Anomalous transport phenomena on the lattice

Eduardo Garnacho Velasco egarnacho@physik.uni-bielefeld.de

In collaboration with: B. B. Brandt, F. Cuteri, G. Endrődi, G. Markó

Journal Club WS Bielefeld, 13-01-2023

$\label{eq:quantum anomalies} \begin{tabular}{lll} \mathsf{EM} $ fields \\ \mathsf{Vorticity} \end{tabular} \to \mathsf{non-dissipative transport effects}: \\ \end{tabular} \begin{tabular}{llll} \mathsf{Anomalous transport phenomena} \end{tabular}$

$\blacktriangleright \text{ Quantum anomalies} + \frac{\text{EM fields}}{\text{Vorticity}} \rightarrow \text{non-dissipative transport effects:}$

Anomalous transport phenomena

Examples:

- Chiral Magnetic Effect (CME)
- Chiral Separation Effect (CSE)
- Chiral Electric Separation Effect (CESE)
- Chiral Vortical Effect (CVE)

• • • •

For a review see & Kharzeev, Liao, Voloshin, Wang '16

• Quantum anomalies + $\frac{\text{EM fields}}{\text{Vorticity}} \rightarrow \text{non-dissipative transport effects:}$

Anomalous transport phenomena

- Examples:
 - Chiral Magnetic Effect (CME)
 - Chiral Separation Effect (CSE)
 - Chiral Electric Separation Effect (CESE)
 - Chiral Vortical Effect (CVE)

• • • •

For a review see & Kharzeev, Liao, Voloshin, Wang '16

► Event-by-event CP-violation → non-trivial topology of QCD vacuum

 \blacktriangleright Classical symmetry broken at the quantum level \rightarrow Anomaly

- Global symmetries
- Gauge symmetries

 \blacktriangleright Classical symmetry broken at the quantum level \rightarrow Anomaly

- Global symmetries
- Gauge symmetries
- ► Formally : (Classical) action symmetric PI measure non-symmetric → Partition function non-symmetric

 \blacktriangleright Classical symmetry broken at the quantum level \rightarrow Anomaly

- Global symmetries
- Gauge symmetries
- Responsible for physical effects:
 - $U_B(1)$ anomaly \rightarrow Baryogenesis

 \blacktriangleright Classical symmetry broken at the quantum level \rightarrow Anomaly

- Global symmetries
- Gauge symmetries

Responsible for physical effects:

- $U_B(1)$ anomaly \rightarrow Baryogenesis
- $\mathsf{U}_\mathsf{A}(1)$ anomaly $o \pi^0 o \gamma\gamma$, heavy η',\ldots

Adler '69 Bell, Jackiw '69

Chiral symmetry U_A(1) (QED or QCD action)

 $\psi \to e^{i\alpha\gamma_5}\psi$

with Noether current $J_5^{\mu} = \bar{\psi} \gamma^{\mu} \gamma^5 \psi$.

Chiral symmetry U_A(1) (QED or QCD action)

 $\psi \to e^{i\alpha\gamma_5}\psi$

with Noether current $J^{\mu}_5=\bar{\psi}\gamma^{\mu}\gamma^5\psi.$

Conserved current for massless fermions

$$\partial_{\mu}J_{5}^{\mu}=2im\bar{\psi}\gamma^{5}\psi$$

But in the Path Integral

$$\mathcal{Z} = \int \mathcal{D}\psi \mathcal{D}\bar{\psi} \mathcal{D}A \, e^{iS}$$

the measure $\mathcal{D}\psi\mathcal{D}\bar{\psi}$ is not invariant! \mathscr{P} Fujikawa '79

▶ Chiral symmetry U_A(1) (QED or QCD action)

