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Axions and Topology in QCD
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These are a complimentary set of notes for the Lattice Journal Club presentation, held on

June 14th 2022. The notes largely cover the same material presented during the journal

club meeting, but also discuss further details on certain topics. Additional information on

derivations and related topics can be found in the references. Enjoy!
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1 Topological configurations and the θ-vacuum

In perturbative Quantum field theory, we need to expand around some classical solution

of the field equations. Typically, we further restrict our attention to static (non time-

dependent) classical solutions, and recover the time-dependent solutions via Lorentz trans-

forms. We will from here on out refer to the static classical solutions as vacuum configura-

tions, or sometimes vacuum sates. Given the current context, this begs the question: what

are the vacuum configurations of QCD?. In fact, let us start even simpler. What are the

vacuum configurations of pure SU(3) Yang Mills theory?

I order identify the vacuum configurations of pure SU(3) YM, we first write down the

familiar action in Minkowski space:

S[A] = − 1

2g2

∫
R4

d4x trFµνF
µν , Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] (1)

Where we use the signature choice: (−,+,+,+). If need be, we can also expand the su(3)

Lie-algebra valued gauge field A, in terms of a set of 8 generators Ta:

Aµ = Aa
µTa , trTaTb =

1

2
δab (2)

The above action S is, in particular, invariant under all SU(3) gauge transformations:

Aµ → U (Aµ + i∂µ)U
−1 , U ∈ SU(3) (3)

If we now insist on looking only at static gauge configurations, while also working in static

gauge where A0 = 0, we find that the pure SU(3) YM action takes the following form:

S =
1

g2

∫
R3

d3x trB2 ≥ 0 (4)

Where Bi = 1
2
εijkFjk, is the chromo-magnetic field. Note that the above expression is

simply the energy E of pure YM in the absence of a chromo-electric field Ei = F 0i:

E =

∫
R3

d3x T 00 =
1

g2

∫
R3

d3x tr
(
E2 +B2

)
≥ 0 (5)
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Where T µν is the energy-momentum tensor. It is clear that the gauge field configurations

which minimize the energy, are those for which F = 0. We know that if A is given as a

pure gauge configuration, the field strength F will vanish. It turns out that the converse is

also true, by virtue of the non-abelian Stoke’s theorem:

Fµν = 0 ⇔ Aµ = iU∂µU
−1 (6)

Thus, the vacuum configurations of pure SU(3) YM, takes on the following simple form:

Avac
i = iU∂iU

−1 , Avac
0 = 0 (7)

Where, in order to stay in the static A0 = 0 gauge, we must insist that the SU(3) transfor-

mations U be time-independent.

1.1 Winding of non-abelian gauge fields

How can we classify all the possible vacuum configurations of pure SU(3) Yang Mills? We

start by noting that every vacuum configuration Avac, is specified by some time-independent

group element U(x) ∈ SU(3). Next, recall that we can generate any SU(3) group element

via the exponential map:

U(x) = exp{iω(x)} (8)

Where ω(x) is some element of the Lie algebra su(3). For our current purposes, it is

convenient to distinguish between 2 important types of U(x) transformations, depending

on their behaviour at spatial infinity:

1. Gauge transformations for which: U(x) → constant as |x| → ∞. These are the gauge

transformations which relate physically equivalent states.

2. Gauge transformations for which: U(x) 6→ constant as |x| → ∞. These are to

be thought of as genuine symmetries of the system and so do not transform

between physically equivalent states.

From here on out, we will not concern ourselves with type 2. gauge transformations, as they

do not play a critical part in the following discussion. To ease the following analysis slightly,
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notice that we can restrict our attention to gauge transformations for which U(∞) = 1.

Gauge transforms which approach a different constant group element V at infinity can then

be obtained by multiplying U(x) by V .

Because we now restrict our attention to transformation for which U(x) → 1, no mat-

ter the direction from which we approach spatial infinity, we make the following small but

important observation: since all group transformations approach the same value at spatial

infinity, we can treat spatial infinity as a single point. This changes the topology of space

from the standard R3 topology to S3; the topology of the 3-dimensional sphere. Thus, we

can think of space dependent SU(3) transformations as maps from S3 into SU(3), which

maps the point at infinity to 1:

U : S3 7−→ SU(3) , U(∞) = 1 (9)

The set of all such maps has a name in mathematics: the 3rd homotopy group of SU(3), and

is often denoted π3(SU(3)). As the name indicates, this set has a group structure under

composition of maps, and it can be shown that for the case of SU(3), we have:

