THE FAR-FROM-EQUILIBRIUM SEARCH FOR THE QCD CRITICAL POINT

TRAVIS DORE

TD, ET AL., ARXIV: 2207.04086 [NUCL-TH].

TD, ET AL., PHYS. REV. D, VOL. 102, NO. 7, P. 074 017, 2020

WHAT IS HYDRODYNAMICS?

Fundamentally based on a hierarchy of scales:

 $\lambda_{micro} \ll \ell_{hydro} \leq L_{global}$ $\lambda_{micro} \sim 1/E_{micro} ~\ell_{hydro} \sim D^{\mu}$

Thermodynamics Local

Local Equilibrium

Microscopics encoded into transport coefficients (e.g. shear viscosity)

Laminar flow turning turbulent

Laminar flow around wing

FUNDAMENTALS OF RELATIVISTIC HYDRODYNAMICS

WHAT DO WE MEAN BY OUT OF EQUILIBRIUM?

From a hydro perspective, traditionally related to inhomogeneities and gradients

OUT-OF-EQUILIBRIUM HYDRODYNAMICS

Upgrading traditional Navier-Stokes equations to be relativistic...

Leads to acausal (super-luminal) mode propagation and thermodynamic instabilities

(a) stable equilibrium

(b) Unstable equilibrium

6

One way to ensure linear stability and causality in your system: dynamic relaxation of viscous components

Must be initialized independently

 $au_{\Pi}\Pi+\Pi=-\zeta\partial_{\mu}u^{\mu}+\ldots$

DIGRESSION: PHYSICALITY OF INDEPENDENT VISCOUS FIELDS

Consider the following thought experiment:

Small deviation from eq

A kinetic theory perspective tells us that the viscous fields in relaxation hydro are given by moments of the distribution function

$$\Pi \sim \int dK \left(\Delta_{\mu
u} k^\mu k^
u
ight) \delta f$$

This is more information than only spatial gradients

7

WHAT DOES THE INITIAL STATE OF HIC LOOK LIKE?

QCD PHASE DIAGRAM: EQUILIBRIUM DYNAMICS

QCD has a conjectured critical point similar to that of water

SOME PHYSICS OF CRITICALITY

Critical Opalescence

Divergence of correlation length ξ

- Characteristic fluctuations on all length scales of the system
- Light scatters when correlations on the scale of its wavelength develop

Important point:

Static system in a well-defined equilibrium state, measure at any point in time

How does this compare to a heavy-ion collision?

MAPPING THE 3D ISING MODEL TO QCD

Due to its symmetries, QCD is expected to be in the 3D Ising universality class

$$\frac{\text{3D Ising}}{\xi \sim \left|\frac{T-T_c}{T_c}\right|^{-\nu}} \quad \chi \sim \left|\frac{T-T_c}{T_c}\right|^{-\gamma} \quad \Longrightarrow \quad \chi_2^B \sim \xi^2 \quad \chi_4^B \sim \xi^{11}$$

M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011)

11

SEARCHING FOR THE QCD CRITICAL POINT

critical region affect observables?

12

LATTICE QCD EOS WITH PARAMETERIZEI

P. Parotto Et al. EoS = Non-critical + Parameterized Critical Phys.Rev.C 101 (2020) 3, 034901 $p(T,\mu_B) = T^4 \sum_n \mathbf{c_n^{non-crit}} (T) (\frac{\mu_B}{T})^n + \mathbf{p}^{\mathbf{crit}}(\mathbf{T},\mu_B)$ $p^{crit} = p^{crit}(T, \mu_B; w,
ho, \Delta lpha, \cdots)$ $c_n^{non-crit}(T) = c_n^{LAT}(T) - c_n^{crit}(T; w, \rho, \Delta \alpha, \cdots)$ Ideal hydrodynamics evolves along isentropes: Multiple parameters control size,

shape, and strength of critical region

one initial (T, μ_B) , unique evolutions

THERMODYNAMICS AND EQUILIBRIUM LENSING

THE BEHAVIOR OF $T_{-\mu_B}$ TRAJECTORIES

SIMPLE MODEL, QUALITATIVE INVESTIGATION

Toy model: Bjorken Symmetric Flow

Highly symmetric scenario, functions of space and time become only functions of time

e.g.
$$\epsilon(\tau, \vec{x}) = \epsilon(\tau)$$

Coupled PDE'S become coupled ODE's

$$\dot{\epsilon} = -rac{1}{ au} ig[\epsilon + p + \Pi - \pi_{\eta}^{\eta} ig] \qquad
ho(au) = rac{
ho_0 au_0}{ au}$$

