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Muttalib-Borodin ensemble

Inspired by the quasi-1D conductor-insulator phase transition
model, Muttalib defined the n-particle ensemble whose density
function is

1

C

∏
1≤i<j≤n

|xi − xj ||xθi − xθj |
n∏

i=1

e−nV (xi ),

where the location of particles x1, . . . , xn ∈ (0,+∞) and the
potential V is defined on (0,+∞). Muttalib’s interest was on the
partition function.
From the mathematical point of view, Borodin also studied this
particle ensemble, and he solved the limiting local distribution
around 0 when the potential is the Laguerre V (x) = x .



Random matrix relation

This particle model has a random matrix realization when the
potential is Laguerre, found by Cheliotis.

Y =


y11 y12 y13 . . .
0 y22 y23 . . .
0 0 y33 . . .

0 0 0
. . .

 .

Let αj = θ(j − 1) for j = 1, . . . , n, and define an n × n
upper-triangular random matrix Y such that all upper-triangular
entries are independent, the diagonal entries are nonnegative and
satisfies 2|yii |2 = χ2

2(αi+1), and the strictly upper-triangular entries
are in standard complex normal distribution. Then the engenvalues
of Y ∗Y are a Muttalib-Borodin ensemble.



Limiting distribution around 0
As found by Borodin, we state the limiting distribution of particles
around 0 as the particle number n→∞. We state the result only
for integer θ, and use the language of Meijer G functions.
Since the Muttalib-Borodin ensemble is a determinantal process,
we can describe it by the correlation kernel K (x , y), that is, the
correlation function

R(x1, . . . , xk) = det(K (xi , xj))ki ,j=1.

Denote νj = j/θ − 1 where j = 1, . . . , θ, we have

lim
n→∞

n−
1
θ
−1x

1
θ
−1K

(
θ

n

(x
n

) 1
θ
,
θ

n

(y
n

) 1
θ

)
= Kν1,...,νθ(y , x),

where (G is the Meijer G function)

Kν1,...,νθ(x , y) =

∫ 1

0
G 1,0
0,θ+1

( −
0,−ν1, . . . ,−νθ

∣∣∣∣ ux)
× G θ,0

0,θ+1

( −
ν1, . . . , νθ, 0

∣∣∣∣ uy) du.



Universality by analogy

In a certain sense, the correlation kernel Kν1,...,νθ(x , y) is universal,
because it occurs in other random matrix models. The best known
example is the product of random Ginibre matrices: Let G1, . . . ,Gθ
be independent random matrices in size
(n + ν1)× (n + ν0), . . . , (n + νθ)× (n + νθ−1) where ν0 = 0, and
suppose all Gk entries are independent random variables with
standard complex normal distribution. Then the eigenvalues of
(Gθ · · ·G1)∗(Gθ · · ·G1) are a determinantal process, and the
correlation kernel has the limit around 0

lim
n→∞

1

n
K
(x
n
,
y

n

)
= Kν1,...,νθ(x , y).

We remark that the “universality” is not very precise, since here νi
are integers, while for Muttalib-Borodin ensemble they are not.



Universality conjecture
Although the Muttalib-Borodin ensemble does not have a random
matrix interpretation for general V , we expect the limiting
correlation kernel to be universal. Suppose V (x) is continuous and
nonzero at 0, then we expect the limit identity of the correlation
kernel remains, with only the scaling factor depending on V .
In practice, we would like to assume that V is analytic, and satisfies
the technical requirement that it is “regular” and “one-cut”.
We tackle the problem in the usual way. First we observe that the
Muttalib-Borodin ensemble is biorthogonal, that is, we can find
polynomials pj(x) and qj(x) with degree j = 0, 1, . . . , such that∫ +∞

0
pj(x)qk(xθ)e−nV (x)dx =

{
0 if j 6= k ,

1 if j = k .

Then by the standard theory of determinantal process, we have
that the correlation kernel for the Muttalib-Borodin ensemble is

K (x , y) =
n−1∑
k=0

pk(x)qk(y)e−n
V (x)+V (y)

2 .



Universal conjecture continued

It is natural to conjecture that for all k = κn with c ∈ (0, 1],

pk

(
θ

n

(x
n

)1/θ)
∼ Cκx

1−1/θG θ,0
0,θ+1

( −
ν1, . . . , νθ, ν0

∣∣∣∣ uκx) ,
qk

(
θ

n

(
yθ

n

)1/θ
)
∼ C ′κG

1,0
0,θ+1

( −
−ν0,−ν1, . . . ,−νθ

∣∣∣∣ uκy) ,
with Cκ,C

′
κ, uκ satisfying some relations. Then the sum of

pk(x)qk(y) converges to the integral over

x1−1/θG 1,0
0,θ+1(uκx)G θ,0

0,θ+1(uκy).
In this talk, we concentrate on the special case that θ = 2 and
κ = 1, and we want to compute the asymptotics of

pn(cn−3/2x) ∼ CxG 2,0
0,3

( −
−1

2 , 0, 0

∣∣∣∣ x2)
for some c and C . The computation for qn is analogous.