π3(SU(3)) = Z (10)

The above result tells us that the gauge transformations: U : S3 7−→ SU(3), fall into

distinct classes, which are labelled by an integer refereed to as the winding number. An

explicit example of a gauge transformation with winding number n is given by the following

SU(2) ⊂ SU(3) transformation:

U(x) = exp{iϕ(r) n̂ · σ} = cosϕ(r) + in̂ · σ sinϕ(r) (11)

Here r = |x|, n̂ is the radial unit vector-field in R3, and σ are the Pauli-matrices. If the

function ϕ satisfies ϕ(0) = π and ϕ(r) → 2πn as r → ∞, the winding number of the above

gauge transformation will be exactly n.

It turns out that we explicitly compute the winding number n for any given map U , using

the following integral expression:

n(U) =
1

24π2

∫
S3

d3x εijk tr
(
U∂iU

−1
)
(U∂jU

−1)(U∂kU
−1) ∈ Z (12)
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The fact that the above integral always yields an integer is somewhat non-trivial, and we

will not make any attempts to proof this claim here. Additionally, it can be shown that the

winding number is additive under group multiplication. That is:

n(U1U2) = n(U1) + n(U2) (13)

This implies that we can transform a vacuum configuration with winding number n1, to

one with winding number n1+n2, by use of an SU(3) element U2 with winding number n2:

iU1∂iU
−1
1 → U2

(
iU1∂iU

−1
1 + i∂i

)
U−1
2 = i(U2U1)∂i(U2U1)

−1 (14)

The fact that these SU(3) transformations, and by extension the vacua Avac, can be clas-

sified by an integer n, implies that these elements are not continuously connected. Thus,

in order to go from one vacuum to another, one necessarily has to go through non-vacuum

configurations. In other words, vacua with different winding numbers are separated by a

potential barrier. Classically, this means that the system cannot evolve from one distinct

vacuum state into another. Quantum mechanically however, it is possible for tunnelling to

occur, which we will now discuss.
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1.2 Instantons and tunnelling amplitudes

We want to understand the possibility of tunnelling between vacua with different winding

numbers in pure SU(3) YM. To be more precise, we want to compute the probability

amplitude for transitioning between a vacuum state |n〉− with winding number n at t = −∞,

to another vacuum state |m〉+ with winding number m at t = +∞. This amplitude can be

expressed as a path integral in the following way:

〈m|n〉+ − =

∫ A(m)

A(n)

DA exp{iS[A]} (15)

In order to better understand the dominant contribution to the above amplitude, we perform

a Wick rotation: t → −it and A0 → iA0. One can think of this as a type of coordinate

transformation, and so should not change the value of the path integral (up to a phase).

After performing the Wick rotation, we end up with the following expression:

〈m|n〉+ − =

∫ A(m)

A(n)

DA exp{−SE[A]} (16)

The quantity SE[A] is known as the Euclidean action, and is simply given by the following:

SE[A] =
1

2g2

∫
R4

d4x trFµνFµν , Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] (17)

Where we now work with Euclidean signature: (+,+,+,+), and keeping track of upper

and lower indices is therefore irrelevant.

In the path integral formalism, the dominant field configurations are those which mini-

mize the Euclidean action subject to the boundary conditions; e.i. the classical solutions.

In Minkowski space we already know that no classical solutions exist, which connect vacua

with different winding numbers. There are two reasons for this:

1. Vacua with differing values of winding number n are not continuously connected.

2. The vacua are all field configurations which minimize the energy E .

Thus, in order to go between vacua with different winding numbers, one must go through

configurations with higher energy, and so energy conservation would be violated! In Eu-
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clidean space however, the energy function EE picks up a minus sign after Wick rotation:

EE = − 1

g2

∫
R3

d3x tr
(
E2 +B2

)
≤ 0 (18)

This means that configurations which were formerly minima of the energy in Minkowski

space, now become maxima of the energy! It is no longer a problem finding solutions which

connect distinct vacua, and simultaneously conserve energy. We shall now investigate which

of these configurations also minimize the Euclidean action SE[A]. At this point, it would

be an appropriate time to interject that classical solutions which connect different vacua in

Euclidean space, when no such solutions exist in Minkowski space, are often referred to as

instanton solutions, or simply instantons.