 $\psi \to e^{i\alpha\gamma_5}\psi$

with Noether current $J^{\mu}_5=\bar{\psi}\gamma^{\mu}\gamma^5\psi.$

Conserved current for massless fermions

$$\partial_{\mu}J_{5}^{\mu}=2im\bar{\psi}\gamma^{5}\psi$$

But in the Path Integral

$$\mathcal{Z} = \int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}A \, e^{iS}$$

the measure $\mathcal{D}\psi\mathcal{D}\bar{\psi}$ is not invariant! \mathscr{P} Fujikawa '79 Current is not conserved even for m=0

$$\mathsf{QED}: \quad \partial_{\mu}J_{5}^{\mu} = 2im\bar{\psi}\gamma^{5}\psi + \frac{e^{2}}{16\pi^{2}}F_{\mu\nu}\tilde{F}^{\mu\nu}\left(=Q_{\mathsf{top}}^{\mathsf{U}(1)}\right)$$

Chiral symmetry U_A(1) (QED or QCD action)

 $\psi \to e^{i\alpha\gamma_5}\psi$

with Noether current $J^{\mu}_5=\bar{\psi}\gamma^{\mu}\gamma^5\psi.$

Conserved current for massless fermions

$$\partial_{\mu}J_{5}^{\mu} = 2im\bar{\psi}\gamma^{5}\psi$$

But in the Path Integral

$$\mathcal{Z} = \int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}A \, e^{iS}$$

the measure $\mathcal{D}\psi\mathcal{D}\bar{\psi}$ is not invariant! \mathscr{P} Fujikawa '79 Current is not conserved even for m=0

$$\begin{aligned} \mathsf{QED}: \quad \partial_{\mu}J_{5}^{\mu} &= 2im\bar{\psi}\gamma^{5}\psi + \frac{e^{2}}{16\pi^{2}}F_{\mu\nu}\tilde{F}^{\mu\nu}\left(=Q_{\mathsf{top}}^{\mathsf{U}(1)}\right)\\ \mathsf{QCD}: \quad \partial_{\mu}J_{5}^{\mu} &= 2im\bar{\psi}\gamma^{5}\psi + \frac{e^{2}}{32\pi^{2}}G_{\mu\nu}^{a}\tilde{G}_{a}^{\mu\nu}\left(\equiv Q_{\mathsf{top}}^{\mathsf{SU}(3)}\right) \end{aligned}$$

- Macroscopic manifestations of quantum anomalies
- ▶ $U_A(1)$ anomaly origin $\sim Q_{top} \propto G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a \rightarrow$ CP-odd phenomena

- Macroscopic manifestations of quantum anomalies
- ▶ $U_A(1)$ anomaly origin $\sim Q_{top} \propto G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a \rightarrow$ CP-odd phenomena
- Event-by-event CP-violation:

$$\langle j_{anom.} \rangle = 0$$

 $\langle j_{anom.} \rangle_{event} \neq 0$

- Macroscopic manifestations of quantum anomalies
- ▶ $U_A(1)$ anomaly origin $\sim Q_{top} \propto G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a \rightarrow$ CP-odd phenomena
- Event-by-event CP-violation:

$$\langle j_{anom.}
angle = 0$$

 $\langle j_{anom.}
angle_{event} \neq 0$

Experimental detection:

- Macroscopic manifestations of quantum anomalies
- ▶ $U_A(1)$ anomaly origin $\sim Q_{top} \propto G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a \rightarrow$ CP-odd phenomena
- Event-by-event CP-violation:

$$\langle j_{anom.} \rangle = 0$$

 $\langle j_{anom.} \rangle_{event} \neq 0$

- Experimental detection:
 - Condensed matter systems & Li, Kharzeev, Zhan et al '14

- Macroscopic manifestations of quantum anomalies
- ▶ $U_A(1)$ anomaly origin $\sim Q_{top} \propto G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a \rightarrow$ CP-odd phenomena
- Event-by-event CP-violation:

$$\langle j_{anom.} \rangle = 0$$

 $\langle j_{anom.} \rangle_{event} \neq 0$

- Experimental detection:
 - Condensed matter systems & Li, Kharzeev, Zhan et al '14
 - Heavy-ion collisions & STAR collaboration '21

