

Domain Wall Fermions

Dean Valois (dvalois@physik.uni-bielefeld.de)

December 17, 2021

Department of Physics Bielefeld University

Motivation 000000	Introduction to domain wall fermions	Lattice simulations	Summary 00	References

OUTLINE

- 1. Motivation
- 2. Introduction to domain wall fermions
- 3. Lattice simulations
- 4. Summary

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References

DEFINITION

Domain wall fermions consist in a lattice theory of massive interacting fermions in 2n + 1 dimensions to simulate the behavior of massless chiral fermions in 2n dimensions if the fermion mass has a step function shape in the extra dimension. [1]

Motivation

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
00000	000000	000	00	

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
00000				

Chiral symmetry is an important concept in QCD

$$S_E = \int d^4x \ \overline{\Psi} D\Psi + S_g \qquad D = \gamma_\mu \partial_\mu + ig \gamma^\mu A_\mu + m$$

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
00000				

Chiral symmetry is an important concept in QCD

$$S_E = \int d^4x \ \overline{\Psi} D\Psi + S_g \qquad D = \gamma_\mu \partial_\mu + ig\gamma^\mu A_\mu + m$$

The mass term in the fermionic part breaks chiral symmetry:

$$\begin{split} \Psi_R &= P_+ \Psi \quad \Psi_L = P_- \Psi \quad P_\pm = \frac{\mathbbm{1} \pm \gamma^5}{2} \\ m \bar{\Psi} \Psi &= m \bar{\Psi}_R \Psi_R + m \bar{\Psi}_L \Psi_L + m (\bar{\Psi}_R \Psi_L + \bar{\Psi}_L \Psi_R) \end{split}$$

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
00000				

Chiral symmetry is an important concept in QCD

$$S_E = \int d^4x \ \overline{\Psi} D\Psi + S_g \qquad D = \gamma_\mu \partial_\mu + ig\gamma^\mu A_\mu + m$$

The mass term in the fermionic part breaks chiral symmetry:

$$\begin{split} \Psi_R &= P_+ \Psi \quad \Psi_L = P_- \Psi \quad P_\pm = \frac{\mathbbm{1} \pm \gamma^5}{2} \\ m \bar{\Psi} \Psi &= m \bar{\Psi}_R \Psi_R + m \bar{\Psi}_L \Psi_L + m (\bar{\Psi}_R \Psi_L + \bar{\Psi}_L \Psi_R) \end{split}$$

From the chiral current:

$$\partial_{\mu}j_{5}^{\mu} = \overline{\Psi}\big\{\gamma^{5}, D\big\}\Psi$$

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
00000				

Chiral symmetry is an important concept in QCD

$$S_E = \int d^4x \ \overline{\Psi} D\Psi + S_g \qquad D = \gamma_\mu \partial_\mu + ig\gamma^\mu A_\mu + m$$

The mass term in the fermionic part breaks chiral symmetry:

$$\begin{split} \Psi_R &= P_+ \Psi \qquad \Psi_L = P_- \Psi \qquad P_\pm = \frac{\mathbbm{1} \pm \gamma^5}{2} \\ m \bar{\Psi} \Psi &= m \bar{\Psi}_R \Psi_R + m \bar{\Psi}_L \Psi_L + m (\bar{\Psi}_R \Psi_L + \bar{\Psi}_L \Psi_R) \end{split}$$

From the chiral current:

$$\partial_{\mu}j_{5}^{\mu} = \overline{\Psi}\big\{\gamma^{5}, D\big\}\Psi$$

The theory respects chiral symmetry if:

$$\{\gamma^5, D\} = 0$$
$$\{\gamma^5, D\} = \{\gamma^5, \gamma^\mu\}\partial_\mu + \{\gamma^5, m\mathbb{1}\} = 2m\gamma^5$$

m has to be zero.

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
00000				

A NO-GO THEOREM

According to the Nilsen-Ninomiya theorem:

In a translationally invariant lattice theory of fermions in even dimensions, at least one of the following properties is violated:

- D is local;
- *D* is invertible everywhere except at p = 0;
- The theory respects chiral symmetry.

The Nilsen-Ninomiya theorem is a necessary consequence of anomalies.

Motivation	Introduction to domain wall fermions	Lattice simulations		References
000000	000000	000	00	

Some available techniques

Examples of methods to handle the doubling problem in vector theories:

- (1975) Wilson fermions;
- (1975) Kogut-Susskind fermions;
- (1992) Domain wall fermions;
- (1992) Infinitely many fields;
- (1992) Overlap fermions;
- (1997) Neuberger fermions;
- (1997) Perfect action fermions;
- (1982) Ginsparg-Wilson fermions;
- (1999) Molecule chains;
- (2000) Topological QFT in 5 dimensions.

