Motivation F	low equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary

Wilson Flow and Applications

José Javier Hernández Hernández

Journal Club - Lattice QCD Based on \mathscr{P} [1006.4518], \mathscr{P} [0907.5491]

1st July 2022

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary 000
Outline				

- 2 Flow equation
- 3 Wilson Flow and Renormalisation
- Wilson Flow and Topology

Motivation	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary
•0				

Motivation

Motivation ○●	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology 00000	Summary 000
Motivat	ion			

Motivation ○●	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary 000
Motivat	tion			

Can we carry this idea to QCD, i.e.: does ${\mathcal F}$ such that

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D} U \mathcal{O}[U] e^{-S[U]} = \frac{1}{\mathcal{Z}} \int \mathcal{D} V \mathcal{O}[\mathcal{F}(V)]$$

exist? \Longrightarrow

Motivation ○●	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary 000
Motivat	tion			

Can we carry this idea to QCD, i.e.: does ${\mathcal F}$ such that

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}U \mathcal{O}[U] e^{-S[U]} = \frac{1}{\mathcal{Z}} \int \mathcal{D}V \mathcal{O}[\mathcal{F}(V)]$$

 $\mathsf{exist?} \Longrightarrow \mathsf{Yes!}$

Many applications:

Motivation ○●	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary 000
Motivat	tion			

Can we carry this idea to QCD, i.e.: does ${\mathcal F}$ such that

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}U \mathcal{O}[U] e^{-S[U]} = \frac{1}{\mathcal{Z}} \int \mathcal{D}V \mathcal{O}[\mathcal{F}(V)]$$

 $\mathsf{exist?} \Longrightarrow \mathsf{Yes!}$

Many applications: renormalisation, separation of topological sectors...

Motivation	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary
	00000			

Flow equation

Motivation 00	Flow equation ○●○○○○	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary 000
Flow eq	uation I			

• A continuous map $\mathcal{F}: V \to U$ can be thought of as a diff. eq. evolving U through an extra dimension t.

Motivation	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary
00	○●○○○○		00000	000
Flow eq	uation I			

- A continuous map $\mathcal{F}: V \to U$ can be thought of as a diff. eq. evolving U through an extra dimension t.
- One can obtain this differential equation by considering infinitesimal transformations:

$$U \to U + \epsilon Z(U)U + O(\epsilon^2),$$

whose continuous composition is given by

$$\dot{U}_t = Z_t(U_t)U_t,$$

and Z lives in the algebra.

Motivation	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary
00	00●000		00000	000
Flow ec	uation II			

The choice $Z_t=-g_0^2\,\partial_{x,\mu}^aS_{\rm W},$ where $S_{\rm W}$ is the Wilson action, is commonly used.

For a general generator of the flow Z_t :

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary 000
Flow ed	quation II			

The choice $Z_t=-g_0^2\,\partial_{x,\mu}^aS_{\rm W}$, where $S_{\rm W}$ is the Wilson action, is commonly used.

For a general generator of the flow Z_t :

• in order to have a trivialising map, we can ask for:

$$\int_0^t ds \sum_{x,\mu} \left[\partial_{x,\mu}^a Z^a(U_s) \right] = tS(U_t) + C_t.$$

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary 000
Flow ed	quation II			

The choice $Z_t=-g_0^2\,\partial_{x,\mu}^aS_{\rm W}$, where $S_{\rm W}$ is the Wilson action, is commonly used.

For a general generator of the flow Z_t :

• in order to have a trivialising map, we can ask for:

$$\int_0^t ds \sum_{x,\mu} \left[\partial_{x,\mu}^a Z^a(U_s) \right] = tS(U_t) + C_t.$$

• Since $\ln \det \mathcal{F}_{t,*}(V)$ is equal to the LHS of the above eq.:

$$S(\mathcal{F}_t(V)) - \ln \det \mathcal{F}_{t,*}(V) = (1-t)S(\mathcal{F}_t(V)) - C_t,$$

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary 000
Flow ed	quation II			

The choice $Z_t=-g_0^2\,\partial_{x,\mu}^aS_{\rm w},$ where $S_{\rm w}$ is the Wilson action, is commonly used.

For a general generator of the flow Z_t :

• in order to have a trivialising map, we can ask for:

$$\int_0^t ds \sum_{x,\mu} \left[\partial_{x,\mu}^a Z^a(U_s) \right] = tS(U_t) + C_t.$$

• Since $\ln \det \mathcal{F}_{t,*}(V)$ is equal to the LHS of the above eq.:

$$S(\mathcal{F}_t(V)) - \ln \det \mathcal{F}_{t,*}(V) = (1-t)S(\mathcal{F}_t(V)) - C_t,$$

• and we see how for t = 1 we obtain a trivialising map.