The standard approach to finding minimal solutions w.r.t any action is of course to employ

the famous Euler-Lagrange equations, which in our case yields:

DνFµν = ∂µFµν − i[Aν , Fµν ] = 0 (19)

The above equations are horribly complicated second order non-linear equations in A, and

attempting to find a solution would most certainly be a rather painful process. Fortunately,

there is in our case a better approach. The trick is to rewrite the Euclidean action SE[A]

as follow:

SE[A] =
1

4g2

∫
R4

d4x tr
(
Fµν ∓ F̃µν

)2

± 1

2g2

∫
R4

d4x trFµνF̃µν (20)

Where the quantity F̃µν is know as the dual field strength. It is given in terms of Fµν as so:

F̃µν =
1

2
εµνρσFρσ (21)

The first term in the above rewriting of SE[A] is clearly bound from below by zero, and

thus we find that the Euclidean action is bound from below by the second term:

SE[A] ≥ ± 1

2g2

∫
R4

d4x trFµνF̃µν (22)

By straight forward, albeit somewhat tedious, algebraic manipulation, one finds that the

above integrand is in fact a total derivative:∫
R4

d4x trFµνF̃µν =

∫
R4

d4x ∂µKµ , Kµ = 2εµνρσ tr

(
Aν∂ρAσ −

2i

3
AνAρAσ

)
(23)
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In order for the Euclidean action to be finite, we must have that Fµν → 0 as |x| → ∞.

As we have already argued in the previous section, this means that the gauge field must

approach a pure gauge configuration:

Fµν = 0 ⇔ Aµ = iU∂µU
−1 (24)

We can now make use of the above condition to simplify the form of Kµ at infinity. First,

we note the fact that Fµν = 0 at infinity gives us the following relation:

Fρσ = ∂ρAσ − ∂σAρ − i[Aρ, Aσ] = 0 ⇒ εµνρσ∂ρAσ = iεµνρσAρAσ (25)

The above relation allows us to simplify the expression for Kµ in the limit as |x| → ∞:

Kµ → 2i

3
εµνρσ trAνAρAσ as |x| → ∞ (26)

We now make use of the fact that Aµ must approach a pure gauge configuration as we

approach infinity, and find that Kµ must then approach:

Kµ → 2

3
εµνρσ tr

(
U∂νU

−1
)
(U∂ρU

−1)(U∂σU
−1) as |x| → ∞ (27)

Given the asymptotic form of Kµ above, we can now rewrite the lower bound integral as a

surface integral over the 3-sphere S3
∞ at infinity:∫

R4

d4x trFµνF̃µν = 16π2

[
1

24π2

∫
S3
∞

d3x n̂µεµνρσ tr
(
U∂νU

−1
)
(U∂ρU

−1)(U∂σU
−1)

]
(28)

If we choose to work in radial coordinates: x = (r, θ, ϕ, ψ), the normal vector will be of the

form: n̂ = (1, 0, 0, 0). Thus, we can finally write the lower bound on the Euclidean action

SE[A], as follow:

SE[A] ≥ ±8π2

g2
ν(U) (29)

Where the quantity ν(U) is given by the following integral over the 3-sphere S3
∞ at infinity:

ν(U) =
1

24π2

∫
S3
∞

d3x εijk tr
(
U∂iU

−1
)
(U∂jU

−1)(U∂kU
−1) ∈ Z (30)

The quantity ν(U) is often refereed to as the instanton number for a given field configura-

tion. The astute reader will probably have noticed, that the expression for the instanton
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number ν(U) above look suspiciously similar to the expression for the winding number n(U)

presented earlier. Formally, the expressions are completely identical, and so it should be no

surprise that also ν(U) is integer-valued. The only difference between the two quantities

is that the integrations are carried out over different, but related, 3-spheres. We will come

back to the connection between ν(U) and n(U) shortly, when we discuss how to enforce the

boundary conditions on the path integral.

So far, we have managed to show that the Euclidean action for pure SU(3) Yang Mills

theory, can be rewritten in the following way:

SE[A] =
1

4g2

∫
R4

d4x tr
(
Fµν ∓ F̃µν

)2

± 8π2

g2
ν(U) (31)

Since it is not possible to continuously deform between gauge configuration A with differing

instanton numbers ν, we conclude that the minima of the Euclidean action are the field

configurations which satisfy:

F̃µν = ±Fµν (32)

The above equations are first order non-linear in A; a considerable improvement from the

second order non-linear equation one gets from the standard Euler-Lagrange approach.