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
000000				

WILSON FERMIONS

$$\widetilde{D}(\mathbf{p}) = m\mathbb{1} + \frac{i}{a} \sum_{\mu} \gamma^{\mu} \sin(p_{\mu}a) + \mathbb{1}\frac{1}{a} \sum_{\mu} [1 - \cos(p_{\mu}a)]$$

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary 00	References
WILSONE	EDMIONS			

$$\widetilde{D}(\mathbf{p}) = m\mathbb{1} + \frac{i}{a}\sum_{\mu}\gamma^{\mu}\sin(p_{\mu}a) + \mathbb{1}\frac{1}{a}\sum_{\mu}\left[1 - \cos(p_{\mu}a)\right]$$

The Wilson term acts like a mass 2/a and doublers decouple in the continuum limit. However:

$$\left\{\gamma^5, D\right\} \neq 0$$

It does not respect chiral symmetry for non-zero a!

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary 00	References
	EDMIONE			

$$\widetilde{D}(\mathbf{p}) = m\mathbb{1} + \frac{i}{a}\sum_{\mu}\gamma^{\mu}\sin(p_{\mu}a) + \mathbb{1}\frac{1}{a}\sum_{\mu}\left[1 - \cos(p_{\mu}a)\right]$$

The Wilson term acts like a mass 2/a and doublers decouple in the continuum limit. However:

$$\left\{\gamma^5, D\right\} \neq 0$$

It does not respect chiral symmetry for non-zero *a*!

- *D* is local;
- *D* is invertible everywhere except at p = 0;
- The theory respects chiral symmetry.

AAAAAA	Motivation	Introduction to domain wall fermions	Lattice simulations		References
	00000	000000	000	00	

On the lattice, we have to find D such that

$$\left\{\gamma^5, D\right\} = aD\gamma^5 D$$

Motivation Introduction to domain	wall termions Lattice sim	iulations Summary	References
000000 000000	000	00	

On the lattice, we have to find D such that

$$\left\{\gamma^5, D\right\} = aD\gamma^5 D$$

It leads to an exact chiral symmetry. Lüscher showed that [2]

$$\delta \Psi = \gamma^5 \left(\mathbb{1} - \frac{1}{2}aD \right) \Psi \qquad \quad \delta \overline{\Psi} = \overline{\Psi} \left(\mathbb{1} - \frac{1}{2}aD \right) \gamma^5$$

Motivation	Introduction to domain wall fermions	Lattice simulations		References
000000	000000	000	00	

On the lattice, we have to find D such that

$$\left\{\gamma^5, D\right\} = aD\gamma^5 D$$

It leads to an exact chiral symmetry. Lüscher showed that [2]

$$\delta \Psi = \gamma^5 \left(\mathbb{1} - \frac{1}{2} a D \right) \Psi \qquad \quad \delta \overline{\Psi} = \overline{\Psi} \left(\mathbb{1} - \frac{1}{2} a D \right) \gamma^5$$

The overlap operator was one of the solutions found.

$$D = \frac{1 + \epsilon(D_w)}{2} \qquad \epsilon(D_w) = \frac{D_w}{\sqrt{D_w^{\dagger} D_w}}$$

Exact chiral symmetry but $\epsilon(D_w)$ is too costly on the lattice. Later on, Neuberger discovered how to recast the overlap operator as a determinant.

Motivation Introduction	to domain wall fermions Li	attice simulations	Summary	References
000000 000000	с	000	00	

On the lattice, we have to find D such that

$$\left\{\gamma^5, D\right\} = aD\gamma^5 D$$

It leads to an exact chiral symmetry. Lüscher showed that [2]

$$\delta \Psi = \gamma^5 \left(\mathbb{1} - \frac{1}{2} a D \right) \Psi \qquad \quad \delta \overline{\Psi} = \overline{\Psi} \left(\mathbb{1} - \frac{1}{2} a D \right) \gamma^5$$

The overlap operator was one of the solutions found.

$$D = \frac{1 + \epsilon(D_w)}{2} \qquad \epsilon(D_w) = \frac{D_w}{\sqrt{D_w^{\dagger} D_w}}$$

Exact chiral symmetry but $\epsilon(D_w)$ is too costly on the lattice. Later on, Neuberger discovered how to recast the overlap operator as a determinant.

