How to measure the magnetic susceptibility of QCD matter on the lattice?

Gergely Markó*

* University of Bielefeld, Department of Theoretical Physics

Based on:
2022, 21st of January, Journal Club

- Continuum definition of the magnetic susceptibility
- Magnetic fields on the lattice
- Lattice methods for χ
- Magnetic susceptibility of QCD matter

Continuum definition of the magnetic susceptibility

- In classical electrodynamics Ampere's law in matter is written in terms of the magnetizing field \mathbf{H}.
- The magnetic field in a given point (B) adds up from the magnetizing field and the magnetization, $\mathbf{M}: \mathbf{B}=\mu_{0}(\mathbf{H}+\mathbf{M})$.
- The magnetization is a reaction of the matter to the magnetizing field.
- To leading order (classically almost always enough) this response is described by the magnetic susceptibility:

$$
\mathbf{M}=\chi_{H} \mathbf{H} .
$$

- Based on the behaviour (sign and magnitude of χ_{H}) matter is either paramagnetic ($\chi_{H} \gtrsim 0$) or diamagnetic ($\chi_{H} \gtrsim 0$).
- (Sometimes the permeability, μ is used instead, which connects \mathbf{H} to \mathbf{B} directly, then $\mu / \mu_{0}=1+\chi_{H}$.)

Continuum definition of the magnetic susceptibility

- How do we apply this to QCD matter?
- Naïvely applying a background field to QCD is by introducing \mathbf{H}.
- But the quarks in the Lagrangian interact with the total magnetic field \mathbf{B} which already takes into account the magnetization of QCD matter itself.
- Counterintuitively the control parameter becomes B in QFT. If we can obtain M we can reconstruct \mathbf{H}.
- Generally the susceptibility is the second derivative of the free energy density w.r.t. to the control parameter:

$$
\chi=-\left.\frac{\partial^{2} f}{\partial(e B)^{2}}\right|_{B=0}=\left.\frac{1}{V_{4}} \frac{\partial^{2} \log Z}{\partial(e B)^{2}}\right|_{B=0} .
$$

- We can relate χ and χ_{H} using that $M=-\frac{\partial f}{\partial B}$ (generalizing $E=-M B$)

$$
\chi_{H}=\frac{\partial M}{\partial H} \leftrightarrow \chi=-\frac{\partial^{2} f}{\partial(e B)^{2}}=\frac{1}{e} \frac{\partial M}{\partial(e B)}=\frac{\chi_{H}}{e^{2} \mu} .
$$

Magnetic field on the lattice

UNIFORM MAGNETIC FIELD ON THE LATTICE

In the QCD action, we discretize $\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi$ as

Uniform magnetic field on the lattice

In the QCD action, we discretize $\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi$ as

$$
\bar{\psi}(x) \frac{\gamma^{\mu}}{2 a}\left[\psi(x+a \hat{\mu}) U_{\mu}(x+a \hat{\mu})-U_{\mu}^{\dagger}(x-a \hat{\mu}) \psi(x-a \hat{\mu})\right]
$$

Uniform magnetic field on the lattice

In the QCD action, we discretize $\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi$ as
$\bar{\psi}(x) \frac{\gamma^{\mu}}{2 a}\left[\psi(x+a \hat{\mu}) u_{\mu}(x+a \hat{\mu}) U_{\mu}(x+a \hat{\mu})-u_{\mu}^{*}(x-a \hat{\mu}) U_{\mu}^{\dagger}(x-a \hat{\mu}) \psi(x-a \hat{\mu})\right]$ where $u_{\mu}=e^{i a q A_{\mu}} \in \mathrm{U}(1)$.

Uniform magnetic field on the lattice

In the QCD action, we discretize $\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi$ as
$\bar{\psi}(x) \frac{\gamma^{\mu}}{2 a}\left[\psi(x+a \hat{\mu}) u_{\mu}(x+a \hat{\mu}) U_{\mu}(x+a \hat{\mu})-u_{\mu}^{*}(x-a \hat{\mu}) U_{\mu}^{\dagger}(x-a \hat{\mu}) \psi(x-a \hat{\mu})\right]$ where $u_{\mu}=e^{i a q A_{\mu}} \in \mathrm{U}(1)$.
$\mathbf{B}=B \hat{z}$

