Monte Carlo algorithm 0000000	Parallel tempering	Numerical results 000000	Conclusions 00	References

Parallel tempering in pure gauge theory Journal club - Lattice field theory - SS 2022

Eduardo Garnacho

20-05-2022

Monte Carlo algorithm 0000000	Parallel tempering	Numerical results	Conclusions	References

Outline

1 Introduction

- 2 Monte Carlo algorithm
- 3 Parallel tempering
- 4 Numerical results

5 Conclusions

Introduction ●0	Monte Carlo algorithm 0000000	Parallel tempering	Numerical results	Conclusions 00	References

Table of Contents

1 Introduction

- 2 Monte Carlo algorithm
- 3 Parallel tempering
- 4 Numerical results
- 5 Conclusions

Introduction	Monte Carlo algorithm	Parallel tempering	Conclusions	References
00				

Why Parallel tempering?

- Introduced by Swendsen and Wang [1] in 1986.
- Used in Statistical Physics: e.g. Spin glass models [2].
- Aims to improve MC simulations:
 - Sampling at all parameter sets simultaneously.
 - Reduces autocorrelation.
- Suitable to explore critical points.

Monte Carlo algorithm ●000000	Parallel tempering	Numerical results 000000	Conclusions 00	References

Table of Contents

1 Introduction

- 2 Monte Carlo algorithm
- 3 Parallel tempering
- 4 Numerical results
- 5 Conclusions

Basics		Monte Carlo algorithm ○●○○○○○	Parallel tempering 00000000	Numerical results 000000	Conclusions 00	References
Basics						
	Basics					

Numerical integration of expectation values

$$\langle f \rangle_{\rho} = \frac{\int_{a}^{b} \mathrm{d}x \,\rho(x) f(x)}{\int_{a}^{b} \mathrm{d}x \,\rho(x)} \equiv \int_{a}^{b} \mathrm{d}x \,T(x)$$

Via uniform sampling:

$$\frac{1}{b-a}\langle f\rangle_{\rho} = \frac{1}{b-a}\int_{a}^{b} \mathrm{d}x \, T(x) = \langle T\rangle_{\rho_{u}} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T(x_{n})$$

with $\rho_u(x_n) = 1/(b-a)$.

	Monte Carlo algorithm 00●0000	Parallel tempering	Numerical results 000000	Conclusions	References			
• Lattice QCD: $ ho ightarrow$ Boltzmann weight $e^{-S[U]}$								

• Importance sampling Monte Carlo method:

$$\langle f \rangle_{\rho} = \frac{\int_{a}^{b} \mathrm{d}x \,\rho(x) f(x)}{\int_{a}^{b} \mathrm{d}x \,\rho(x)} \longleftrightarrow \langle \mathcal{O}[U] \rangle = \frac{\int \mathcal{D}[U] \,e^{-S[U]} \mathcal{O}[U]}{\int \mathcal{D}[U] \,e^{-S[U]}}$$

Sample over

$$dP(x) = \frac{\rho(x)dx}{\int_a^b dx \,\rho(x)} \longleftrightarrow dP(U) = \frac{\mathcal{D}[U] \, e^{-S[U]}}{\int \mathcal{D}[U] \, e^{-S[U]}}$$

Then

$$\langle f(x) \rangle_{\rho} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x_n) \longleftrightarrow \langle \mathcal{O}[U] \rangle = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathcal{O}[U_n]$$

Monte Carlo algorithm 000●000	Parallel tempering 00000000	Numerical results 000000	Conclusions 00	References

Markov chain

• We need U_n distributed according to $dP(U) \rightarrow Markov$ chain:

$$U_0 \longrightarrow U_1 \longrightarrow U_2 \longrightarrow \ldots$$

Transition probability:

$$P(U_n = U' | U_{n-1} = U) = T(U' | U)$$

Satisfy obvious properties

$$0 \le T(U'|U) \le 1$$
$$\sum_{U'} T(U'|U) = 1$$

Monte Carlo algorithm 0000●00	Parallel tempering 00000000	Numerical results	Conclusions 00	References

Equilibrium distribution

Also the *balance equation*

$$\sum_{U} T(U'|U)P(U) = \sum_{U} T(U|U')P(U')$$

SO

$$\sum_{U} T(U'|U)P(U) = P(U')$$

• P(U) is a *fixed point* of the Markov chain:

$$P^{(0)} \xrightarrow{T} P^{(1)} \xrightarrow{T} P^{(2)} \xrightarrow{T} \dots \xrightarrow{T} P$$

• Eventually get the equilibrium distribution.