A field strength which satisfy F̃µν = +Fµν is said to be self-dual, and one which satisfy

F̃µν = −Fµν said to be anti self-dual. A simple example of a ν = 1 instanton solution can

be written as follow:

Aµ(x) =
x2

x2 + ρ2
iU∂µU

−1 , U(x) =
xµσµ√
x2

(33)

Where σµ = (1,−iσ⃗). A similar instanton solution for the case of ν = −1 can also readily

be written down. One simply needs to replace σµ with σ̄µ = (1, iσ⃗). Solutions with other

values of ν can be found via the Atiyah Drinfeld Hitchin Manin (ADHM ) construction. We

shall not go into the details on this construction here. Instead, we now turn to investigate

which, if any, of the instanton solutions respect the boundary conditions of the probability

amplitude path integral; A must have winding number n at t = −∞ and winding number

m at t = +∞.
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1.2.1 Back to the boundary conditions

In order to determine which instanton solutions satisfy the right boundary conditions, it is

crucial to understand the connection between the winding number n(U) and the instanton

number ν(U). To investigate this connection, we return for a moment back to Minkowski

space. Also in this setting, trFµνF̃
µν can be written as a total derivative, and we can

express its integral over all of R4 as a boundary integral:∫
R4

d4x trFµνF̃
µν =

∫
R4

d4x ∂µK
µ =

∫
R3
+

d3x K0 −
∫

R3
−

d3x K0 (34)

Where in the above, we have taken advantage of the fact that Kµ runs orthogonal to the

time-like boundary at infinity: This implies that no current ’leaks out’ of the system. It is

easy to prove this statement by imposing the gauge choice: A0 = 0.

Figure 1: Diagram of R4. One can either think of the boundary as one big 3-sphere S3
∞, or

as two distinct spatial boundaries, R3
+ and R3

−, together with the curved time-like boundary.

The spatial boundaries can subsequently be compactified to separate 3-spheres, S3
+ and S3

−.
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If we now assume that the system starts out in a vacuum configuration with winding number

n on the spatial boundary at t = −∞, and ends up in another vacuum configuration with

winding number m on the spatial boundary at t = +∞, the integrals over K0 exactly yield

these winding numbers:

1

16π2

∫
R3
−

d3x K0 =
1

24π2

∫
S3
−

d3x εijk tr
(
U∂iU

−1
)
(U∂jU

−1)(U∂kU
−1) = n(U) (35)

1

16π2

∫
R3
+

d3x K0 =
1

24π2

∫
S3
+

d3x εijk tr
(
U∂iU

−1
)
(U∂jU

−1)(U∂kU
−1) = m(U) (36)

Thus, we find that the integral of trFµνF̃
µν over all R4 can be related to the difference of

winding numbers between the two spatial boundaries:∫
R4

d4x trFµνF̃
µν = 16π2 [m(U)− n(U)] (37)

Now recall that we derived a very similar looking relation for the instanton number ν(U)

earlier in this section, by way of similar arguments:∫
R4

d4x trFµνF̃
µν =

∫
R4

d4x ∂µK
µ =

∫
S3
∞

d3x K0 = 16π2 ν(U) (38)

Thus, we find the following simple relation between the winding numbers n(U) and m(U),

and the instanton number ν(U):

ν(U) = m(U)− n(U) (39)

The above relation tells us, that if we want to consider the amplitude of staring in a config-

uration with winding number n, and ending in one with winding number m, we must allow

only configurations with ν = m− n in the path integral. The dominant contributions will

then come from instanton solutions which have exactly this instanton number.

To summarize, we have found that the leading contribution to the tunnelling amplitude

〈m|n〉+ −, is given in terms of instanton solutions with ν = m− n:

〈m|n〉+ − =

∫ A(m)

A(n)

DδA exp
{
−SE[A(inst) + δA]

}
∼

∑
inst

exp

{
−8π2

g2
ν

}
(40)
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Where δA denote fluctuations around the instanton solution A(inst), and the quantity in

the exponential furthest to the right is simply SE[A
(inst)]. Furthermore, the sum runs over

odd sequences of ν instantons and −ν anti-instantons. The possibility for distinct vacua to

tunnel between one another has some very interesting implications for the quantum theory

of SU(3) YM, as we shall now discuss.