A better equation to find Z_t is:

$$\sum_{x,\mu} \left[\partial^a_{x,\mu} Z^a(U_s) - t \partial^a_{x,\mu} S(U) Z^a(U_s) \right] = S(U) + \dot{C}_t.$$

A better equation to find Z_t is:

$$\sum_{x,\mu} \left[\partial^a_{x,\mu} Z^a(U_s) - t \partial^a_{x,\mu} S(U) Z^a(U_s) \right] = S(U) + \dot{C}_t.$$

Proof of the existence of solutions can be found in @M. Lusher 2009.

 Motivation
 Flow equation
 Wilson Flow and Renormalisation
 Wilson Flow and Topology
 Summary

 Solutions for the flow generator I

A better equation to find Z_t is:

$$\sum_{x,\mu} \left[\partial^a_{x,\mu} Z^a(U_s) - t \partial^a_{x,\mu} S(U) Z^a(U_s) \right] = S(U) + \dot{C}_t.$$

Proof of the existence of solutions can be found in @M. Lusher 2009.

Why the choice of the Wilson action? \Longrightarrow

A better equation to find Z_t is:

$$\sum_{x,\mu} \left[\partial^a_{x,\mu} Z^a(U_s) - t \partial^a_{x,\mu} S(U) Z^a(U_s) \right] = S(U) + \dot{C}_t.$$

Proof of the existence of solutions can be found in @M. Lusher 2009.

Why the choice of the Wilson action? \implies simplicity

Motivation	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary
00	0000●0		00000	000
Solutio	ns for the f	flow generator II		

Using the Wilson action and assuming an ansatz

$$\tilde{S}_t = \sum_{k=0}^{\infty} t^k \tilde{S}^{(k)},$$

Motivation 00	Flow equation 0000●0	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary 000
Solution	is for the f	low generator II		

Using the Wilson action and assuming an ansatz

$$\tilde{S}_t = \sum_{k=0}^{\infty} t^k \tilde{S}^{(k)},$$

it can be shown that

$$\tilde{S}^{(0)} = \frac{3}{16} S_{\mathsf{w}}.$$

Motivation	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary
00	0000●0		00000	000
Solution	ns for the f	low generator II		

Using the Wilson action and assuming an ansatz

$$\tilde{S}_t = \sum_{k=0}^{\infty} t^k \tilde{S}^{(k)},$$

it can be shown that

$$\tilde{S}^{(0)} = \frac{3}{16} S_{\mathsf{w}}.$$

Thus, to first order the adequate flow generator is just the gradient of the Wilson action!

Motivation 00	Flow equation 00000●	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary 000
To take	into acco	unt		

• Difficulty of computing terms in the series grows rapidly with k_{\cdot}

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary 000
To take	e into acco	unt		

- Difficulty of computing terms in the series grows rapidly with k.
- Locality guaranteed where series converges. But the latter is not clear.

Motivation 00	Flow equation 00000●	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary 000
To take	e into acco	unt		

- Difficulty of computing terms in the series grows rapidly with k.
- Locality guaranteed where series converges. But the latter is not clear.
- At least to leading order, the use of the Wilson flow decreases the action for increasing *t*:

$$\frac{\mathrm{d}}{\mathrm{d} \mathsf{t}} S_{\mathsf{w}}(U_t) = -\frac{3}{16} \sum_{x,\mu} \partial^a_{x,\mu} S_{\mathsf{w}}(U_t) \partial^a_{x,\mu} S_{\mathsf{w}}(U_t) \leq 0.$$

Motivation	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary
		●0000		

Wilson Flow and Renormalisation

Motivation 00	Flow equation	Wilson Flow and Renormalisation 0●000	Wilson Flow and Topology	Summary 000
Wilson ⁻	flow and p	erturbation theory		

$$\dot{B}_{\mu} = D_{\nu}G_{\mu\nu}, \quad B_{\mu}|_{t=0} = A_{\mu}.$$

Motivation	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary
00		0●000	00000	000
Wilson f	flow and p	perturbation theory		

$$\dot{B}_{\mu} = D_{\nu}G_{\mu\nu}, \quad B_{\mu}|_{t=0} = A_{\mu}.$$

We can do an expansion in powers of g_0 of the flowed field B_{μ} ;