- Macroscopic manifestations of quantum anomalies
- ▶ $U_A(1)$ anomaly origin $\sim Q_{top} \propto G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a \rightarrow$ CP-odd phenomena
- Event-by-event CP-violation:

$$\langle j_{anom.} \rangle = 0$$

 $\langle j_{anom.} \rangle_{event} \neq 0$

- Experimental detection:
 - Condensed matter systems & Li, Kharzeev, Zhan et al '14
 - Heavy-ion collisions & STAR collaboration '21
 Latest signals suggest suppression of CME: Can we understand this from theory?

Example 1: CME

- 1. Magnetic field induces polarization
- 2. Finite chiral density: $N_L N_R \propto Q_{\sf top}$ (Index theorem)
- 3. Chiral Magnetic Effect (CME):

Magnetic field + Finite chiral density \rightarrow Vector current

E. Garnacho Velasco

Example 2: CSE

- 1. Magnetic field induces polarization
- 2. Finite density: $N_q N_{\bar{q}} \propto \mu$
- 3. Chiral Separation Effect (CSE):

Magnetic field + Finite density \rightarrow Axial current

• Quark chemical potential μ induces imbalance between n_q and $n_{\bar{q}}$:

 $\mu \bar{\psi} \gamma_4 \psi$

• Quark chemical potential μ induces imbalance between n_q and $n_{\bar{q}}$: $\mu \bar{\psi} \gamma_4 \psi$

• Chiral chemical potential μ_5 induces imbalance between n_L and n_R :

 $\mu_5 \bar{\psi} \gamma_4 \gamma_5 \psi$

▶ Quark chemical potential μ induces imbalance between n_q and $n_{\bar{q}}$: $\mu \bar{\psi} \gamma_4 \psi$

► Chiral chemical potential μ_5 induces imbalance between n_L and n_R : $\mu_5 \bar{\psi} \gamma_4 \gamma_5 \psi$

• Currents linear in B and μ/μ_5 to first order:

$$\begin{split} J^V_{\mathsf{CME}} &= C_{\mathsf{CME}} \, eB\mu_5 + \mathcal{O}(\mu_5^3) \\ J^A_{\mathsf{CSE}} &= C_{\mathsf{CSE}} \, eB\mu + \mathcal{O}(\mu^3) \end{split}$$

Conductivities

- Analytical predictions for free fermions.
- CME P Fukushima, Kharzeev, Warringa '08:

$$C_{\mathsf{CME}} = \frac{1}{2\pi^2}$$

Conductivities

- Analytical predictions for free fermions.
- CME @ Fukushima, Kharzeev, Warringa '08:

$$C_{\mathsf{CME}} = \frac{1}{2\pi^2}$$

CSE & Son, Zhitnitsky '04 & Metlitski, Zhitnitsky '05:

Conductivities

- Analytical predictions for free fermions.
- CME @ Fukushima, Kharzeev, Warringa '08:

$$C_{\mathsf{CME}} = \frac{1}{2\pi^2}$$

CSE & Son, Zhitnitsky '04 & Metlitski, Zhitnitsky '05:

Problem to solve: Corrections in QCD?

E. Garnacho Velasco

Chemical potential in the continuum

$$S_F = \int d^4x \, \bar{\psi}(x) \left(\mathbf{D} + m + \mu \gamma_4 \right) \psi(x)$$

Chemical potential in the continuum

$$S_F = \int d^4x \, \bar{\psi}(x) \left(\mathbf{D} + m + \mu \gamma_4 \right) \psi(x)$$

▶ Then on the lattice (remember $U_{\mu}(n) = \exp(iaA_{\mu})$)

$$S_F = a^4 \sum_{n \in \Lambda} \bar{\psi}(n) \left(\sum_{\mu=1}^4 \gamma_\mu \frac{U_\mu(n)\psi(n+\hat{\mu}) - U_\mu^{\dagger}(n-\hat{\mu})\psi(n-\hat{\mu})}{2a} + m\psi(n) + \mu\gamma_4\psi(n) \right)$$