Energy Conservation Charge Conservation

 $\begin{array}{ll} \text{Viscous} & \tau_{\pi} \dot{\pi}_{\eta}^{\eta} + \pi_{\eta}^{\eta} = \frac{1}{\tau} \left[\frac{4\eta}{3} - \pi_{\eta}^{\eta} \left(\delta_{\pi\pi} + \tau_{\pi\pi} \right) + \lambda_{\pi\Pi} \Pi \right] \\ \text{Relaxation} & \overset{\text{Denicol et al. Phys. Rev. D 85}}{\overset{(2012\ 11407)}{\tau}} \dot{\tau}_{\Pi} \dot{\Pi} + \Pi = -\frac{1}{\tau} \left(\zeta + \delta_{\Pi\Pi} \Pi + \frac{2}{3} \lambda_{\Pi\pi} \pi_{\eta}^{\eta} \right) \end{array}$

Transport Coefficients

Critically Scaled Bulk:

 $\left(\frac{\zeta T}{w}\right)_{CS} = \frac{\zeta T}{w} \left| 1 + \right|$

Shear viscosity not sensitive to criticality explicitly

Nucl. Phys. ,A967,2017

 $\left(\frac{\xi}{\xi_0}\right)$

TD,E. McLaughlin, J. Noronha-Hostler, Phys. Rev. D 102 (2020) 7

Takeaways:	

- 1. Pushed to or away from CP on
 - event-by-event basis
- 2. Degeneracy of final state mapping to initial state

How does the kurtosis behave at freeze-out in the critical region?

PROCEDURE

- >INTIALIZE MANY DIFFERENT HYDRODYANMIC TRAJECTORIES SYSTEMATICALLY FROM A LIST OF n_{B_0} , Π_0 , $\pi_0^{\mu\nu}$ (same energy density)
- SELECT ON TRAJECTORIES THAT PASS THROUGH FREEZE-OUT
 WINDOW, CENTERED ON THE ISENTROPE THAT GOES THROUGH
 THE CRITICAL POINT, AND ALONG SHIFTED TRANSITION PARABOLAS
 REPEAT PROCEDURE FOR MANY DIFFERENT REALIZATIONS OF THE
- REPEAT PROCEDURE FOR MANY DIFFERENT REALIZATIONS OF THE EQUATION OF STATE

SIZE AND SHAPE OF REGION IS IMPORTANT

120Ŀ

 $\mu_{\rm B}$ [MeV]

IS IDEAL HYDRODYNAMICS A 'GOOD ENOUGH' APPROXIMATION?

"Thermal" entropy production, violation of second law? $\partial_\mu(su^\mu)=rac{1}{T}(\pi^{\mu
u}\sigma_{\mu
u}-\Pi heta)<0$?

Real entropy production:

$$\partial_\mu S^\mu pprox s u^\mu - eta_\Pi \Pi \dot \Pi - eta_\pi \pi^{\mu
u} \dot \pi_{\mu
u} > 0$$
 .

Clearly negative for $\pi^{\mu
u}\sigma_{\mu
u} < 0, \ \Pi heta > 0$

arXiv: 2209.10483 [hep-ph].

Recent work has confirmed this conjecture C. Chattopadhyay, U. Heinz, T, Schaefer, ²¹

NON-TRIVIAL DISTRIBUTIONS OF FOURTH MOMENT

While the spread may be large when there are many trajectories, average values remain close to the central isentropic value.

