
(61)

U (kl) =
2π2ρ2

g2
(62)

With the above matrix elements at hand, we finally obtain an expression for the square

root of the determinant of U ij:

[detU ]1/2 =
22N+7

ρ5

(
πρ

g

)4N

(63)

This concludes our discussion of the zero modes of the single-instanton, and how to handle

them in the path integral. We now move on to the final section of these notes, where we

derive a final expression for the single instanton partition function ZI(T ) to quadratic order.

3 Evaluating the fluctuation determinants

Referring back to equation (36) and our discussions in subsection (2.2), we see that ZI(T )

to quadratic order in field fluctuations, can be expressed in the following way:

ZI(T ) =

∫ [∏
i

dγi

]
n(γ) (64)

Where the object n(γ), refereed to as the instanton density, is given by:

n(γ) =

[∏
i

1√
2πg2

]
[detU ]1/2 [det′MA]−1/2 detMgh

[∏
s

detMψs

]
e
− 8π2

g2 (65)
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Here, i = 1, 2, . . . , 4N and γ = (Xν , ρ, θa, θk). Through appropriate field redefinitions, and

by making use of the symmetries of the action S = SQCD+Sgf+Sgh, it can be shown that all

determinants contained in n(γ) depend only on the collective coordinate ρ. In particular,

this means that we can replace the integration over the compact group generated by (θa, θk),

with the volume ν of the correspondence group manifold. Thus, we can now write:

ZI(T ) =

∫
d4X dρ n(ρ) (66)

Where the instanton density n(ρ) is now given as:

n(ρ) =

[
1

2πg2

]2N

ν [detU ]1/2 [det′MA]−1/2 detMgh

[∏
s

detMψs

]
e
− 8π2

g2 (67)

With the group volume ν given by the following:

ν ≡ Vol
[

SU(N)

SU(N − 2)× U(1)

]
=

24N−5π2N−2

(N − 1)!(N − 2)!
(68)

Inserting the explicit forms of ν and [detU ]1/2 into the instanton density, we find that it

takes the following form:

n(ρ) =
4

π2

[det′MA]−1/2 detMgh
∏

s detMψs

(N − 1)!(N − 2)!

1

ρ5

(
4π2ρ2

g2

)2N

e
− 8π2

g2 (69)

All which is now left to be done, are the evaluation of the quadratic form determinants

det′MA, detMgh and detMψs . This job is significantly simplified by the existence of certain

revelations between these determinants, which we shall now discuss in further detail.

3.1 Determinant relations

Let us first set our focus on the operator Mgh = (−D2)adj. For convenience in what follows,

we denote the eigenvectors of this operator Fα, and the corresponding eigenvalues λ2
α, which

we can take to be positive since (−D2)adj is positive definite:

(−D2)adjFα = λ2
αFα (70)

We now set our attention on the operator MA = (−D2δµν − Fµν)adj. Rather remarkably, it

turns out that for every eigenvector of Fα of Mgh with eigenvalue λ2
α 6= 0, we can explicitly
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construct 4 eigenvectors of MA, all with the same eigenvalue λ2
α [9]:

(Fα)aµ = η̄aµνDνFα , a = 1, 2, 3 (71)

(Fα)0
µ = DµFα (72)

Thus, we conclude that:

det′MA = [det
(
−D2

)
adj]

4 (73)

A similar relation exists between the operators Mψs = ( /D + ms)fund and (−D2)fund, but

only in the limit where ms is so small as to only affect the zero mode of ( /D)fund (in the

single-instanton background, ( /D)fund has a single fermionic zero mode. We will not need to

discuss this any further in these notes):

det
(
/D +ms

)
fund ≈ ms det′( /D)fund (74)

In this limit, for every eigenvector Fα of (−D2)fund with eigenvalue λ2
α, we can construct 2

left chiral and 2 right chiral eigenvectors of ( /D)fund, all with eigenvalue λα [9]:

(Fα)L = FαPLv (75)

(Fα)R = /DFαPRv (76)

With v a constant 4-component Dirac spinor. Thus, we now conclude that:

detMψs ≈ ms[det
(
−D2

)
fund]2 (77)

Finally, there also exists a relations between det(−D2)adj, (−D2)fund, and the determinants

det(−D2)1, det(−D2)1/2, where the subscripts 1 and 1/2 indicates whether the operators are

acting on spin-1 and spin-1
2
representations of SU(2). The relations in question reads as

follow:

det
(
−D2

)
adj = det

(
−D2

)
1[det

(
−D2

)
1/2]

2(N−2) (78)

det
(
−D2

)
fund = det

(
−D2

)
1/2 (79)

The first relations ultimately arise from the fact that the adjoint representation of SU(N),

decompose in the following way when restricted to SU(2):

N2 − 1→ 3⊕ 2⊕2(N−2) ⊕ 1⊕(N−2)2 (80)
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Similarly, the second relation stems from how the fundamental representation of SU(N),

decompose when restricted to SU(2):

N→ 2⊕ 1⊕N−2 (81)

Combining all these determinant relations, we find that the product of det′MA, detMgh

and all the detMψs can be written as:

det′MA detMgh

∏
s

detMψs =
[det(−D2)1/2]

2Nf
∏

sms

det(−D2)1 [det(−D2)1/2]
2(N−2)

(82)

Where Nf is the number of fermion species: s = 1, 2, . . . , Nf . We have refrained from

combining the spin-1
2
contributions from bosonic and fermionic determinants in the above

expression, since these needs slightly different treatments at non-zero temperature.

