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Continuum definition of the magnetic susceptibility

• In classical electrodynamics Ampere’s law in matter is written in terms of the
magnetizing field H.

• The magnetic field in a given point (B) adds up from the magnetizing field and
the magnetization, M: B = µ0(H + M).

• The magnetization is a reaction of the matter to the magnetizing field.

• To leading order (classically almost always enough) this response is
described by the magnetic susceptibility:

M = χHH .

• Based on the behaviour (sign and magnitude of χH) matter is either
paramagnetic (χH ' 0) or diamagnetic (χH / 0).

• (Sometimes the permeability, µ is used instead, which connects H to B
directly, then µ/µ0 = 1 + χH.)



Continuum definition of the magnetic susceptibility

• How do we apply this to QCD matter?

• Naı̈vely applying a background field to QCD is by introducing H.

• But the quarks in the Lagrangian interact with the total magnetic field B which
already takes into account the magnetization of QCD matter itself.

• Counterintuitively the control parameter becomes B in QFT. If we can obtain
M we can reconstruct H.

• Generally the susceptibility is the second derivative of the free energy density
w.r.t. to the control parameter:

χ = − ∂2f

∂(eB)2

∣∣∣∣
B=0

=
1

V4

∂2 logZ

∂(eB)2

∣∣∣∣
B=0

.

• We can relate χ and χH using that M = − ∂f
∂B (generalizing E = −MB)

χH =
∂M

∂H
↔ χ = − ∂2f

∂(eB)2
=

1

e

∂M

∂(eB)
=
χH
e2µ

.



Magnetic field on the lattice



Motivations Magnetic field on the lattice Results Summary & Conclusions References

UNIFORM MAGNETIC FIELD ON THE LATTICE

In the QCD action, we discretize ψ̄γµ∂µψ as

where uµ = eiaqAµ ∈ U(1).

B = Bẑ

B = ∇× A

Ax = 0 Ay = Bx Az = 0

ux = 1 uy = eiaqBx uz = 1 ut = 1

Stoke’s theorem must hold in the
torus. ∮

Aµdxµ = SB
∮

Aµdxµ = (LxLy − S)B
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UNIFORM MAGNETIC FIELD

The phase picked up by a particle winding around the path has to be
unambiguous.

eiqBS = eiqB(LxLy−S)

qB =
2πNb

LxLy
, Nb ∈ Z

uy(Lx) = eiaqBx = eia2πNb/Ly ̸= uy(0) (Not exactly periodic!)

ux =

{
e−iqBLxy if x = Lx − a
1 if x ̸= Lx − a

uy = eiaqBx 0 ≤ x ≤ Lx − a

uz = 1

ut = 1

5
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Lattice methods
Main problem: flux quantization

eB =
6π

LxLy
Nb .

logZ(B) is only defined at discrete points, differentiation w.r.t. B is ill-defined.

• In large volumes the flux quantum becomes small→ approximate the
derivative with finite differences.

Bonati et al. PRL 2013, Bali et al. JHEP 2014

• ”Half-half method”, B and −B in two halves of the lattice→ overall flux is zero,
B can be varied continuously. Finite volume effects are very strong because
of the change in the middle→ very large volumes again.

Levkova, DeTar PRL 2014

• Isotropy is broken by B→ hydrodynamic pressure becomes anisotropic if
compressing the system while a constant magnetic flux is going through. This
anisotropy can be related to the magnetization and hence the susceptibility.
However anisotropic lattices have to be used.

Bali et al. JHEP 2013



Current-current correlator method
Generalization of the half-half idea: introduce smoothly oscillating field with zero
flux, and approach a constant field through increasing wavelength.

B(x) = B cos(p1x1), p1 =
2πn

L



Current-current correlator method
The magnetic field enters through the term

SQED,int = i

∫
d4xAµ(x)jµ(x) ,

where jµ =
∑
f qf ψ̄γµψ is the electric current. For the oscillating field we need

the vector potential

A2(x1) = B
sin(p1x1)

p1
.

Taking the 2nd derivative of logZ w.r.t. B then gives a susceptibility with a
certain p1 (also use V4 = L3/T ):

χ(p1) = − T
L3

∫
d4xd4y

sin(p1x1) sin(p1y1)

p21
〈j2(x)j2(y)〉 .

Let’s define the current-current correlator averaged over all the non-interesting
directions:

G22(z1) =

∫
dz2dz3dz4〈j2(z)j2(0)〉 .



Current-current correlator method
Using a shifted box on the lattice (periodicity permits) the susceptibility can then
be written as

χ(p1) = −1

L

∫ L/2

−L/2
dx1dy1

sin(p1x1) sin(p1y1)

p21
G22(x1 − y1) .

Change the integration variable y1 for every x1 to z1 = y1 − x1:

χ(p1) = −1

L

∫ L/2

−L/2
dx1

∫ L/2−x1

−L/2−x1
dz1

sin(p1x1) sin(p1(x1 + z1))

p21
G22(−z1) .

Now use the trigonometric identity sin(a+ b) = sin(a) cos(b) + cos(a) sin(b):

χ(p1) =− 1

L

∫ L/2

−L/2
dx1

∫ L/2−x1

−L/2−x1
dz1

[
sin2(p1x1) cos(p1z1)

p21
G22(−z1)

+
sin(p1x1) cos(p1x1) sin(p1z1)

p21
G22(−z1)

]
Since G22(z1) is periodic and even, the z1 integral in the first term is
independent of x1 and the second term vanishes.



Current-current correlator method

χ(p1) = −1

L

∫ L/2

−L/2
dx1

∫ L/2

−L/2
dz1

sin2(p1x1) cos(p1z1)

p21
G22(z1) .

Now the x1 integral can be done independently∫ L/2

−L/2
dx1 sin2(p1x1) =

L

2
− sin(Lp)

2p
=
L

2
,

and then

χ(p1) = −1

2

∫ L/2

−L/2
dz1

cos(p1z1)

p21
G22(z1) .

What happens in the L→∞ limit? Write in p1 = 2πn/L and approximate the cos
by its series:

χ(p1) = −
∫ L/2

0

dz1

∞∑
k=0

(−1)k
(

2πn

L

)2k−2
z2k1

(2k)!
G22(z1) .

To make sense of this series we have to know that
∫ L/2
0

dz1G22(z1) ∼ e−L:

χ(p1) →
∫ L/2

0

dz1
z21
2
G22(z1) .



Current-current correlator method

χ(p1) =

∫ L/2

0

dz1
G22(z1)

2
z21 .



Current-current correlator method

χ(p1) =

∫ L

0

dz1
G22(z1)

2

{
z21, z1 ≤ L/2
(z1 − L)2, z1 > L/2

.



Current-current correlator method

G22 and χ(p1) at a high temperature (T > Tc) show almost no L dependence:



Results



Zero temperature

I susceptibility contains additive divergence ∝ log a
due to charge renormalization Schwinger ’51 Bali et al. ’14

I renormalize as χ(T ) = χb(T )− χb(T = 0)

I different methods in the literature agree with each other

14 / 21

https://inspirehep.net/literature/113
https://inspirehep.net/literature/1298814
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Nonzero temperature

I continuum extrapolation using four lattice spacings

I comparison to HRG model (low T ) Endrődi ’13
and to perturbation theory (high T ) Bali et al. ’14

I taste splitting lattice artefacts severe at low T ; careful
continuum extrapolation required Bali, Endrődi, Piemonte ’20
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