Chemical potential in the continuum

$$S_F = \int d^4x \, \bar{\psi}(x) \left(\mathbf{D} + m + \mu \gamma_4 \right) \psi(x)$$

▶ Then on the lattice (remember $U_{\mu}(n) = \exp(iaA_{\mu})$)

$$S_F = a^4 \sum_{n \in \Lambda} \bar{\psi}(n) \left(\sum_{\mu=1}^4 \gamma_\mu \frac{U_\mu(n)\psi(n+\hat{\mu}) - U_\mu^{\dagger}(n-\hat{\mu})\psi(n-\hat{\mu})}{2a} + m\psi(n) + \mu\gamma_4\psi(n) \right)$$

Divergence appears!

$$\epsilon(\mu) - \epsilon(0) \propto \left(\frac{\mu}{a}\right)^2 \xrightarrow{a \to 0} \infty$$

E. Garnacho Velasco

▶ The divergence is a lattice artifact → What is wrong?

- The divergence is a lattice artifact \rightarrow What is wrong?
- Photon polarization:

- The divergence is a lattice artifact \rightarrow What is wrong?
- Photon polarization:

Cutoff calculation gives quadratic divergence instead of logarithmic

- ► The divergence is a lattice artifact → What is wrong?
- Photon polarization:

- Cutoff calculation gives quadratic divergence instead of logarithmic
- ▶ Not gauge invariant → Violation of the Ward identity
- Can something similar happen in this case?

- Chemical potential $\mu \sim$ (Euclidean) imaginary 4th component photon
- It should enter like a gauge field to preserve gauge invariance!
 - & Hasenfratz, Karsch '83

- Chemical potential $\mu \sim$ (Euclidean) imaginary 4th component photon
- It should enter like a gauge field to preserve gauge invariance!
 P Hasenfratz, Karsch '83
- It enters exponentially

$$S_{F} = a^{4} \sum_{n \in \Lambda} \bar{\psi}(n) \left(\sum_{j=1}^{3} \gamma_{j} \frac{U_{j}(n)\psi(n+\hat{j}) - U_{j}^{\dagger}(n-\hat{j})\psi(n-\hat{j})}{2a} + m\psi(n) + \gamma_{4} \frac{e^{a\mu}U_{4}(n)\psi(n+\hat{4}) - e^{-a\mu}U_{4}^{\dagger}(n-\hat{4})\psi(n-\hat{4})}{2a} \right)$$

▶ No longer divergent in the continuum limit $a \rightarrow 0$

• Discretized Dirac operator is (usually) γ_5 -hermitian

$$\gamma_5 D \gamma_5 = D^{\dagger}$$

▶ That implies det $D \in \mathbb{R} \Rightarrow$ Required for Monte Carlo simulations $(e^{-S_g} \det D \text{ probability distribution})$
• Discretized Dirac operator is (usually) γ_5 -hermitian

$$\gamma_5 D \gamma_5 = D^{\dagger}$$

- ▶ That implies det $D \in \mathbb{R} \Rightarrow$ Required for Monte Carlo simulations $(e^{-S_g} \det D \text{ probability distribution})$
- Chemical potential breaks this!

$$\gamma_5 D(\mu)\gamma_5 = D(-\mu)^{\dagger}$$

• Discretized Dirac operator is (usually) γ_5 -hermitian

$$\gamma_5 D \gamma_5 = D^{\dagger}$$

- ▶ That implies det $D \in \mathbb{R} \Rightarrow$ Required for Monte Carlo simulations $(e^{-S_g} \det D \text{ probability distribution})$
- Chemical potential breaks this!