3.2 Zero temperature result

We are now left with the task of evaluating the determinants of −D2, acting in the spin-1

and spin-1
2
representations of SU(2). We start by focusing on the zero temperature case.

Even in this limit, evaluating the determinants is no trivial task, and we shall not go into

detail on those computations here. Instead, we will simply quote ’t Hooft’s results from [7]:

ln det
(
−D2/− ∂2

)
1 = α(1) +

2

3
ln(µρ) (83)

ln det
(
−D2/− ∂2

)
1/2 = α(

1

2
) +

1

6
ln(µρ) (84)

Where α(1) ≈ 0.443 307 and α(1
2
) ≈ 0.145 873. The new parameter µ is a regulator

mass, needed to make the determinants converge. One also finds that this regularization

introduces one factor of µ for every zero mode (of which there are 4N), and one factor of µ

for each fermion species (of which there are Nf ). Putting together all determinant results,

and inserting these into (69), we find the following final expression for the instanton density

at zero temperature:

n(ρ, T = 0) =
4

π2

e−α(1)−2(N−2−Nf )α( 1
2

)

(N − 1)!(N − 2)!

1

ρ5

(
4π2

g2

)2N
[∏

s

ρms

]
e
− 8π2

g2
+ 1

3
(11N−2Nf ) ln(ρµ) (85)

Notice that the term 1
3
(11N − 2Nf ) ln(ρµ) in the last exponential, exactly coincides with

the one-loop beta function for SU(N) Yang Mills coupled to Nf fermions, and thus serves

to renormalize 1/g2, as is required by the Renormalization Group.
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3.3 The thermal corrections

At non-zero temperature T , the single instanton and single anti-instanton solutions are no

longer proper solutions of the equations of motion, since these solutions are not periodic,

with period β = T−1. Fortunately, we can easily solve this issue, by making use of the zero

temperature multi-instanton solutions:

Selfdual : Acl
µ = −1

2
η̄aµνσ

a∂ν ln Π (86)

Anti-selfdual : Acl
µ = −1

2
ηaµνσ

a∂ν ln Π (87)

In order to have β-periodic solutions, we need to make the following choice of collective

coordinates: xn = nβt̂ and ρn = ρ. The quantity Π then takes takes the following form:

Π = 1 +
∞∑

n=−∞

ρ2(
x− nβt̂

)2 (88)

Where t̂ = (1, 0, 0, 0). We will refer to these solutions as the periodic (anti)-instanton.

Expanding around a periodic instanton will lead to different forms for the zero modes, com-

pared to those at zero temperature. Remarkably, it turns out that the inner product matrix

U ij = 〈Zi|Zj〉 at temperature T , is completely independent of T and identical to the zero

temperature result. Thus, we only need to re-evaluate det(−D2/− ∂2) for spin-1 and spin-1
2
.

For the evaluation of det(−D2/− ∂2) at finite T , we start by splitting the determinant

into its temperature dependent and temperature independent parts:

ln det
(
−D2/− ∂2

)
= ln det

(
−D2/− ∂2

)∣∣
T=0

+ δ (89)

where

δ =

∫ T

0

dT ′
∂

∂T ′
Tr ln

(
−D2/− ∂2

)∣∣
T ′ =

∫ T

0

dT ′ Tr ln ∆
∂

∂T ′
(−D2)

∣∣
T ′ (90)

Here, ∆ is the scalar propagator (−D2)−1, in the presence of a periodic instanton, at

finite temperature. This propagator can be constructed from the known zero temperature

periodic instanton propagator ∆̃ [10], by way of the following argument: The propagator

∆̃ obeys the equation:

−D2∆̃(x, y) = δ(x− y) (91)
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We want the propagator ∆ to obey the equation:

−D2∆±(x, y) =
∞∑

n=−∞

(±1)nδ(x− y − nβt̂) (92)

The ± is chosen based on whether the boundary conditions on the propagator are periodic

(+) or anti-periodic (−). From equation (91), we can easily construct an object which

obeys equation (92):

−D2

∞∑
n=−∞

(±1)n∆̃(x, y + nβt̂) =
∞∑

n=−∞

(±1)nδ(x− y − nβt̂) (93)

Thus, we conclude that ∆± is given by:

∆±(x, y) =
∞∑

n=−∞

(±1)n∆(x, y + nβt̂) (94)

Using the expression above, along side the known expression for ∆̃ in the background of a

periodic instanton, it is now possible to evaluate δ for spin-1 and spin-1
2
representations.

This has been done by Gross, Pisarski and Yaffe [8], and their results are presented below:

δ1/2 =
1

3
ηλ2 + A(λ) (95)

δ1 =
4

3
λ2 + 16A(λ) (96)

Where λ = πρT . Furthermore, η = 1 for the case of periodic boundary conditions, and

η = −1
2
for anti-periodic boundary conditions. The quantity A(λ) is partially numerically

evaluated, and takes the following form:

A(λ) = − 1

12
ln
(
1 + λ2/3

)
+ c1(1 + c2λ

−3/2)−8 (97)

Where c1 = 0.012 897 64 and c2 = 0.158 58. Once again, putting together all determinant

results, and inserting these into (69), we find the following final expression for the instanton

density at finite temperature T :

n(ρ, T ) = n(ρ, T = 0) exp

{
−1

3
λ2(2N +Nf )− 12A(λ)

[
1 +

1

6
(N −Nf )

]}
(98)

Observe that the above expression is highly exponentially suppressed for values of ρ larger

than (πT )−1, thus confirming the validity of the dilute instanton gas approximation (DIGA),

at high temperatures. With this remark, we conclude these notes.
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