Uniform magnetic field on the lattice

In the QCD action, we discretize $\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi$ as
$\bar{\psi}(x) \frac{\gamma^{\mu}}{2 a}\left[\psi(x+a \hat{\mu}) u_{\mu}(x+a \hat{\mu}) U_{\mu}(x+a \hat{\mu})-u_{\mu}^{*}(x-a \hat{\mu}) U_{\mu}^{\dagger}(x-a \hat{\mu}) \psi(x-a \hat{\mu})\right]$ where $u_{\mu}=e^{i a q A_{\mu}} \in \mathrm{U}(1)$.
$\mathbf{B}=B \hat{z}$
$B=\boldsymbol{\nabla} \times \mathrm{A}$

UnIFORM MAGNETIC FIELD ON THE LATTICE

In the QCD action, we discretize $\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi$ as
$\bar{\psi}(x) \frac{\gamma^{\mu}}{2 a}\left[\psi(x+a \hat{\mu}) u_{\mu}(x+a \hat{\mu}) U_{\mu}(x+a \hat{\mu})-u_{\mu}^{*}(x-a \hat{\mu}) U_{\mu}^{\dagger}(x-a \hat{\mu}) \psi(x-a \hat{\mu})\right]$ where $u_{\mu}=e^{i a q A_{\mu}} \in \mathrm{U}(1)$.
$\mathbf{B}=B \hat{z}$
$\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}$
$A_{x}=0 \quad A_{y}=B x \quad A_{z}=0$

UnIFORM MAGNETIC FIELD ON THE LATTICE

In the QCD action, we discretize $\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi$ as
$\bar{\psi}(x) \frac{\gamma^{\mu}}{2 a}\left[\psi(x+a \hat{\mu}) u_{\mu}(x+a \hat{\mu}) U_{\mu}(x+a \hat{\mu})-u_{\mu}^{*}(x-a \hat{\mu}) U_{\mu}^{\dagger}(x-a \hat{\mu}) \psi(x-a \hat{\mu})\right]$ where $u_{\mu}=e^{i a q A_{\mu}} \in \mathrm{U}(1)$.

$$
\begin{array}{rlrl}
\mathbf{B} & =B \hat{z} \\
\mathbf{B} & =\boldsymbol{\nabla} \times \mathbf{A} \\
A_{x} & =0 \quad A_{y}=B x & A_{z}=0 \\
u_{x} & =1 \quad u_{y}=e^{i a q B x} & u_{z}=1 \quad u_{t}=1
\end{array}
$$

UNIFORM MAGNETIC FIELD ON THE LATTICE

In the QCD action, we discretize $\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi$ as
$\bar{\psi}(x) \frac{\gamma^{\mu}}{2 a}\left[\psi(x+a \hat{\mu}) u_{\mu}(x+a \hat{\mu}) U_{\mu}(x+a \hat{\mu})-u_{\mu}^{*}(x-a \hat{\mu}) U_{\mu}^{\dagger}(x-a \hat{\mu}) \psi(x-a \hat{\mu})\right]$ where $u_{\mu}=e^{i a q A_{\mu}} \in \mathrm{U}(1)$.

$$
\begin{aligned}
\mathbf{B} & =B \hat{z} \\
\mathbf{B} & =\boldsymbol{\nabla} \times \mathbf{A} \\
A_{x} & =0 \quad A_{y}=B x \quad A_{z}=0 \\
u_{x} & =1 \quad u_{y}=e^{i a g B x}
\end{aligned} u_{z}=1 \quad u_{t}=1
$$

Stoke's theorem must hold in the
 torus.

$$
\oint A_{\mu} d x_{\mu}=S B
$$

UNIFORM MAGNETIC FIELD ON THE LATTICE

In the QCD action, we discretize $\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi$ as
$\bar{\psi}(x) \frac{\gamma^{\mu}}{2 a}\left[\psi(x+a \hat{\mu}) u_{\mu}(x+a \hat{\mu}) U_{\mu}(x+a \hat{\mu})-u_{\mu}^{*}(x-a \hat{\mu}) U_{\mu}^{\dagger}(x-a \hat{\mu}) \psi(x-a \hat{\mu})\right]$ where $u_{\mu}=e^{i a q A_{\mu}} \in \mathrm{U}(1)$.

$$
\begin{array}{rlrl}
\mathbf{B} & =B \hat{z} \\
\mathbf{B} & =\boldsymbol{\nabla} \times \mathbf{A} \\
A_{x} & =0 \quad A_{y}=B x & A_{z}=0 \\
u_{x} & =1 \quad u_{y}=e^{i a q B x} & u_{z}=1 \quad u_{t}=1
\end{array}
$$

Stoke's theorem must hold in the
 torus.