$$\gamma_5 D(\mu)\gamma_5 = D(-\mu)^{\dagger}$$

• Then $\det D \in \mathbb{C} \Rightarrow$ Sign problem

• Discretized Dirac operator is (usually) γ_5 -hermitian

$$\gamma_5 D \gamma_5 = D^{\dagger}$$

- That implies det D ∈ ℝ ⇒ Required for Monte Carlo simulations (e^{-Sg} det D probability distribution)
- Chemical potential breaks this!

$$\gamma_5 D(\mu)\gamma_5 = D(-\mu)^{\dagger}$$

- Then $\det D \in \mathbb{C} \Rightarrow$ Sign problem
- Chiral chemical potential μ_5 has no sign problem

- Overlap: Quenched QCD & Puhr, Buividovich '17 No significant corrections found
- Wilson/Domain Wall: SU(2) \mathscr{P} Buividovich, Smith, von Smekal '21 CSE suppressed at low T

 Overlap: Quenched QCD & Puhr, Buividovich '17 No significant corrections found

■ Wilson/Domain Wall: SU(2) \mathscr{P} Buividovich, Smith, von Smekal '21 CSE suppressed at low T

No results for full QCD with physical masses!

 Overlap: Quenched QCD & Puhr, Buividovich '17 No significant corrections found

■ Wilson/Domain Wall: SU(2) \mathscr{P} Buividovich, Smith, von Smekal '21 CSE suppressed at low T

No results for full QCD with physical masses!

Our setup:

- Improved staggered fermions, 2+1 flavors, physical quark masses
- Background B field (z direction)

 Overlap: Quenched QCD & Puhr, Buividovich '17 No significant corrections found

■ Wilson/Domain Wall: SU(2) & Buividovich, Smith, von Smekal '21 CSE suppressed at low T

No results for full QCD with physical masses!

Our setup:

- Improved staggered fermions, 2+1 flavors, physical quark masses
- Background B field (z direction)

Simulations at finite real μ suffer from sign problem

Measure derivatives of the current:

$$\begin{split} \frac{\mathrm{d}\langle J_z^A \rangle}{\mathrm{d}\mu} \Big|_{\mu=0} &= \frac{T}{V} [\langle \mathsf{Tr}(\gamma_4 M^{-1}) \mathsf{Tr}(\gamma_3 \gamma_5 M^{-1}) \rangle_{\mu=0} \\ &- \langle \mathsf{Tr}(\gamma_4 M^{-1} \gamma_3 \gamma_5 M^{-1}) \rangle_{\mu=0}] \\ &= C_{\mathsf{cse}} eB_z \end{split}$$

Measure derivatives of the current:

$$\begin{aligned} \frac{\mathrm{d}\langle J_z^A \rangle}{\mathrm{d}\mu} \Big|_{\mu=0} &= \frac{T}{V} [\langle \mathsf{Tr}(\gamma_4 M^{-1}) \mathsf{Tr}(\gamma_3 \gamma_5 M^{-1}) \rangle_{\mu=0} \\ &- \langle \mathsf{Tr}(\gamma_4 M^{-1} \gamma_3 \gamma_5 M^{-1}) \rangle_{\mu=0}] \\ &= C_{\mathsf{cse}} eB_z \end{aligned}$$

• Simulations at $\mu = 0 \rightarrow$ no sign problem

Measure derivatives of the current:

$$\begin{split} \frac{\mathrm{d}\langle J_z^A \rangle}{\mathrm{d}\mu} \Big|_{\mu=0} &= \frac{T}{V} [\langle \mathsf{Tr}(\gamma_4 M^{-1}) \mathsf{Tr}(\gamma_3 \gamma_5 M^{-1}) \rangle_{\mu=0} \\ &- \langle \mathsf{Tr}(\gamma_4 M^{-1} \gamma_3 \gamma_5 M^{-1}) \rangle_{\mu=0}] \\ &= C_{\mathsf{cse}} eB_z \end{split}$$

