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DEFINITION

Domain wall fermions consist in a lattice theory of massive interacting
fermions in 2n + 1 dimensions to simulate the behavior of massless
chiral fermions in 2n dimensions if the fermion mass has a step
function shape in the extra dimension. [1]
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CHIRAL SYMMETRY

Chiral symmetry is an important concept in QCD

Sg = / d*x YDV + S, D =~,0, +igy"A, +m

The mass term in the fermionic part breaks chiral symmetry:
1445
Up=P. U U, =P_V Py — 27

mUW = mUrWg +mU U + m(Vr¥p + UpWg)
From the chiral current:
Oufs = ¥{y*,D}¥
The theory respects chiral symmetry if:
{WS,D} =0
{’yS,D} = {75,7“}8M + {Ws,ml} =2my°
m has to be zero. 3



Motivation
00®000

A NO-GO THEOREM

According to the Nilsen-Ninomiya theorem:

In a translationally invariant lattice theory of fermions in even
dimensions, at least one of the following properties is violated:

* Dis local;
D is invertible everywhere except at p = 0;
» The theory respects chiral symmetry.

\. J

The Nilsen-Ninomiya theorem is a necessary consequence of
anomalies.
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SOME AVAILABLE TECHNIQUES

Examples of methods to handle the doubling problem in vector
theories:

1975) Wilson fermions;

1975) Kogut-Susskind fermions;

1992) Domain wall fermions;

1992) Infinitely many fields;

1997) Neuberger fermions;

1997) Perfect action fermions;

1982) Ginsparg-Wilson fermions;

(1975)
(1975)
(1992)
(1992)
* (1992) Overlap fermions;
(1997)
(1997)
(1982)
(1999) Molecule chains;
(2000)

* (2000) Topological QFT in 5 dimensions.
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The Wilson term acts like a mass 2/a and doublers decouple in the
continuum limit. However:

{y’.D} #0

It does not respect chiral symmetry for non-zero a!

* Dis local;
» D is invertible everywhere except at p = 0;
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THE GINSPARG-WILSON RELATION

On the lattice, we have to find D such that
{v’,D} = aDy’D
It leads to an exact chiral symmetry. Lischer showed that [2]
0w :75<1— ;aD>\If 5\1}:\11(1— ;aD)qﬁ
The overlap operator was one of the solutions found.
1+ €e(Dy) (D) = Dy,

D= — "~/ S
2
\/ DDy,

Exact chiral symmetry but ¢(D,,) is too costly on the lattice. Later on,
Neuberger discovered how to recast the overlap operator as a

determinant.
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THE GINSPARG-WILSON RELATION

On the lattice, we have to find D such that
{v’,D} = aDy’D

It leads to an exact chiral symmetry. Lischer showed that [2]
ow :75<1— ;aD>\If 5\1}:\11(1— ;aD)qﬁ
The overlap operator was one of the solutions found.
1+ G(Dw) Dy,

D=————" E(Dw) [
2
\/DiDy

Exact chiral symmetry but ¢(D,,) is too costly on the lattice. Later on,
Neuberger discovered how to recast the overlap operator as a

determinant.

What else can we do to achieve chiral symmetry?
7
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DOMAIN WALL FERMIONS

The 4D action in the free case is

Sg = Z@D\px D=~"9,+m
X

in Kaplan’s formulation [1], the DWF action is

SHE Z ZEX,SD\IJX,S D= 'Yﬂa,u + ’YSas + m(s)
x s

The mass dependence has to be such that lim;_, o, m(s) = £m.

—-m s<0
m(s) = 0 s=0 m(s) = mtanh(s)
+m s>0

This corresponds to a mass defect in the extra dimension (domain
walll)
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DOMAIN WALL FERMIONS

Aspects of domain wall fermions:

» The spinors ¥ and V¥ still have 4 components;

» The v-matrices are the same as in the 4D theory;

+ The gauge fields do not depend on the 5 dimension;

+ Chiral zeromodes are localized in the defect, where m = 0;

* In the end, we have to consider the limit of Ls — oc.

+ In the limit above, chiral symmetry is exact even for non-zero g;
* When Ls; — oo, domain wall fermions turn into overlap fermions;

+ Kaplan’s formulation of DWF restores the full SU(N)., xSU(N)x in
the continuum limit.
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DOMAIN WALL FERMIONS ON THE LATTICE

We still have doublers in the theory, so we can add a Wilson term:
S=— > U(Dxydsr+ Dssbyy)¥ 5yehA srehs

X581

Dyy = ZZ 14+ ) U sy + (1 = YU 0emy] + (M — 4)6,y

“w

1++° 1—+°
w(h,r = mw&\gq,r — 6o, s=0,
1 5 1— 5
DSJ’: ( Y )6s+1,r+ ( 1 )5571,1'_65,77 1§5§N5_27
14++° 1—+°
—m( 2l )50 y + G >5N5—2,r — ONs—1,r s=N5—-1

2 ' 2
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SIMULATIONS

We need to have the chiral modes decouple from the walls.

<Py> /[ m,

Figure 1: Chiral condensate in units of the photon mass ., in the Schwinger
model ((1+1)-dimensional QED) as a function of Ls [3].



Lattice simulations
ceo

SIMULATIONS

We need to have the chiral modes decouple from the walls.
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Figure 1: Chiral condensate in units of the photon mass ., in the Schwinger
model ((1+1)-dimensional QED) as a function of Ls [3].

The chiral modes decouple from the walls exponentially fast ~ e=%s.
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Figure 2: Pion mass squared as a function of m for N5 = 4 and N5 = 10.
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Figure 2: Pion mass squared as a function of m for N5 = 4 and N5 = 10.

From xPT m2 o \/m or m. In the plot m% = 0.0002 + 0.0160.
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SUMMARY

» With DWF, massless 4D fermions appear (without fine-tuning) as
zeromodes localized on the domain wall embedded in a 5D
lattice;

+ Even for a moderate size of Ls, chiral symmetry is preserved to a
high degree of accuracy;

* In the limit of Ls — oo, the domain wall operator becomes the
overlap one;

+ Domain wall fermions is also applicable in condensed matter
physics.



References

BIBLIOGRAPHY |

[1]

[2]

[3]

References

David B Kaplan. “A method for simulating chiral fermions on the
lattice”. In: Physics Letters B 288.3-4 (1992), pp. 342—-347.

Martin Lischer. “Exact chiral symmetry on the lattice and the
Ginsparg-Wilson relation”. In: Physics Letters B 428.3-4 (1998),
pp. 342—345.

Pavlos M Vranas. “Domain wall fermions and applications”. In:
Nuclear Physics B-Proceedings Supplements 94.1-3 (2001),
pp. 177-188.



	Motivation
	Introduction to domain wall fermions
	Lattice simulations
	Summary
	References