$$B_{\mu} = \sum_{k=1}^{\infty} g_0^k B_{\mu,k},$$

Motivation 00	Flow equation	Wilson Flow and Renormalisation 0●000	Wilson Flow and Topology	Summary 000
Wilson	flow and p	perturbation theory		

$$\dot{B}_{\mu} = D_{\nu}G_{\mu\nu}, \qquad B_{\mu}|_{t=0} = A_{\mu}.$$

We can do an expansion in powers of g_0 of the flowed field B_{μ} ;

$$B_{\mu} = \sum_{k=1}^{\infty} g_0^k B_{\mu,k},$$

and inserting that in the above eq. we obtain a series of equations.

Motivation 00	Flow equation	Wilson Flow and Renormalisation 0●000	Wilson Flow and Topology	Summary 000
Wilson	flow and p	perturbation theory		

$$\dot{B}_{\mu} = D_{\nu}G_{\mu\nu}, \qquad B_{\mu}|_{t=0} = A_{\mu}.$$

We can do an expansion in powers of g_0 of the flowed field B_{μ} ;

$$B_{\mu} = \sum_{k=1}^{\infty} g_0^k B_{\mu,k},$$

and inserting that in the above eq. we obtain a series of equations. To leading order, we have that:

$$B_{\mu,1}(t,x) = \int d^4y \frac{e^{-(x-y)^2/4t}}{(4\pi t)^2} A_{\mu}(y).$$

Explicitly, we see that to this order the gauge potential is averaged over a volume whose mean-square radius is $\sqrt{8t}$.

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary 000
$\langle E \rangle$ in	perturbatio	on theory		

J

We define $\langle E\rangle$ as:

V

$$\langle E \rangle = \frac{1}{4} \langle G^a_{\mu\nu} G^a_{\mu\nu} \rangle.$$

Motivation 00	Flow equation	Wilson Flow and Renormalisation 00●00	Wilson Flow and Topology	Summary 000
$\langle E \rangle$ in	perturbati	on theory		

We define $\langle E \rangle$ as:

$$\langle E \rangle = \frac{1}{4} \langle G^a_{\mu\nu} G^a_{\mu\nu} \rangle.$$

To first order in our series expansion, the observable does not need renormalisation:

$$\langle E \rangle = \frac{3}{16\pi^2 t^2} g^2 + O(g^4).$$

Motivation 00	Flow equation	Wilson Flow and Renormalisation 00●00	Wilson Flow and Topology	Summary 000
$\langle E \rangle$ in	perturbati	on theory		

We define $\langle E \rangle$ as:

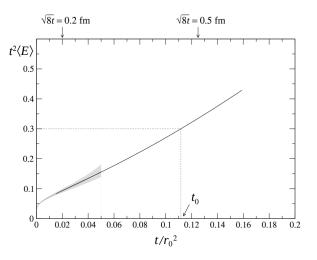
$$\langle E \rangle = \frac{1}{4} \langle G^a_{\mu\nu} G^a_{\mu\nu} \rangle.$$

To first order in our series expansion, the observable does not need renormalisation:

$$\langle E \rangle = \frac{3}{16\pi^2 t^2} g^2 + O(g^4).$$

It does from the next order and onward. Using the relation between the bare and renormalised couplings in the $\overline{\text{MS}}$ scheme and going to an energy scale $q = (8t)^{-1/2}$:

$$\langle E \rangle = \frac{3}{4\pi t^2} \alpha(q) [1 + k_1 \alpha(q) + O(\alpha^2)].$$



A M. Lusher 2010

Motivation 00	Flow equation	Wilson Flow and Renormalisation 0000●	Wilson Flow and Topology	Summary 000			
What a	What about fermions?						

We can also flow the fermionic fields @ M. Lusher 2013. The simplest extension is to keep the evolution of the gauge fields untouched and:

$$\partial_t \chi_t = D_\mu D_\mu \chi_t, \quad \chi_t|_{t=0} = \psi.$$

Motivation	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary				
00		0000●	00000	000				
What a	What about fermions?							

We can also flow the fermionic fields \mathscr{P} M. Lusher 2013. The simplest extension is to keep the evolution of the gauge fields untouched and:

$$\partial_t \chi_t = D_\mu D_\mu \chi_t, \quad \chi_t|_{t=0} = \psi.$$

To leading order the flow also smears the fermionic fields over a volume with mean-square radius $\sqrt{8t}$.

Motivation 00	Flow equation	Wilson Flow and Renormalisation 0000●	Wilson Flow and Topology	Summary 000		
What about fermions?						