- Simulations at $\mu = 0 \rightarrow$ no sign problem
- Numerical derivative (linear fit) w.r.t. B to obtain C_{cse}:

Measure derivatives of the current:

$$\begin{aligned} \frac{\mathrm{d}\langle J_z^A \rangle}{\mathrm{d}\mu} \Big|_{\mu=0} &= \frac{T}{V} [\langle \mathsf{Tr}(\gamma_4 M^{-1}) \mathsf{Tr}(\gamma_3 \gamma_5 M^{-1}) \rangle_{\mu=0} \\ &- \langle \mathsf{Tr}(\gamma_4 M^{-1} \gamma_3 \gamma_5 M^{-1}) \rangle_{\mu=0}] \\ &= C_{\mathsf{cse}} eB_z \end{aligned}$$

• Simulations at $\mu = 0 \rightarrow$ no sign problem

Numerical derivative (linear fit) w.r.t. B to obtain C_{cse}:

E. Garnacho Velasco

• Consistency check in the free case $(A_{\mu} = 0 \iff U_{\mu} = 1)$

• Consistency check in the free case $(A_{\mu}=0 \iff U_{\mu}=1)$

Finite size effects at $LT \rightarrow 0$ sizeable if m/T not large enough

• Consistency check in the free case $(A_{\mu}=0 \iff U_{\mu}=1)$

▶ Finite size effects at $LT \rightarrow 0$ sizeable if m/T not large enough

Importance of continuum limit

• Consistency check in the free case $(A_{\mu}=0 \iff U_{\mu}=1)$

- Finite size effects at $LT \rightarrow 0$ sizeable if m/T not large enough
- Importance of continuum limit
 - C_{cse} approaches analytical prediction when $LT \to \infty$

E. Garnacho Velasco

Results for CSE: interacting case

▶ 2+1 flavors, physical masses

Results for CSE: interacting case

▶ 2+1 flavors, physical masses

• High T $(T > T_c)$: approaches free case value

Results for CSE: interacting case

▶ 2+1 flavors, physical masses

• High T $(T > T_c)$: approaches free case value

▶ Low T $(T < T_c)$: CSE suppressed \mathscr{P} Buividovich, Smith, von Smekal '21 Chiral effective theories \mathscr{P} Avdoshkin, Sadofyev, Zakharov '18

E. Garnacho Velasco

Anomalous transport

JC WS | 13/01/2023 16 / 19

And CME?

What about CME?

▶ Wilson: Quenched and phys. masses \mathscr{P} Yamamoto '11 $C_{\rm cme} = 0.02 - 0.03$ at high T

And CME?

- What about CME?
- ▶ Wilson: Quenched and phys. masses ~~? Yamamoto '11 $C_{\rm cme} = 0.02 - 0.03$ at high T
- Our result for physical masses

Our result for CME is 0 for free fermions and in QCD for physical and higher than physical pion masses

- Our result for CME is 0 for free fermions and in QCD for physical and higher than physical pion masses
- What is going on?

- Our result for CME is 0 for free fermions and in QCD for physical and higher than physical pion masses
- What is going on?
 - CME is zero in equilibrium? @ Buividovich '14 @ Landsteiner '16

- Our result for CME is 0 for free fermions and in QCD for physical and higher than physical pion masses
- What is going on?
 - CME is zero in equilibrium? @ Buividovich '14 @ Landsteiner '16
 - Problems with some lattice discretizations for CME?

- Our result for CME is 0 for free fermions and in QCD for physical and higher than physical pion masses
- What is going on?
 - CME is zero in equilibrium? @ Buividovich '14 @ Landsteiner '16
 - Problems with some lattice discretizations for CME?
 - Something else?