1.3 The emergence of the θ-term

The fact that tunnelling can occur between vacua with different winding numbers implies

that these states are not stationary; e.i they evolve in time. Thus, they can not by energy

eigenstate of the quantum system. In fact, the true vacuum state, to a good approximation,

can be taken to be a linear super-position of the |n〉 vacua. But which super-position? Well,

we know that the vacuum states |n〉 are not invariant under gauge transformations, since

any U with non-zero winding number maps between these states. Thus, the correct super-

position must be an eigenstate of the unitary operators T n→m, which takes |n〉 → |m〉. It

is straight forward to verify that states of the following form satisfy this condition:

|θ〉 =
∞∑

n=−∞

e−inθ |n〉 (41)

These states are parametrized by a continuous variable θ, which we can take to lie on the

interval [0, 2π]. Note that since |θ〉 is an eigenstate of T n→m with eigenvalue e−iθ, all phys-

ical states in the Hilbert space must also have this eigenvalue under gauge transformations.

Otherwise, a general super-position would pick up relative phases between elements.

Now that we have a good approximation to the true SU(3) YM vacuum, let us attempt

to compute one of the most central objects in any field theory; the vacuum to vacuum

transition amplitude, also known as the partition function. To be more precise, we want to

compute the transition amplitude between the asymptotic state |θ〉− at t = −∞, and the

asymptotic state |θ〉+ at t = +∞:

〈θ|θ〉+ − =
∞∑

n=−∞

∞∑
m=−∞

eimθe−inθ 〈m|n〉+ − =
∞∑

n=−∞

∞∑
ν=−∞

eiνθ 〈n+ ν|n〉+ − (42)
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Note that 〈n+ ν|n〉+ − can be expressed as a path integral over configurations with instan-

ton number ν, as explained earlier. Furthermore, when restricting to these configurations,

we can write ν as an integral of trFµνF̃µν over all R4. Thus, we find that:

eiνθ 〈n+ ν|n〉+ − =

∫ A(n+ν)

A(n)

DA exp

{
−SE[A] +

iθ

16π2

∫
R4

d4x trFµνF̃µν

}
(43)

Summing the above result over all winding numbers n and all instanton numbers ν, we find

that the proper partition function: Z[θ] ≡ 〈θ|θ〉+ −, is given by the following expression:

Z[θ] =

∫
DA exp{−SE[A]− Sθ[A]} (44)

Where the boundary conditions are now: any vacuum to any vacuum. We see that the par-

tition function look almost exactly like we would have expected if the theory only contained

the trivial vacuum A = 0. The only difference is the emergence of the θ-term:

Sθ[A] = − iθ

16π2

∫
R4

d4x trFµνF̃µν (45)

Without the knowledge of all the arguments we have now gone through, one might have

though that inclusion of a θ-term in the YM action would be allowed, but not necessary.

We now know this not to be true, and it is in fact necessary to include in order for the

partition function to be properly gauge invariant.

2 The strong CP-problem and Axions

There are two sources of CP violation in the Standard Model. The first source comes en-

tirely from the electro-weak sector, and can be described by the so-called Cabibbo Kobayashi

Maskawa (CKM ) matrix, which appears in the interaction terms between quarks and the

weak W± bosons. We shall not discuss this source of CP violation any further here.

The second source of CP violation comes from an interesting interplay between the strong

and electro-weak sectors. This source of CP violation was a bit of a mystery for a long

time, since it was unmistakeably predicted by the SM, but did not appear to show up in

experiments! This discrepancy came to be known as the strong CP problem. Before we
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further discuss this apparent paradox, and its eventual resolution, we need to first discuss

the most crucial aspect of the underlying theory; namely the chiral anomaly.

2.1 The chiral anomaly

It is an interesting fact of nature, that not all symmetries which holds classically survives

the transition to quantum mechanics. Symmetries which do not survive the transition are

said to be anomalous. Consider as an example the following fermionic action, which couple

a set of quarks q, q̄ to the SU(3) gauge field A:

Skinetic[A, q, q̄] =

∫
R4

d4x
[
q̄Li /DqL + q̄Ri /DqR

]
, Dµ = ∂µ − iAµ (46)

Where /D = γµDµ, and the gamma matrices satisfy the Clifford algebra: {γµ, γν} = −2ηµν ,

in signature (−,+,+,+). The above action turns out to be invariant under chiral rotations

of the spinor components qL, qR:

qL → eiϵ/2 qL , qR → e−iϵ/2 qR (47)

Using the above transformation properties for the chiral components of q, it can easily

be checked that the action is invariant under chiral rotations. This is all well and good.