What else can we do to achieve chiral symmetry?

Introduction to domain wall fermions

000000 00 0000 000 00	Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
	000000	00000	000	00	

Notivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
	00000			

Domain walls are topological defects that appear when a discrete symmetry is spontaneously broken.

Notivation	Introduction to domain wall fermions	Lattice simulations	Summary 00	References

Domain walls are topological defects that appear when a discrete symmetry is spontaneously broken.

- Magnetism
- Optics
- · String theory

Notivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
	00000			

Domain walls are topological defects that appear when a discrete symmetry is spontaneously broken.

- Magnetism
- Optics
- String theory

000000 000	Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
	000000	00000	000	00	

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary OO	References

The 4D action in the free case is

$$S_E = \sum_x \overline{\Psi}_x D \Psi_x \qquad D = \gamma^\mu \partial_\mu + m$$

in Kaplan's formulation [1], the DWF action is

$$S_E = \sum_{x} \sum_{s} \overline{\Psi}_{x,s} D \Psi_{x,s} \qquad D = \gamma^{\mu} \partial_{\mu} + \gamma^5 \partial_s + m(s)$$

The mass dependence has to be such that $\lim_{s\to\pm\infty} m(s) = \pm m$.

$$m(s) = \begin{cases} -m & s < 0\\ 0 & s = 0\\ +m & s > 0 \end{cases} \qquad m(s) = m \tanh(s)$$

This corresponds to a mass defect in the extra dimension (domain wall!)

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
000000	000000	000	00	

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
	000000			

Aspects of domain wall fermions:

• The spinors Ψ and $\overline{\Psi}$ still have 4 components;

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
	000000			

- The spinors Ψ and $\overline{\Psi}$ still have 4 components;
- The γ -matrices are the same as in the 4D theory;

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
	000000			

- The spinors Ψ and $\overline{\Psi}$ still have 4 components;
- The γ -matrices are the same as in the 4D theory;
- The gauge fields do not depend on the 5th dimension;

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary 00	References

- The spinors Ψ and $\overline{\Psi}$ still have 4 components;
- The γ -matrices are the same as in the 4D theory;
- The gauge fields do not depend on the 5th dimension;
- Chiral zeromodes are localized in the defect, where m = 0;

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary 00	References

- The spinors Ψ and $\overline{\Psi}$ still have 4 components;
- The γ -matrices are the same as in the 4D theory;
- The gauge fields do not depend on the 5th dimension;
- Chiral zeromodes are localized in the defect, where m = 0;
- In the end, we have to consider the limit of $L_5 \rightarrow \infty$.

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary 00	References

- The spinors Ψ and $\overline{\Psi}$ still have 4 components;
- The γ -matrices are the same as in the 4D theory;
- The gauge fields do not depend on the 5th dimension;
- Chiral zeromodes are localized in the defect, where m = 0;
- In the end, we have to consider the limit of $L_5 \rightarrow \infty$.
- In the limit above, chiral symmetry is exact even for non-zero *a*;

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary 00	References

- The spinors Ψ and $\overline{\Psi}$ still have 4 components;
- The γ -matrices are the same as in the 4D theory;
- The gauge fields do not depend on the 5th dimension;
- Chiral zeromodes are localized in the defect, where m = 0;
- In the end, we have to consider the limit of $L_5 \rightarrow \infty$.
- In the limit above, chiral symmetry is exact even for non-zero *a*;
- When $L_5 \rightarrow \infty$, domain wall fermions turn into overlap fermions;

Motivation	Introduction to domain wall fermions	Lattice simulations		References
000000	000000	000	00	

- The spinors Ψ and $\overline{\Psi}$ still have 4 components;
- The γ -matrices are the same as in the 4D theory;
- The gauge fields do not depend on the 5th dimension;
- Chiral zeromodes are localized in the defect, where m = 0;
- In the end, we have to consider the limit of $L_5 \rightarrow \infty$.
- In the limit above, chiral symmetry is exact even for non-zero *a*;
- When $L_5 \rightarrow \infty$, domain wall fermions turn into overlap fermions;
- Kaplan's formulation of DWF restores the full SU(N)_L×SU(N)_R in the continuum limit.