Monte Carlo algorithm 00000●0	Parallel tempering	Numerical results	Conclusions 00	References

Metropolis algorithm

Detailed balance condition:

$$T(U'|U)P(U) = T(U|U')P(U')$$

• Metropolis algorithm: $T = T_0T_A$ with T_0 a priori selection probability for candidate configuration U' and T_A the acceptance probability.

$$T_A(U'|U) = \min\left(1, \frac{T_0(U|U')e^{-S[U']}}{T_0(U'|U)e^{-S[U]}}\right) \stackrel{1}{=} \min\left(1, e^{-\Delta S}\right)$$

Sweep: every time all links are visited.

¹If T_0 symmetric, $\Delta S = S[U'] - S[U]$

Monte Carlo algorithm 000000●	Parallel tempering 00000000	Numerical results	Conclusions 00	References

Correlation time

- Configurations generated from the same Markov chain are correlated.
- Estimation of the mean

$$\bar{\mathcal{O}} = \langle \mathcal{O} \rangle \pm \sqrt{\frac{2\tau_{\mathcal{O}} + 1}{N}\sigma^2(\mathcal{O})}$$

with au the (integrated) autocorrelation time

$$\tau_{\mathcal{O}} = \sum_{t=1}^{\infty} C_{\mathcal{O}}(t)$$

and C(t) the correlation function

$$C_{\mathcal{O}}(t) = C_{\mathcal{O}}(\mathcal{O}_i, \mathcal{O}_{i+t}) = \frac{1}{\sigma^2(\mathcal{O})} \langle (\mathcal{O}_i - \langle \mathcal{O}_i \rangle) (\mathcal{O}_{i+t} - \langle \mathcal{O}_{i+t} \rangle)$$

Monte Carlo algorithm 0000000	Parallel tempering ●00000000	Numerical results	Conclusions 00	References

Table of Contents

1 Introduction

- 2 Monte Carlo algorithm
- 3 Parallel tempering
- 4 Numerical results

5 Conclusions

	Monte Carlo algorithm 0000000	Parallel tempering 0●0000000	Numerical results 000000	Conclusions 00	References
General	l idea				

Usually physical simulations involve different parameters p_i:

- Gauge coupling β .
- Fermionic masses.
- EM fields.
- Chemical potentials.
- . . .
- Each set of parameter set have a sub-ensemble of configurations Γ_i and an action S_i.
- Close sub-ensembles in parameter space overlap.
- Parallel tempering allows to sample from all the sets of configurations the same time.

Monte Carlo algorithm 0000000	Parallel tempering 00●000000	Numerical results 000000	Conclusions 00	References

Build a generalised Markov chain:

$$\Gamma_{\mathsf{PT}} = \prod_{i=1}^{N} \Gamma_i$$

Equilibrates to

$$P_{\mathsf{PT}}^{\mathsf{eq}}[\{a_i\}] = \prod_i P_i^{\mathsf{eq}}(a_i) = \prod_i \frac{1}{Z_i} e^{-S_i(a_i)}$$

with a_i configuration from Γ_i .

• Total partition function:

$$Z_{\mathsf{PT}} = \prod_i Z_i$$

Monte Carlo algorithm 0000000	Parallel tempering 000●00000	Numerical results	Conclusions 00	References

Two types of transitions:

Iransitions

- **Transitions within a sub-ensemble**: Using any Markovian updating procedure (e.g. Metropolis).
- Swapping updates of two sub-ensembles: Mixes different ensemble spaces Γ_i and Γ_j . Propose to swap configurations $a \in \Gamma_i$ and $b \in \Gamma_j$ with probability $P_s(i, j)$.