$$
\oint A_{\mu} d x_{\mu}=S B \quad \oint A_{\mu} d x_{\mu}=\left(L_{x} L_{y}-S\right) B
$$

UNIFORM MAGNETIC FIELD

The phase picked up by a particle winding around the path has to be unambiguous.

$$
e^{i q B S}=e^{i q B\left(L_{x} L_{y}-S\right)}
$$

UNIFORM MAGNETIC FIELD

The phase picked up by a particle winding around the path has to be unambiguous.

$$
e^{i q B S}=e^{i q B\left(L_{x} L_{y}-S\right)} \quad q B=\frac{2 \pi N_{b}}{L_{x} L_{y}}, \quad N_{b} \in \mathbb{Z}
$$

Lattice methods

Main problem: flux quantization

$$
e B=\frac{6 \pi}{L_{x} L_{y}} N_{b}
$$

$\log Z(B)$ is only defined at discrete points, differentiation w.r.t. B is ill-defined.

- In large volumes the flux quantum becomes small \rightarrow approximate the derivative with finite differences.

Bonati et al. PRL 2013, Bali et al. JHEP 2014

- "Half-half method", B and $-B$ in two halves of the lattice \rightarrow overall flux is zero, B can be varied continuously. Finite volume effects are very strong because of the change in the middle \rightarrow very large volumes again.

Levkova, DeTar PRL 2014

- Isotropy is broken by $\mathbf{B} \rightarrow$ hydrodynamic pressure becomes anisotropic if compressing the system while a constant magnetic flux is going through. This anisotropy can be related to the magnetization and hence the susceptibility. However anisotropic lattices have to be used.

Current-current correlator method

Generalization of the half-half idea: introduce smoothly oscillating field with zero flux, and approach a constant field through increasing wavelength.

$$
B(x)=B \cos \left(p_{1} x_{1}\right), \quad p_{1}=\frac{2 \pi n}{L}
$$

Current-current correlator method

The magnetic field enters through the term

$$
S_{\mathrm{QED}, \mathrm{int}}=i \int d^{4} x A_{\mu}(x) j_{\mu}(x),
$$

where $j_{\mu}=\sum_{f} q_{f} \bar{\psi} \gamma_{\mu} \psi$ is the electric current. For the oscillating field we need the vector potential

$$
A_{2}\left(x_{1}\right)=B \frac{\sin \left(p_{1} x_{1}\right)}{p_{1}} .
$$

Taking the 2nd derivative of $\log Z$ w.r.t. B then gives a susceptibility with a certain p_{1} (also use $V_{4}=L^{3} / T$):

$$
\chi^{\left(p_{1}\right)}=-\frac{T}{L^{3}} \int d^{4} x d^{4} y \frac{\sin \left(p_{1} x_{1}\right) \sin \left(p_{1} y_{1}\right)}{p_{1}^{2}}\left\langle j_{2}(x) j_{2}(y)\right\rangle .
$$

Let's define the current-current correlator averaged over all the non-interesting directions:

$$
G_{22}\left(z_{1}\right)=\int d z_{2} d z_{3} d z_{4}\left\langle j_{2}(z) j_{2}(0)\right\rangle
$$

Current-current correlator method

Using a shifted box on the lattice (periodicity permits) the susceptibility can then be written as

$$
\chi^{\left(p_{1}\right)}=-\frac{1}{L} \int_{-L / 2}^{L / 2} d x_{1} d y_{1} \frac{\sin \left(p_{1} x_{1}\right) \sin \left(p_{1} y_{1}\right)}{p_{1}^{2}} G_{22}\left(x_{1}-y_{1}\right)
$$

Change the integration variable y_{1} for every x_{1} to $z_{1}=y_{1}-x_{1}$:

$$
\chi^{\left(p_{1}\right)}=-\frac{1}{L} \int_{-L / 2}^{L / 2} d x_{1} \int_{-L / 2-x_{1}}^{L / 2-x_{1}} d z_{1} \frac{\sin \left(p_{1} x_{1}\right) \sin \left(p_{1}\left(x_{1}+z_{1}\right)\right)}{p_{1}^{2}} G_{22}\left(-z_{1}\right)
$$

Now use the trigonometric identity $\sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b)$:

$$
\begin{aligned}
\chi^{\left(p_{1}\right)}= & -\frac{1}{L} \int_{-L / 2}^{L / 2} d x_{1} \int_{-L / 2-x_{1}}^{L / 2-x_{1}} d z_{1}\left[\frac{\sin ^{2}\left(p_{1} x_{1}\right) \cos \left(p_{1} z_{1}\right)}{p_{1}^{2}} G_{22}\left(-z_{1}\right)\right. \\
& \left.+\frac{\sin \left(p_{1} x_{1}\right) \cos \left(p_{1} x_{1}\right) \sin \left(p_{1} z_{1}\right)}{p_{1}^{2}} G_{22}\left(-z_{1}\right)\right]
\end{aligned}
$$

Since $G_{22}\left(z_{1}\right)$ is periodic and even, the z_{1} integral in the first term is independent of x_{1} and the second term vanishes.