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
000000	000000	000	00	

DOMAIN WALL FERMIONS ON THE LATTICE

We still have doublers in the theory, so we can add a Wilson term:

$$S = -\sum_{x,y,s,r} \overline{\Psi}(D_{x,y}\delta_{s,r} + D_{s,r}\delta_{x,y})\Psi \qquad x,y \in \Lambda \quad s,r \in \Lambda_5$$

$$D_{x,y} = \frac{1}{2} \sum_{\mu} [(1+\gamma^{\mu})U_{x,\mu}\delta_{x+\hat{\mu},y} + (1-\gamma^{\mu})U_{y,\mu}^{\dagger}\delta_{x-\hat{\mu},y}] + (M-4)\delta_{x,y}$$

$$D_{s,r} = \begin{cases} \frac{(1+\gamma^5)}{2}\delta_{1,r} - m\frac{(1-\gamma^5)}{2}\delta_{N_5-1,r} - \delta_{0,r}, & s = 0, \\ \frac{(1+\gamma^5)}{2}\delta_{s+1,r} + \frac{(1-\gamma^5)}{2}\delta_{s-1,r} - \delta_{s,r}, & 1 \le s \le N_5 - 2, \\ -m\frac{(1+\gamma^5)}{2}\delta_{0,r} + \frac{(1-\gamma^5)}{2}\delta_{N_5-2,r} - \delta_{N_5-1,r}, & s = N_5 - 1 \end{cases}$$

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
	000000			

DOMAIN WALL FERMIONS ON THE LATTICE

12

Lattice simulations

Motivation 000000	Introduction to domain wall fermions	Lattice simulations O●O	Summary OO	References

We need to have the chiral modes decouple from the walls.

Figure 1: Chiral condensate in units of the photon mass m_{γ} in the Schwinger model ((1+1)-dimensional QED) as a function of L_5 [3].

Motivation 000000	Introduction to domain wall fermions	Lattice simulations O●O	Summary OO	References

We need to have the chiral modes decouple from the walls.

Figure 1: Chiral condensate in units of the photon mass m_{γ} in the Schwinger model ((1+1)-dimensional QED) as a function of L_5 [3].

The chiral modes decouple from the walls exponentially fast $\sim e^{-\alpha L_5}$.

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
		000		

Figure 2: Pion mass squared as a function of *m* for $N_5 = 4$ and $N_5 = 10$.

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary	References
		000		

Figure 2: Pion mass squared as a function of *m* for $N_5 = 4$ and $N_5 = 10$.

From χ PT $m_{\pi}^2 \propto \sqrt{m}$ or m. In the plot $m_{\pi}^2 = 0.0002 \pm 0.0160$.

Summary

Motivation	Introduction to domain wall fermions	Lattice simulations	Summary ⊙●	References
0				

SUMMARY

Motivation 000000	Introduction to domain wall fermions	Lattice simulations	Summary O●	References
SUMMARY				

• With DWF, massless 4D fermions appear (without fine-tuning) as zeromodes localized on the domain wall embedded in a 5D lattice;

Motivation 000000	Introduction to domain wall fermions	Lattice simulations	Summary O●	References
SUMMARY				

- With DWF, massless 4D fermions appear (without fine-tuning) as zeromodes localized on the domain wall embedded in a 5D lattice;
- Even for a moderate size of *L*₅, chiral symmetry is preserved to a high degree of accuracy;

Motivation 000000	Introduction to domain wall fermions	Lattice simulations	Summary O●	References
SUMMARY				

- With DWF, massless 4D fermions appear (without fine-tuning) as zeromodes localized on the domain wall embedded in a 5D lattice;
- Even for a moderate size of *L*₅, chiral symmetry is preserved to a high degree of accuracy;
- In the limit of $L_5 \rightarrow \infty$, the domain wall operator becomes the overlap one;

Motivation 000000	Introduction to domain wall fermions	Lattice simulations	Summary O●	References
SUMMARY				

- With DWF, massless 4D fermions appear (without fine-tuning) as zeromodes localized on the domain wall embedded in a 5D lattice;
- Even for a moderate size of *L*₅, chiral symmetry is preserved to a high degree of accuracy;
- In the limit of L₅ → ∞, the domain wall operator becomes the overlap one;
- Domain wall fermions is also applicable in condensed matter physics.

BIBLIOGRAPHY I	

References

- [1] David B Kaplan. "A method for simulating chiral fermions on the lattice". In: *Physics Letters B* 288.3-4 (1992), pp. 342–347.
- [2] Martin Lüscher. "Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation". In: *Physics Letters B* 428.3-4 (1998), pp. 342–345.
- [3] Pavlos M Vranas. "Domain wall fermions and applications". In: Nuclear Physics B-Proceedings Supplements 94.1-3 (2001), pp. 177–188.