We can also flow the fermionic fields \mathscr{P} M. Lusher 2013. The simplest extension is to keep the evolution of the gauge fields untouched and:

$$\partial_t \chi_t = D_\mu D_\mu \chi_t, \quad \chi_t|_{t=0} = \psi.$$

To leading order the flow also smears the fermionic fields over a volume with mean-square radius $\sqrt{8t}$.

Also, similarly to the gauge field case, now the energy scale of the renormalised operators can be understood as driven by the change in t.

Motivation	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary
			00000	

Wilson Flow and Topology

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology 0●000	Summary 000
Wilson	Flow and	Topology I		

In a lattice, the space of gauge feels is connected \Longrightarrow topological sectors not well defined.

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology 0●000	Summary 000
Wilson I	Flow and	Topology I		

In a lattice, the space of gauge feels is connected \Longrightarrow topological sectors not well defined.

But we can approximate any (classical) gauge field. Topological sectors included but not separated.

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology 0●000	Summary 000
Wilson	Flow and [*]	Topology I		

In a lattice, the space of gauge feels is connected \Longrightarrow topological sectors not well defined.

But we can approximate any (classical) gauge field. Topological sectors included but not separated.

Recall that for t > 0, the Wilson action tends to decrease!

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology 00●00	Summary 000
Wilson	Flow and	Topology II		

We can define a way to measure the smoothness of a certain gauge field as:

$$h = \max{\{s_p\}}, \qquad s_p = \operatorname{\mathsf{Re}}\operatorname{\mathsf{tr}}[1 - V(p)].$$

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology 00●00	Summary 000
Wilson	Flow and	Topology II		

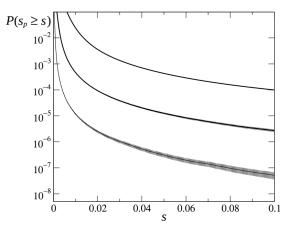
We can define a way to measure the smoothness of a certain gauge field as:

$$h = \max{\{s_p\}}, \qquad s_p = \operatorname{\mathsf{Re}}\operatorname{\mathsf{tr}}[1 - V(p)].$$

Large values for h not favoured \Longrightarrow large values for the plaquettes are suppressed.

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology 000€0	Summary 000

Suppression of the plaquettes



Top to bottom a = 0.1, 0.07, 0.05 fm P M. Lusher 2010

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology 0000●	Summary 000
Wilson	Flow and	Topology III		

The gauge fields on a lattice divide into disconnected topological sectors under particular smoothness conditions \mathscr{P} M. Lusher 1982 \mathscr{P} A. Phillips et al 1986.

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology 0000●	Summary 000
Wilson I	-low and ⁻	Topology III		

The gauge fields on a lattice divide into disconnected topological sectors under particular smoothness conditions \mathscr{P} M. Lusher 1982 \mathscr{P} A. Phillips et al 1986.

Long story short, fields satisfying:

h < 0.067

are included into a particular subspace and fall into a particular topological sector.

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology 0000●	Summary 000
Wilson	Flow and	Topology III		

The gauge fields on a lattice divide into disconnected topological sectors under particular smoothness conditions \mathscr{P} M. Lusher 1982 \mathscr{P} A. Phillips et al 1986.

Long story short, fields satisfying:

h < 0.067

are included into a particular subspace and fall into a particular topological sector.

Hence, Wilson flow dynamically drives the gauge fields into smooth and and well-defined topological configurations.

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary ●00

Summary

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary 0●0
Summa	ry			

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology 00000	Summary 0●0
Summa	ry			

• How the flow equation can be obtained.

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology 00000	Summary 0●0
Summa	ry			

- How the flow equation can be obtained.
- That Wilson flow drives fields to configurations decreasing the Wilson action.

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology 00000	Summary 0●0
Summa	ry			

- How the flow equation can be obtained.
- That Wilson flow drives fields to configurations decreasing the Wilson action.
- That the gauge and fermionic fields renormalise at positive flow time.

Motivation 00	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology 00000	Summary 0●0
Summa	ry			

- How the flow equation can be obtained.
- That Wilson flow drives fields to configurations decreasing the Wilson action.
- That the gauge and fermionic fields renormalise at positive flow time.
- An intuition for how disconnected topological sectors appear at t > 0.

Motivation	Flow equation	Wilson Flow and Renormalisation	Wilson Flow and Topology	Summary
				000

Thank you for your attention!