• $P_s(i,j)$ has to satisfy detailed balance:

$$P_s(i,j)e^{-S_i(a)}e^{-S_j(b)} = P_s(j,i)e^{-S_i(b)}e^{-S_j(a)}$$

 \blacksquare Metropolis for swapping: $P_s(i,j) = \min(1,e^{-\Delta S})$ with

$$\Delta S = S_i(b) + S_j(a) - S_i(a) - S_j(b)$$

Monte Carlo algorithm 0000000	Parallel tempering 0000●0000	Numerical results 000000	Conclusions 00	References

• Consider pure gauge case \rightarrow only β matters.

Parallel tempering algorithm:

- Initialise N streams separated by $\Delta\beta$. Usual Markovian process in each stream (HMC, local MC ...).
- 2 After some number of sweeps (e.g. 5), perform a swapping update between the streams.
- 3 Continue the individual Markov chains and repeat from 2.

Monte Carlo algorithm 0000000	Parallel tempering 00000●000	Numerical results 000000	Conclusions 00	References

Figure: From [3]

Monte Carlo algorithm 0000000	Parallel tempering 000000●00	Numerical results	Conclusions	References

Properties

- Random walk in parameter space.
- Smaller $\Delta\beta \rightarrow$ Bigger overlap between ensembles.
- Advantages:
 - Decrease autocorrelation in each ensemble.
 "Smaller computational cost".
- Disadvantages:
 - Samples from all parameter sets at the same time.
 - Introduces correlation between different ensembles.
 - $\Delta\beta$ should be small to maximise the overlap. Unsuitable for broad parameter spaces.

Monte Carlo algorithm 0000000	Parallel tempering 0000000●0	Numerical results	Conclusions	References

Autocorrelation

Figure: From [3]

Figure: From [3]

Monte Carlo algorithm 0000000	Parallel tempering 00000000	Numerical results •00000	Conclusions 00	References

Table of Contents

1 Introduction

- 2 Monte Carlo algorithm
- 3 Parallel tempering
- 4 Numerical results
- 5 Conclusions

Monte Carlo algorithm	Parallel tempering	Numerical results	Conclusions	References
		00000		

Columbia plot

(a) QCD phase diagram [4]

(b) Columbia plot [5]

First order phase transition

Polyakov loop:

$$P = \frac{1}{N_s^3} \sum_{\vec{x}} \operatorname{Tr}\left[\prod_t U_4(\vec{x}, t)\right]$$

• Order parameter for confinement:

- $\langle |P| \rangle = 0 \rightarrow \text{confinement}$
- $\langle |P| \rangle \neq 0 \rightarrow$ no confinement

Polyakov loop susceptibility:

$$\chi = N_s^3(\langle |P|^2 \rangle - \langle |P| \rangle^2)$$

 \blacksquare First order phase transition $\rightarrow \chi \sim V$

Monte Carlo algorithm 0000000	Parallel tempering 000000000	Numerical results 000●00	Conclusions 00	References

Monte Carlo algorithm	Parallel tempering	Numerical results	Conclusions	Referen
		000000		

Polyakov loop susceptibility

Figure: From [3]

Monte Carlo algorithm 0000000	Parallel tempering	Numerical results 00000●	Conclusions 00	References

Volume dependence

Figure: From [3]

Monte Carlo algorithm 0000000	Parallel tempering	Numerical results	Conclusions ●0	References

Table of Contents

1 Introduction

- 2 Monte Carlo algorithm
- 3 Parallel tempering
- 4 Numerical results

5 Conclusions

Monte Carlo algorithm 0000000	Parallel tempering	Numerical results	Conclusions 0●	References

Conclusion

Parallel tempering:

- Reduces considerably autocorrelation time in each ensemble.
- Helps dealing with MC critical slowing down.
- Interesting tool for investigating critical points.
- Only feasible in small parameter space intervals.
- Full QCD: [7], [8], [9].

