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Continuum definition of the magnetic susceptibility

e In classical electrodynamics Ampere’s law in matter is written in terms of the
magnetizing field H.

e The magnetic field in a given point (B) adds up from the magnetizing field and
the magnetization, M: B = uo(H + M).

e The magnetization is a reaction of the matter to the magnetizing field.

e To leading order (classically almost always enough) this response is
described by the magnetic susceptibility:

e Based on the behaviour (sign and magnitude of x ) matter is either
paramagnetic (xz < 0) or diamagnetic (xz < 0).

e (Sometimes the permeability, 1. is used instead, which connects H to B
directly, then /o =14+ xx.)



Continuum definition of the magnetic susceptibility
How do we apply this to QCD matter?
Naively applying a background field to QCD is by introducing H.

But the quarks in the Lagrangian interact with the total magnetic field B which
already takes into account the magnetization of QCD matter itself.

Counterintuitively the control parameter becomes B in QFT. If we can obtain
M we can reconstruct H.

Generally the susceptibility is the second derivative of the free energy density
w.r.t. to the control parameter:

. 0f ~ 10%logZ
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We can relate x and y g using that M = —g—é (generalizing £ = —M B)
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Magnetic field on the lattice
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Magpnetic field on the lattice
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UNIFORM MAGNETIC FIELD ON THE LATTICE

In the QCD action, we discretize v"9,1 as

PO [ + (v + U, (x +a) — s, (x — a) UL (x — a)(x — a)]

where u, = ™4 € U(1).

B =08z
B=V xA
Ac=0 A,=Bx A, =0

Uy =1 uy:e’“qB" U, =1 uy=1

Stoke’s theorem must hold in the
torus.
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The phase picked up by a particle winding around the path has to be
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Lattice methods

Main problem: flux quantization

o

B =
T I.L,

Ny .

log Z(B) is only defined at discrete points, differentiation w.r.t. B is ill-defined.

¢ In large volumes the flux quantum becomes small — approximate the
derivative with finite differences.

e "Half-half method”, B and — B in two halves of the lattice — overall flux is zero,
B can be varied continuously. Finite volume effects are very strong because
of the change in the middle — very large volumes again.

e Isotropy is broken by B — hydrodynamic pressure becomes anisotropic if
compressing the system while a constant magnetic flux is going through. This
anisotropy can be related to the magnetization and hence the susceptibility.
However anisotropic lattices have to be used.



Current-current correlator method

Generalization of the half-half idea: introduce smoothly oscillating field with zero
flux, and approach a constant field through increasing wavelength.

21n
B(QJ) = BCOS(p1$1), P1 = T




Current-current correlator method

The magnetic field enters through the term

SQED,int = i/d45’7Au(5’7)ju(5’7) ;

where j, = Zf gy, is the electric current. For the oscillating field we need
the vector potential
sin(p171)

P1 '
Taking the 2nd derivative of log Z w.r.t. B then gives a susceptibility with a
certain p; (also use V, = L3/T):

Ag(xl) = B

T sin(p1x1) sin(p1y1) , . ,
K00 =~ [ ateaty PP 45,y
1

Let’s define the current-current correlator averaged over all the non-interesting
directions:

G22<21) — /d22d23d24<]2(2)j2<0)> .



Current-current correlator method

Using a shifted box on the lattice (periodicity permits) the susceptibility can then
be written as

1 [L/2 : :
X(pl) _ __/ dilﬁldylSln(plajl) sin(p1y1)

Goa(T1 — Y1) -
L —L/2 p%

Change the integration variable y, for every z; t0 z1 = y1 — x1:

1 rL/2 L/2—x1 : :
(P = __/ dl’l/ dzlsm(plﬂfl) Sln(2p1(1'1 + 21))G22(_Z1) .
L —L/2 —L/2—x P1

Now use the trigonometric identity sin(a + b) = sin(a) cos(b) + cos(a) sin(b):

1 rL/? L/2—m in2
o) _ _/ d:z:l/ iz [Sln (p1$1)2(308(p121)G22(_Z1)
L) 12 —L/2—x P1

sin(pixq) cos(pix1) sin(pz
4 (p171) (])]?21 1) sin(ps 1)G22(—21)]
1

Since GGa2(z1) is periodic and even, the z; integral in the first term is
independent of z; and the second term vanishes.



Current-current correlator method

1 L/2 L/2 - 2
X(pl) — __/ dCBl/ lesln (plxl) COS(plZl)GQQ(Zl) '

L —L/2 —L/2 p%

Now the x; integral can be done independently

drysin®(p1zi) = — — —

/W , L sin(Lp) L
iy 2 2 2

and then

| L2
X(pl) — __/ dzl(:OS(];lZl)GQQ(Zl) .

2 —L/2 P1
What happens in the L — oo limit? Write in p; = 27mn/L and approximate the cos
by its series:

L/2 oo 9rm 2k—2 Z2k
(p1) — _ d 1)k === L @ :
v S () )

To make sense of this series we have to know that fOL/2 dz1Gas(z1) ~ e L

L/2 2
X(pl) — / dzlgngg(Zl).
0
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Current-current correlator method

G5 and y(PV) at a high temperature (T > T.) show almost no L dependence:
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Results



Zero temperature

P susceptibility contains additive divergence  log a
due to charge renormalization & Schwinger '51 & Bali et al. '14
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> different methods in the literature agree with each other
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Nonzero temperature

» continuum extrapolation using four lattice spacings
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Nonzero temperature

» continuum extrapolation using four lattice spacings
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Nonzero temperature

» continuum extrapolation using four lattice spacings
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Nonzero temperature

>

x x 100

continuum extrapolation using four lattice spacings
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taste splitting lattice artefacts severe at low T; careful
continuum extrapolation required & Bali, Endrédi, Piemonte '20

15/ 21


https://inspirehep.net/literature/1209577
https://inspirehep.net/literature/1298814
https://inspirehep.net/literature/1791784

	pbs@ARFix@15: 
	pbs@ARFix@16: 
	pbs@ARFix@17: 
	pbs@ARFix@18: 
	pbs@ARFix@19: 
	pbs@ARFix@20: 
	pbs@ARFix@21: 
	pbs@ARFix@22: 
	pbs@ARFix@23: 
	pbs@ARFix@24: 
	pbs@ARFix@25: 
	pbs@ARFix@26: 
	pbs@ARFix@27: 
	pbs@ARFix@28: 
	pbs@ARFix@29: 
	pbs@ARFix@30: 
	pbs@ARFix@31: 
	pbs@ARFix@32: 
	pbs@ARFix@33: 
	pbs@ARFix@34: 
	pbs@ARFix@35: 