Classically our theory is invariant, but quantum mechanically we are not quite home free

yet. This is most intuitively seen in the path integral formalism, where the spinor fields

also appear in the measure of the partition function:

Z =

∫
DqDq̄ exp{iSkinetic[A, q, q̄]} (48)

This means that we also need to check whether or not the measure stays invariant under

chiral rotation. It turns out that it does not! In fact, after some fairly heavy analysis, one

can show that the measure transform in the following way under chiral rotation:

DqDq̄ −→ DqDq̄ exp

{
iϵ

16π2

∫
R4

d4x trFµνF̃
µν

}
(49)

Thus, the action effectively picks up a θ-like term under chiral rotations. This implies that

we can actually transform the θ-term away via a chiral rotation! So much for all that work
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we did in the last section... Fortunately, we have no good reason to believe that any of

the quarks in nature are completely massless. Given that this is the case, we shall now

investigate what changes when we add a quark mass-term to the action above.

2.2 CP-violation in theory

After spontaneous breaking of the electro-weak SU(2)×U(1)Y gauge symmetry, the coupling

between the Higgs doublet H and quarks q, generates mass terms of the following form:

Smass[A, q, q̄] =

∫
R4

d4x

[
− v√

2
yq q̄RqL − v√

2
y∗q q̄LqR

]
(50)

Where v is related to the expectation value of H. The Yukawa-coupling parameter yq will

in general be a complex number, but since the two mass terms in the action are complex

conjugates of each other, the action remains real-valued. However, if yq is complex-valued,

the action will violate CP symmetry! To be precise, for a complex-valued yq, the action

will be invariant under C but not P:

C : yq q̄RqL + y∗q q̄LqR → yq q̄RqL + y∗q q̄LqR (51)

P : yq q̄RqL + y∗q q̄LqR → yq q̄LqR + y∗q q̄RqL (52)

It turns out that the θ-term also violates CP symmetry. As was the case for the quark mass

terms, the θ-term is also invariant under C but not P:

C : trFµνF̃
µν → trFµνF̃

µν (53)

P : trFµνF̃
µν → − trFµνF̃

µν (54)

On first sight, it appears that we have two independently CP violating part of the total

action. However, this is not quite the case. By performing a chiral rotation with parameter

ϵ = − arg(yq), we can ’move’ all the CP violation to the θ-term.

Smass[A, q, q̄] + Sθ[A] →
∫

R4

d4x

[
− v√

2
|yq|q̄RqL − v√

2
|yq|q̄LqR +

θ̄

16π2
trFµνF̃

µν

]
(55)

Where θ̄ = θ − arg(yq). In the electro-weak sector of the Standard Model, the interaction

terms between the SU(2) Higss doublet and the quarks also generate quadratic couplings
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between different flavours of quarks. All the quadratic quark terms are collectively described

by the two Yukawa-matrices: Yd and Yu. Also in this more complicated setup, it is possible

to obtain mass terms with real-valued Yukawa-mass parameters, this time at the expense

of introducing the following modified θ-angle:

θ̄ = θ − arg det(YdYu) (56)

It turns out that the existence of θ̄ has physically measurable implications. In particular, a

non-zero value of θ̄ induces an electric dipole moment dN for the Neutron. However, very

precise experiments have been able to obtain a strict bound on the value of dN , and in turn

on the value of θ̄. The experimental results look as follow:

|dN | < 2.9× 10−26e · cm ⇒ |θ̄| < 10−10 (57)

This absurdly precise, but nevertheless required, fine-tuning of the θ̄ angle is known as

the strong CP problem. There is currently no known solution to this problem within the

framework of the Standard Model. As far as we can tell, an extension of the SM is required

to find a resolution to this apparent paradox. We shall now describe one such extension,

curtsey of Roberto Peccei and Helen Quinn.

2.3 The Peccei-Quinn mechanism

The original idea of Peccei and Quinn was to postulate a new symmetry: U(1)PQ, with an

accompanying complex scalar field φ. This scalar field then couples to the d-type quarks

(down, strange bottom), replacing the Higgs coupling terms for these quarks. Unfortunately,

it turns out that this original model has been ruled out by experiments. Nevertheless, the

general idea lives on, and several similar models now exist which are still compatible with

observations. We shall now discuss the, arguable, most conceptually simple of these models;

the Kim Shifman Vainshtein Zakharov (KSVZ ) model.