	Monte Carlo algorithm 0000000	Parallel tempering	Numerical results 000000	Conclusions 00	References	
bibliography I						

- [1] Robert H. Swendsen and Jian-Sheng Wang. "Replica Monte Carlo Simulation of Spin-Glasses". In: *Phys. Rev. Lett.* 57 (21 Nov. 1986), pp. 2607-2609. DOI: 10.1103/PhysRevLett.57.2607. URL: https: //link.aps.org/doi/10.1103/PhysRevLett.57.2607.
- [2] H. G. Ballesteros et al. "Critical behavior of the three-dimensional Ising spin glass". In: *Phys. Rev. B* 62 (21 Dec. 2000), pp. 14237–14245. DOI: 10.1103/PhysRevB.62.14237. URL: https: //link.aps.org/doi/10.1103/PhysRevB.62.14237.

	Monte Carlo algorithm 0000000	Parallel tempering	Numerical results 000000	Conclusions	References
bibliogr	aphy II				

- S. Borsanyi et al. "Precision study of the continuum SU(3) Yang-Mills theory: How to use parallel tempering to improve on supercritical slowing down for first order phase transitions". In: *Phys. Rev. D* 105.7 (2022), p. 074513. DOI: 10.1103/PhysRevD.105.074513. arXiv: 2202.05234 [hep-lat].
- Jana N. Guenther. "Overview of the QCD phase diagram: Recent progress from the lattice". In: *Eur. Phys. J. A* 57.4 (2021), p. 136. DOI: 10.1140/epja/s10050-021-00354-6. arXiv: 2010.15503 [hep-lat].

	Monte Carlo algorithm 0000000	Parallel tempering 00000000	Numerical results 000000	Conclusions 00	References
bibliogr	aphy III				

- [5] Philippe de Forcrand and Massimo D'Elia. "Continuum limit and universality of the Columbia plot". In: PoS LATTICE2016 (2017), p. 081. DOI: 10.22323/1.256.0081. arXiv: 1702.00330 [hep-lat].
- Y. Iwasaki et al. "Finite temperature phase transition of SU(3) gauge theory on N(t) = 4 and 6 lattices". In: *Phys. Rev. D* 46 (1992), pp. 4657–4667. DOI: 10.1103/PhysRevD.46.4657.
- Balint Joo et al. "Parallel tempering in lattice QCD with O(a)-improved Wilson fermions". In: *Phys. Rev. D* 59 (1999), p. 114501. DOI: 10.1103/PhysRevD.59.114501. arXiv: hep-lat/9810032.

	Monte Carlo algorithm 0000000	Parallel tempering	Numerical results 000000	Conclusions	References
bibliogra	aphy IV				

- [8] G. Boyd. "Tempered fermions in the hybrid Monte Carlo algorithm". In: *Nucl. Phys. B Proc. Suppl.* 60 (1998). Ed. by C. T. H. Davies et al., pp. 341–344. DOI: 10.1016/S0920-5632(97)00495-7. arXiv: hep-lat/9712012.
- [9] Ruben Kara et al. "The upper right corner of the Columbia plot with staggered fermions". In: 38th International Symposium on Lattice Field Theory. Dec. 2021. arXiv: 2112.04192 [hep-lat].
- [10] Christof Gattringer and Christian B. Lang. Quantum chromodynamics on the lattice. Vol. 788. Berlin: Springer, 2010. ISBN: 978-3-642-01849-7, 978-3-642-01850-3. DOI: 10.1007/978-3-642-01850-3.

	Monte Carlo algorithm 0000000	Parallel tempering	Numerical results 000000	Conclusions	References
bibliogr	aphy V				

[11] David J. Earl and Michael W. Deem. "Parallel tempering: Theory, applications, and new perspectives". In: *Phys. Chem. Chem. Phys.* 7 (23 2005), pp. 3910–3916. DOI: 10.1039/B509983H. URL: http://dx.doi.org/10.1039/B509983H.