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DEFINITION

Domain wall fermions consist in a lattice theory of massive interacting
fermions in 2n + 1 dimensions to simulate the behavior of massless
chiral fermions in 2n dimensions if the fermion mass has a step
function shape in the extra dimension. [1]
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CHIRAL SYMMETRY

Chiral symmetry is an important concept in QCD

SE =

∫
d4x ΨDΨ+ Sg D = γµ∂µ + igγµAµ + m

The mass term in the fermionic part breaks chiral symmetry:

ΨR = P+Ψ ΨL = P−Ψ P± =
1 ± γ5

2
mΨ̄Ψ = mΨ̄RΨR + mΨ̄LΨL + m(Ψ̄RΨL + Ψ̄LΨR)

From the chiral current:

∂µjµ5 = Ψ
{
γ5,D

}
Ψ

The theory respects chiral symmetry if:{
γ5,D

}
= 0{

γ5,D
}
=

{
γ5, γµ

}
∂µ +

{
γ5,m1

}
= 2mγ5

m has to be zero.
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A NO-GO THEOREM

According to the Nilsen-Ninomiya theorem:

In a translationally invariant lattice theory of fermions in even
dimensions, at least one of the following properties is violated:

• D is local;

• D is invertible everywhere except at p = 0;

• The theory respects chiral symmetry.

The Nilsen-Ninomiya theorem is a necessary consequence of
anomalies.
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SOME AVAILABLE TECHNIQUES

Examples of methods to handle the doubling problem in vector
theories:

• (1975) Wilson fermions;

• (1975) Kogut-Susskind fermions;

• (1992) Domain wall fermions;

• (1992) Infinitely many fields;

• (1992) Overlap fermions;

• (1997) Neuberger fermions;

• (1997) Perfect action fermions;

• (1982) Ginsparg-Wilson fermions;

• (1999) Molecule chains;

• (2000) Topological QFT in 5 dimensions.
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WILSON FERMIONS

D̃(p) = m1 +
i
a

∑
µ

γµ sin(pµa) + 1
1
a

∑
µ

[1 − cos(pµa)]

The Wilson term acts like a mass 2/a and doublers decouple in the
continuum limit. However: {

γ5,D
}
̸= 0

It does not respect chiral symmetry for non-zero a!

• D is local;

• D is invertible everywhere except at p = 0;

• The theory respects chiral symmetry.
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THE GINSPARG-WILSON RELATION

On the lattice, we have to find D such that{
γ5,D

}
= aDγ5D

It leads to an exact chiral symmetry. Lüscher showed that [2]

δΨ = γ5
(

1 − 1
2

aD
)
Ψ δΨ = Ψ

(
1 − 1

2
aD

)
γ5

The overlap operator was one of the solutions found.

D =
1 + ϵ(Dw)

2
ϵ(Dw) =

Dw√
D†

wDw

Exact chiral symmetry but ϵ(Dw) is too costly on the lattice. Later on,
Neuberger discovered how to recast the overlap operator as a
determinant.

What else can we do to achieve chiral symmetry?
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DOMAIN WALLS IN PHYSICS

Domain walls are topological defects that appear when a discrete
symmetry is spontaneously broken.

• Magnetism

• Optics

• String theory
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DOMAIN WALL FERMIONS

The 4D action in the free case is

SE =
∑

x

ΨxDΨx D = γµ∂µ + m

in Kaplan’s formulation [1], the DWF action is

SE =
∑

x

∑
s

Ψx,sDΨx,s D = γµ∂µ + γ5∂s + m(s)

The mass dependence has to be such that lims→±∞ m(s) = ±m.

m(s) =


−m s < 0

0 s = 0
+m s > 0

m(s) = m tanh(s)

This corresponds to a mass defect in the extra dimension (domain
wall!)

9



Motivation Introduction to domain wall fermions Lattice simulations Summary References

DOMAIN WALL FERMIONS

The 4D action in the free case is

SE =
∑

x

ΨxDΨx D = γµ∂µ + m

in Kaplan’s formulation [1], the DWF action is

SE =
∑

x

∑
s

Ψx,sDΨx,s D = γµ∂µ + γ5∂s + m(s)

The mass dependence has to be such that lims→±∞ m(s) = ±m.

m(s) =


−m s < 0

0 s = 0
+m s > 0

m(s) = m tanh(s)

This corresponds to a mass defect in the extra dimension (domain
wall!)

9



Motivation Introduction to domain wall fermions Lattice simulations Summary References

DOMAIN WALL FERMIONS

Aspects of domain wall fermions:

• The spinors Ψ and Ψ still have 4 components;

• The γ-matrices are the same as in the 4D theory;

• The gauge fields do not depend on the 5th dimension;

• Chiral zeromodes are localized in the defect, where m = 0;

• In the end, we have to consider the limit of L5 → ∞.

• In the limit above, chiral symmetry is exact even for non-zero a;

• When L5 → ∞, domain wall fermions turn into overlap fermions;

• Kaplan’s formulation of DWF restores the full SU(N)L×SU(N)R in
the continuum limit.
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DOMAIN WALL FERMIONS ON THE LATTICE

We still have doublers in the theory, so we can add a Wilson term:

S = −
∑

x,y,s,r

Ψ(Dx,yδs,r + Ds,rδx,y)Ψ x, y ∈ Λ s, r ∈ Λ5

Dx,y =
1
2

∑
µ

[(1 + γµ)Ux,µδx+µ̂,y + (1 − γµ)U†
y,µδx−µ̂,y] + (M − 4)δx,y

Ds,r =



(1 + γ5)

2
δ1,r − m

(1 − γ5)

2
δN5−1,r − δ0,r, s = 0,

(1 + γ5)

2
δs+1,r +

(1 − γ5)

2
δs−1,r − δs,r, 1 ≤ s ≤ N5 − 2,

−m
(1 + γ5)

2
δ0,r +

(1 − γ5)

2
δN5−2,r − δN5−1,r, s = N5 − 1
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DOMAIN WALL FERMIONS ON THE LATTICE
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SIMULATIONS

We need to have the chiral modes decouple from the walls.

Figure 1: Chiral condensate in units of the photon mass mγ in the Schwinger
model ((1+1)-dimensional QED) as a function of L5 [3].

The chiral modes decouple from the walls exponentially fast ∼ e−αL5 .
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SIMULATIONS

Figure 2: Pion mass squared as a function of m for N5 = 4 and N5 = 10.

From χPT m2
π ∝

√
m or m. In the plot m2

π = 0.0002 ± 0.0160.
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SUMMARY

• With DWF, massless 4D fermions appear (without fine-tuning) as
zeromodes localized on the domain wall embedded in a 5D
lattice;

• Even for a moderate size of L5, chiral symmetry is preserved to a
high degree of accuracy;

• In the limit of L5 → ∞, the domain wall operator becomes the
overlap one;

• Domain wall fermions is also applicable in condensed matter
physics.
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