2.3.1 The KSVZ model

Like the original model by Peccei and Quinn, the KSVZ model introduces the U(1)PQ

symmetry, alongside the complex scalar field φ. Additionally, this model also introduces a
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new chiral quark pair QL, QR, which transforms trivially under SU(2)×U(1)Y . Moreover,

the left-chiral component QL have charge 1 under U(1)PQ, the right chiral-component have

charge 0, and the complex scalar φ has charge −1:

PQ : QL → e−iϵQL , QR → QR , φ→ e+iϵφ (58)

Given the above transformation properties, we see that it is possible to construct Yukawa-

type coupling terms between QL, QR and φ:

SYukawa[φ,Q, Q̄] =

∫
R4

d4x
[
−yQ φ Q̄RQL − yQφ

∗Q̄LQR

]
(59)

In this case, we can take the Yukawa-coupling parameter yQ to be real-valued, since we can

always remove any non-zero phase by absorbing it into φ and φ∗. Apart from the Yukawa

terms, it is also possible to add a standard kinetic and potential term for the scalar field φ:

Sscalar[φ] =

∫
R4

d4x
[
−|∂µφ|2 − V (|φ|)

]
(60)

In order to be consistent with observation, the new quarks Q must be heavily massive,

and so Yukawa-mass terms need to be generated via spontaneous symmetry breaking of the

U(1)PQ symmetry. This is done by assuming a standard Mexican hat potential for φ:

V (φ) = λ

(
f 2
a

2
− |φ|2

)2

(61)

Where λ controls the strength of the potential, and fa controls the energy scale of symmetry

breaking. The above potential is clearly minimized when |φ| takes the following form:

|φmin| =
fa√
2

⇒ φmin =
fa√
2
e−ia/fa (62)

Where the real-valued scalar field a is known as the Axion. In perturbation theory, we

seek to understand fluctuations around the minima of the fields in our theory. Thus, with

the above form of φmin in mind, it is convenient to decompose φ in the following way:

φ =
1√
2
(fa + ρa) e

−ia/fa (63)

Where ρa are the perturbations in the radial direction around the circle of minima. Given

this decomposition, the Yukawa-coupling action SYukawa, can be rewritten as follow:

SYukawa[ρa, a, Q, Q̄] =

∫
R4

d4x

[
− fa√

2
yQ e

−ia/fa Q̄RQL − fa√
2
yQ e

ia/fa Q̄LQR + . . .

]
(64)
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We now see that this procedure has effectively generated a complex-valued Yukawa-mass

parameter, with argument a/fa. Just as we did for the Yukawa-mass parameter yq, we can

now remove this argument a/fa at the cost of reintroducing it as an effective θ-term:

Sθ[A, a] →
∫

R4

d4x
1

16π2

(
θ̄ +

a

fa

)
trFµνF̃

µν (65)

By redefining the Axion field by a constant shift: a → a − θ̄fa, we obtain the following

simple coupling between the Axion field a and the gauge field A:

Sθ[A, a] →
∫

R4

d4x
1

16π2

a

fa
trFµνF̃

µν (66)

It is exactly this coupling which solves the strong CP problem! To see how, it is most

convenient to Wick rotate to Euclidean space, where the θ-term naturally splits from the

rest of the action in the partition function:

Z[a] =

∫
DΦexp{−SE[Φ]− Sθ[A, a]} =

∫
DΦexp

{
−SE[Φ] + i

a

fa
ν[A]

}
(67)

Where Φ = (A, ρa, Q, Q̄). We have also made use of the fact that Sθ[A, a] can be written

in terms of the gauge field dependent winding number ν[A]. Note that all factors of the

integrand, apart from exp
{
i a
fa
ν[A]

}
, are real-valued:

|DΦexp{−SE[Φ]}| = DΦexp{−SE[Φ]} (68)

Using this observation, it is now straight forward to prove the following property of Z[a]:

Z[a] =

∫
DΦexp

{
−SE[Φ] + i

a

fa
ν[A]

}
≤

∫ ∣∣∣∣DΦexp

{
−SE[Φ] + i

a

fa
ν[A]

}∣∣∣∣
=

∫
|DΦexp{−SE[Φ]}| =

∫
DΦexp{−SE[Φ]} = Z[0]

⇒ Z[a] ≤ Z[0] (69)

Lastly, we make use of the connection between the Axion dependent partition function Z[a],

and the effective potential of the Axion Veff(a), in order to arrive at the following result:

Z[a] = Z[0] exp{−V Veff(a)} and Z[a] ≤ Z[0] ⇒ Veff(0) ≤ Veff(a) (70)

Where V is simply the volume of Euclidean space. Thus, we see that the effective potential

for the Axion is minimized at a = 0, and so all the strong CP violation has effectively

been removed! Note also that Z[a] = Z[a+ 2πnfa], and so the Axion potential in fact has

infinitely many minima: a = 2πnfa, for n ∈ Z.
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The arguments which led us to concluded that Veff(a) has minima at a = 2πn were somewhat

indirect, in the sense that we never derived an explicit expression for Veff(a). It would be

reassuring if we could find a limit in which it is possible to derive such an expression. It

turns out that several such limits exists, but we will discuss only one of these limit here: the