Summary

- ▶ Study of CSE with staggered fermions, 2+1 flavors, physical masses
- Free case consistent with analytical prediction
- Full QCD: suppression at low T, approach free case value at high T
- Zero CME

Summary

- Study of CSE with staggered fermions, 2+1 flavors, physical masses
- Free case consistent with analytical prediction
- Full QCD: suppression at low T, approach free case value at high T
- Zero CME

<u>Outlook</u>

- ▶ Perform continuum limit for C_{CSE}
- Clarify CME

Backup slides

Transport effects:

$$\begin{pmatrix} \vec{J} \\ \vec{J}_5 \end{pmatrix} = \begin{pmatrix} \sigma_{\mathsf{Ohm}} & \sigma_{\mathsf{CME}} \\ \sigma_{\mathsf{CESE}} & \sigma_{\mathsf{CSE}} \end{pmatrix} \begin{pmatrix} \vec{E} \\ \vec{B} \end{pmatrix}$$

• Chiral Vortical Effect: vector/axial current generated by rotation + $\mu + \mu_5$:

$$\vec{J} = \frac{1}{\pi^2} \mu_5 \mu \vec{\omega}$$
$$\vec{J}_5 = \left[\frac{1}{6}T^2 + \frac{1}{2\pi^2}(\mu_5^2 + \mu^2)\right] \vec{\omega}$$

Free case continuum limit

- Continuum limit: $a \to 0$, $V = L^3 = a^3 N_s^3 =$ fixed (L fixed)
- ▶ Also keep $T = 1/(N_t a)$, $m = \tilde{m}/a$ and B fixed
- Then LT = fixed so

$$\frac{N_s}{N_t} = \mathsf{fixed}$$

• Also
$$mL = fixed$$
, $m/T = fixed$ so

$$\tilde{m}N_s = \text{fixed}, \quad \tilde{m}N_t = \text{fixed}$$

$$B = \frac{2\pi N_b}{L_y L_x} \Rightarrow N_b = \text{fixed}$$

Staggered gammas

Staggered gammas ~ Taste singlets $(\gamma_{\mu} \otimes \mathbb{H})$, $(\gamma_{5} \otimes \mathbb{H})$:

$$\begin{split} \Gamma_{\mu}(x,y) &= \frac{1}{2} \eta_{\mu}(x) [U(x)u(x)e^{a\mu_{q}} \delta_{x+\hat{\mu},y} + U^{\dagger}(y)u^{\dagger}(y)e^{-a\mu_{q}} \delta_{x-\hat{\mu},y}] \\ \Gamma_{5}(x,y) &= \frac{1}{4!} \sum_{\mathsf{perm}} \epsilon_{\mathsf{perm}} \Gamma_{1}\Gamma_{2}\Gamma_{3}\Gamma_{4} \\ (\Gamma_{5}\Gamma_{4})(x,y) &= \frac{1}{3!} \sum_{\mathsf{perm}} \epsilon_{\mathsf{perm}} \Gamma_{1}\Gamma_{2}\Gamma_{3} \end{split}$$

with

$$\eta_{\mu}(x) = (-1)^{\sum_{\nu < \mu} x_{\nu}}, \quad \eta_1(x) = 1$$

and $U \in SU(3), u \in U(1)$

Staggered observable has an extra term

$$\frac{\mathrm{d}\langle J_{z}^{5}\rangle}{\mathrm{d}\mu}\Big|_{\mu=0} = \frac{T}{V} \left[\frac{1}{4} \left\langle \mathsf{Tr}\left(\Gamma_{4}M^{-1}\right)\mathsf{Tr}\left(\Gamma_{3}\Gamma_{5}M^{-1}\right) \right\rangle_{\mu=0} -\frac{1}{16} \left\langle \mathsf{Tr}\left(\Gamma_{4}M^{-1}\Gamma_{3}\Gamma_{5}M^{-1}\right) \right\rangle_{\mu=0} +\frac{1}{4} \left\langle \mathsf{Tr}\left(\frac{\partial(\Gamma_{3}\Gamma_{5})}{\partial\mu}M^{-1}\right) \right\rangle_{\mu=0} \right]$$
(1)

