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Motivation

Origin of the idea =⇒ trivialising maps.
Maps from supersymmetry that take interacting theories to free
theories (Nicolai maps H. Nicolai 1980).

Can we carry this idea to QCD, i.e.: does F such that

⟨O⟩ = 1

Z

∫
DUO[U ]e−S[U ] =

1

Z

∫
DVO[F(V )]

exist? =⇒ Yes!

Many applications: renormalisation, separation of topological
sectors...
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Flow equation I

A continuous map F : V −→ U can be thought of as a diff. eq.
evolving U through an extra dimension t.

One can obtain this differential equation by considering
infinitesimal transformations:

U −→ U + ϵZ(U)U +O(ϵ2),

whose continuous composition is given by

U̇t = Zt(Ut)Ut,

and Z lives in the algebra.
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Flow equation II

The choice Zt = −g20 ∂ax,µSw, where Sw is the Wilson action, is
commonly used.
For a general generator of the flow Zt:

in order to have a trivialising map, we can ask for:∫ t

0
ds

∑
x,µ

[
∂ax,µZ

a(Us)
]
= tS(Ut) + Ct.

Since ln detFt,∗(V ) is equal to the LHS of the above eq.:

S(Ft(V ))− ln detFt,∗(V ) = (1− t)S(Ft(V ))− Ct,

and we see how for t = 1 we obtain a trivialising map.
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Solutions for the flow generator I

A better equation to find Zt is:∑
x,µ

[
∂ax,µZ

a(Us)− t∂ax,µS(U)Za(Us)
]
= S(U) + Ċt.

Proof of the existence of solutions can be found in M. Lusher 2009.

Why the choice of the Wilson action? =⇒ simplicity
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Solutions for the flow generator II

Using the Wilson action and assuming an ansatz

S̃t =

∞∑
k=0

tkS̃(k),

it can be shown that

S̃(0) =
3

16
Sw.

Thus, to first order the adequate flow generator is just the gradient
of the Wilson action!
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To take into account...

Difficulty of computing terms in the series grows rapidly with
k.

Locality guaranteed where series converges. But the latter is
not clear.

At least to leading order, the use of the Wilson flow decreases
the action for increasing t:

d

dt
Sw(Ut) = − 3

16

∑
x,µ

∂ax,µSw(Ut)∂
a
x,µSw(Ut) ≤ 0.
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Wilson Flow and Renormalisation
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Wilson flow and perturbation theory

The continuum flow equations are given by

Ḃµ = DνGµν , Bµ|t=0 = Aµ.

We can do an expansion in powers of g0 of the flowed field Bµ;

Bµ =

∞∑
k=1

gk0Bµ,k,

and inserting that in the above eq. we obtain a series of equations.
To leading order, we have that:

Bµ,1(t, x) =

∫
d4y

e−(x−y)2/4t

(4πt)2
Aµ(y).

Explicitly, we see that to this order the gauge potential is averaged
over a volume whose mean-square radius is

√
8t.
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⟨E⟩ in perturbation theory

We define ⟨E⟩ as:
⟨E⟩ = 1

4
⟨Ga

µνG
a
µν⟩.

To first order in our series expansion, the observable does not need
renormalisation:

⟨E⟩ = 3

16π2t2
g2 +O(g4).

It does from the next order and onward. Using the relation
between the bare and renormalised couplings in the MS scheme
and going to an energy scale q = (8t)−1/2:

⟨E⟩ = 3

4πt2
α(q)[1 + k1α(q) +O(α2)].
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Flow dependence of t2⟨E⟩

M. Lusher 2010
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What about fermions?

We can also flow the fermionic fields M. Lusher 2013. The simplest
extension is to keep the evolution of the gauge fields untouched
and:

∂tχt = DµDµχt, χt|t=0 = ψ.

To leading order the flow also smears the fermionic fields over a
volume with mean-square radius

√
8t.

Also, similarly to the gauge field case, now the energy scale of the
renormalised operators can be understood as driven by the change
in t.

15 / 23
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Wilson Flow and Topology I

In a lattice, the space of gauge feels is connected =⇒ topological
sectors not well defined.

But we can approximate any (classical) gauge field. Topological
sectors included but not separated.

Recall that for t > 0, the Wilson action tends to decrease!
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Wilson Flow and Topology II

We can define a way to measure the smoothness of a certain gauge
field as:

h = max {sp}, sp = Re tr[1− V (p)].

Large values for h not favoured =⇒ large values for the plaquettes
are suppressed.
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Suppression of the plaquettes

Top to bottom a = 0.1, 0.07, 0.05 fm M. Lusher 2010
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Wilson Flow and Topology III

The gauge fields on a lattice divide into disconnected topological
sectors under particular smoothness conditions M. Lusher 1982 A.

Phillips et al 1986.

Long story short, fields satisfying:

h < 0.067

are included into a particular subspace and fall into a particular
topological sector.

Hence, Wilson flow dynamically drives the gauge fields into smooth
and and well-defined topological configurations.
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Summary

We have talked about:

How the flow equation can be obtained.

That Wilson flow drives fields to configurations decreasing the
Wilson action.

That the gauge and fermionic fields renormalise at positive
flow time.

An intuition for how disconnected topological sectors appear
at t > 0.
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Thank you for your attention!
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