Current-current correlator method

$$
\chi^{\left(p_{1}\right)}=-\frac{1}{L} \int_{-L / 2}^{L / 2} d x_{1} \int_{-L / 2}^{L / 2} d z_{1} \frac{\sin ^{2}\left(p_{1} x_{1}\right) \cos \left(p_{1} z_{1}\right)}{p_{1}^{2}} G_{22}\left(z_{1}\right)
$$

Now the x_{1} integral can be done independently

$$
\int_{-L / 2}^{L / 2} d x_{1} \sin ^{2}\left(p_{1} x_{1}\right)=\frac{L}{2}-\frac{\sin (L p)}{2 p}=\frac{L}{2}
$$

and then

$$
\chi^{\left(p_{1}\right)}=-\frac{1}{2} \int_{-L / 2}^{L / 2} d z_{1} \frac{\cos \left(p_{1} z_{1}\right)}{p_{1}^{2}} G_{22}\left(z_{1}\right)
$$

What happens in the $L \rightarrow \infty$ limit? Write in $p_{1}=2 \pi n / L$ and approximate the cos by its series:

$$
\chi^{\left(p_{1}\right)}=-\int_{0}^{L / 2} d z_{1} \sum_{k=0}^{\infty}(-1)^{k}\left(\frac{2 \pi n}{L}\right)^{2 k-2} \frac{z_{1}^{2 k}}{(2 k)!} G_{22}\left(z_{1}\right)
$$

To make sense of this series we have to know that $\int_{0}^{L / 2} d z_{1} G_{22}\left(z_{1}\right) \sim \mathrm{e}^{-L}$:

$$
\chi^{\left(p_{1}\right)} \rightarrow \int_{0}^{L / 2} d z_{1} \frac{z_{1}^{2}}{2} G_{22}\left(z_{1}\right)
$$

Current-current correlator method

$$
\chi^{\left(p_{1}\right)}=\int_{0}^{L / 2} d z_{1} \frac{G_{22}\left(z_{1}\right)}{2} z_{1}^{2}
$$

Current-current correlator method

$$
\chi^{\left(p_{1}\right)}=\int_{0}^{L} d z_{1} \frac{G_{22}\left(z_{1}\right)}{2} \begin{cases}z_{1}^{2}, & z_{1} \leq L / 2 \\ \left(z_{1}-L\right)^{2}, & z_{1}>L / 2\end{cases}
$$

Current-current correlator method

G_{22} and $\chi^{\left(p_{1}\right)}$ at a high temperature ($T>T_{c}$) show almost no L dependence:

Results

Zero temperature

- susceptibility contains additive divergence $\propto \log a$ due to charge renormalization o Schwinger '51 \& Bali et al. '14

Zero temperature

- susceptibility contains additive divergence $\propto \log a$ due to charge renormalization o Schwinger '51 \& Bali et al. '14

- renormalize as $\chi(T)=\chi_{b}(T)-\chi_{b}(T=0)$

Zero temperature

- susceptibility contains additive divergence $\propto \log a$ due to charge renormalization o Schwinger '51 \& Bali et al. '14

- renormalize as $\chi(T)=\chi_{b}(T)-\chi_{b}(T=0)$
- different methods in the literature agree with each other

Nonzero temperature

- continuum extrapolation using four lattice spacings

Nonzero temperature

- continuum extrapolation using four lattice spacings

Nonzero temperature

- continuum extrapolation using four lattice spacings

Nonzero temperature

- continuum extrapolation using four lattice spacings

- comparison to HRG model (low T) \& Endrödi ' 13 and to perturbation theory (high T) \& Bali et al. '14

Nonzero temperature

- continuum extrapolation using four lattice spacings

- comparison to HRG model (low T) \& Endrődi '13 and to perturbation theory (high T) \& Bali et al. '14
- taste splitting lattice artefacts severe at low T; careful continuum extrapolation required \& Bali, Endrődi, Piemonte '20