Dilute Instanton Gas Approximation (DIGA). In this limit, the complete partition function

is approximated by taking into account only fluctuations around widely separated single

instanton solutions; that is, instantons with ν = ±1:

Z[a] =
∞∑

nI=∞

∞∑
nĪ=∞

1

nI !nĪ !
ZnI

I Z
nĪ

Ī
ei(nI−nĪ) a/fa (71)

Where nI is the number of single instantons (ν = +1), nĪ is the number of single anti-

instantons (ν = −1), and ZI , ZĪ are the single instanton and single anti-instanton partition

functions respectively. The above sums can be carried out explicitly. Exploiting the fact

that ZI = ZĪ , we find that:

Z[a] = exp
{
ZI e

ia/fa + ZĪ e
−ia/fa

}
= exp{(ZI + ZĪ) cos(a/fa)} (72)

Using again the relationship between Z[a] and Veff(a), we arrive at the following result:

Veff(a) =
ZI + ZĪ

V
[1− cos(a/fa)] (73)

We see that this potential exactly has minima at a = 2πnfa, just as we derived from

the more indirect arguments above. It should be noted that the DIGA approximation is

only valid at high energies, since QCD is only perturbative in this regime. It is however

possible to also obtain a result for the potential using chiral perturbation theory (χPT ) at

low energies. Although the explicit form of the potential is very different is this regime, it

too has minima located at a = 2πnfa. For the sake of completeness, we include the form

of the χPT potential below:

Veff(a) = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin

(
a

2fa

)
(74)

Page 19 of 20

mailto:rskn@physik.uni-bielefeld.de


rskn@physik.uni-bielefeld.de Lattice Journal Club, 10/06/2022

References

[1] David Tong (2018), Gauge Theory,

damtp.cam.ac.uk/user/tong/gaugetheory/gt.pdf.

[2] Sidney Coleman (1977), The Uses of Instantons,

physics.mcgill.ca/ jcline/742/Coleman-Instantons.pdf

[3] L. Di Luzio, M. Giannotti, E. Nardi, L. Visinelli (2020), The Landscape of QCD Axion

Models,

arxiv.org/abs/2003.01100.

[4] Guy D. Moore (2017), Axion Dark Matter on the Lattice,

arxiv.org/abs/1709.09466

[5] S. Borsanyi, M. Dierigl, Z. Fodor, S.D. Katz, S.W. Mages, D. Nogradi, J. Redondo, A.

Ringwald, K.K. Szabo (2015), Axion Cosmology, Lattice QCD and the Dilute Instanton

Gas Approximation,

arxiv.org/abs/1508.06917

[6] Stefan Vandoren and Peter van Nieuwenhuizen (2008), Lectures on Instantons,

arxiv.org/abs/0802.1862

[7] David J. E. Marsh (2015), Axion Cosmology,

arxiv.org/abs/1510.07633

[8] Flip Tanedo (2010), Instantons and their Applications,

classe.cornell.edu/ pt267/files/documents/A_instanton.pdf

[9] Edward Shuryak (2018), Nonperturbative Topological Phenomena in QCD and Related

Theories,

arxiv.org/abs/1812.01509

[10] T. Schaefer, E. Shuryak (1996), Instantons in QCD,

arxiv.org/abs/hep-ph/9610451

Page 20 of 20

mailto:rskn@physik.uni-bielefeld.de
https://www.damtp.cam.ac.uk/user/tong/gaugetheory/gt.pdf
http://www.physics.mcgill.ca/~jcline/742/Coleman-Instantons.pdf
https://arxiv.org/abs/2003.01100
https://arxiv.org/abs/1709.09466
https://arxiv.org/abs/1508.06917
https://arxiv.org/abs/0802.1862
https://arxiv.org/abs/1510.07633
https://www.classe.cornell.edu/~pt267/files/documents/A_instanton.pdf
https://arxiv.org/abs/1812.01509
https://arxiv.org/abs/hep-ph/9610451

	Topological configurations and the -vacuum
	Winding of non-abelian gauge fields
	Instantons and tunnelling amplitudes
	Back to the boundary conditions

	The emergence of the -term

	The strong CP-problem and Axions
	The chiral anomaly
	CP-violation in theory
	The Peccei-Quinn mechanism
	The KSVZ model