A tight freeze-out window makes this possible

DYNAMIC LENSING AND KURTOSIS

On the left, trajectories pulled to larger values of χ_4

Lensing effect may persist for strong viscous corrections

Very sensitive to EoS

parameters

SUMMARY AND OUTLOOK

- Out of equilibrium effects will be very important to take into account in our search for the QCD critical point
- Work is ongoing to begin modelling charge dynamics in more realistic hydrodynamic models
- Models which include the initialization of out-of-equilibrium components will be a crucial part of our ability to unambiguously find critical behavior if it is there

WORK IN PROGRESS: ICCING+HYDRO

(0+1)D \bigcirc (2+1)D \bigcirc

Can we study finite charge effects at the highest energies?

ICCING

Initial Conditions of Conserved Charges in Nuclear Geometry

> P. Carzon, et al., *Phys.Rev.*C 105 (2022) 3, 034908 M. Martinez, et al., arXiv:1911.10272

First code to implement this with realistic EoS

WORK IN PROGRESS

4D Equation of State $\{T, \mu_B, \mu_S, \mu_Q\} o \{\epsilon, ho_B, ho_S, ho_Q\}$

Complicated equations of motion

 $au_\Pi \dot{\Pi} + \Pi = -\zeta heta - rac{\zeta}{2eta} (\Pi \dot{eta}_\Pi + eta_\Pi \Pi heta + n^l_\mu
abla^\mu \gamma^l_0) - rac{\zeta \gamma^l_0}{eta} \partial_\mu n^\mu_l$ $au_{lm} \dot{n}^{\mu}_m + n^{\mu}_l = -\kappa_{lm}
abla^{\mu} lpha_m - rac{ au_{lm}}{2eta} n^{\mu}_m heta - rac{\kappa_{lm}}{2eta} \dot{eta}_{mn} n^{\mu}_n$ $-rac{\kappa_{lm}}{eta}ig(\gamma_0^m
abla^\mu\Pi+rac{\Pi}{2}
abla^\mu\gamma_0^m+\gamma_1^m\partial_
u\pi^{\mu
u}+rac{\pi^{\mu
u}}{2}
abla_
u\gamma_1^mig)$ $au_\pi \dot{\pi}^{\mu
u} + \pi^{\mu
u} = 2\eta\sigma^{\mu
u} - rac{\eta}{eta}(\pi^{\mu
u}\dot{eta}_\pi)$ **Smoothed** $+eta_\pi\pi^{\mu
u} heta+n^{\langle\mu}
abla^{
u
angle}\gamma_1^l)-rac{2\eta\,\gamma_1^l}{eta}
abla^{\langle\mu}n^{
u
angle}\gamma_1^l$ Particle Hydrodynamic Formalism

P. Carzon, et al., *Phys.Rev.C* 105 (2022) 3, 034908 M. Martinez, et al., arXiv:1911.10272

CAN WE REALLY EXTRACT NON-EQUILIBRIUM PROPERTIES?

http://eg1.jetscape.wayne.edu:443/

WHAT IS A HEAVY-ION COLLISION? WHY STUDY THEM?

Time:0.08			
		an frank	
	0	et all	
, MADAI.us			

Born out of particle physics, heavy-ion collisions are the way to study high-energy, many-body, Quantum Chromodynamics

Prof. Donald W. Kerst with the world's first betatron, built at the University of Illinois in 1940

I will argue that research in HIC has connections to:

And more!

Condensed Matter Physics

Cosmology

Particle Physics and Field Theory

Nuclear Astrophysics

30

SOME HISTORICAL CONTEXT...

Hmm..

Bubble Chamber Particle Shower

Imagine: You are Enrico Fermi, trying to come up with some way to explain particle production without QCD or confinement

Thought Experiment:

<u>"THERMAL" COLLISIONS</u>

- Produced particles thermally (black body) – Fermi
- Extremely energy dense, hydrodynamic evolution – Landau
- Freeze out T ~ 150 MeV
 - Pomeranchuk

Explained particle production from experiment well!

The Fermi^{*}-Pomeranchuk-Landau Picture

*Fermi (1950) arguably preceded by Weisskopf, Phys. Rev. 52, 295 (1937) and Koppe, Phys. Rev. 76, 688 (1949)