Equilibrium measure and g -functions
The “one-cut” condition is that the limiting empirical distribution
of the n particles, which is called the equilibrium measure in
physical term, is supported on an interval [0, b]. Suppose
dµ(x) = ψ(x)dx is the density function of the equilibrium measure
that satisfies ψ(x) is continuous on (0, b), ψ(x) vanishes like a
square root as x → b and blows up like x−1/(θ+1) as x → 0 (this is
part of the regularity).
Define

g(z) =

∫ b

0
log(z − y)ψ(y)dy , g̃(z) =

∫ b

0
log(z2 − y2)ψ(y)dy .

Note that g(z) is defined on C \ (−∞, b], while g̃ is defined on
H \ (−∞, b].

C H



Riemann-Hilbert problem: warm-up
Consider G (z) = g ′(z) and G̃ (z) = g̃ ′(z) defined on C and H. We
have

I G±(x) + G̃∓(x) = V ′(x) for x ∈ (0, b).
I G̃ (−ix) = G̃ (ix) for x > 0.
I As z →∞ in C, G (z) = z−1 +O(z−2).
I As z →∞ in H, G̃ (z) = 2z−1 +O(z−3).

b

+

−

These properties comstitute a Riemann-Hilbert problem (RHP),
and define G and G̃ uniquely. Moreover, we have a practical way
to compute b and ψ by the RHP stated above. (It is due to Claeys
and Romano.)
We note that the RHP is a 1× 2 vector-valued one, and the
difficulty lies in that G and G̃ have different domains. A trick to
solve it is to map C and H to two complemental regions on C, and
then transform the RHP into a scalar one defined on C.



Riemann-Hilbert prblem: set-up

Let Y = (Y1,Y2) be defined on C×H such that Y1(z) = pn(z)
and

Y2(z) = Cpn(z) =

∫ ∞
0

pn(x)e−nV (x)

x2 − z2
dx .

Then Y is uniquely determined by the following RHP

I

Y+(x) = Y−(x)

(
1 1

2x e
−nV (x)

0 1

)
, x > 0.

I As z →∞ in C, Y1(z) = zn +O(zn−1).

I As z →∞ in H, Y2(z) = O(z−2(n+1)).

I As z → 0 in H, Y2(z) = O(z−1).



First transform
Define

φ(z) = g(z) + g̃(z)− V (x)− `,

where ` is a constant making φ(0) = 0.
We draw two arcs Σ1 and Σ2 from 0 to
b.
Then define T = (T1,T2) and S =
(S1,S2) on the domain C×H such that

Σ1

Σ2

T = (Y1(z)e−ng(z),Y2(z)en(g̃(z)−`)),

and

S(z) =



T (z) outside the lens,

T (z)

(
1 0

2ze−nφ(z) 1

)
in the lower lens,

T (z)

(
1 0

−2ze−nφ(z) 1

)
in the upper lens.



Jump matrix for S

We have that S satisfies the RHP

I S+(z) = S−(z)Js(z), where

Js(z) =



(
1 0

2ze−nφ(z) 1

)
, z ∈ Σ1 ∪ Σ2,(

0 (2z)−1

−2z 0

)
, z ∈ (0, b),(

1 (2z)−1enφ(z)

0 1

)
, z ∈ (b,+∞).

I As z →∞ in C, S1(z)→ 1.

I As z → 0 in C, S1(z) = O(1).

I As z →∞ in H, S2(z) = O(z−1).

I As z → 0 in H, S2(z) = O(z−1).



Idea of the asymptotic analysis of RHP: Patchwork
We divide the whole domain C×H into three regions, one is a
region around b, which is small but of a constant radius; one is a
region around 0, which is small and with a shrinking radius
depending on n; and the outer region. The RHP is further
transformed in each of these three regions, with the help of the
“parametrices”, and then the transformed RHP has simple jumps
within each region, but rather complicated jumps at the border
between two regions. But we will show that the jumps, although
complicated, converge to 0 uniformly as n→∞. Hence we derive
that the final RHP converges to a constant, and can get the
asymptotics of the original RHP reversely.

Σ1

Σ2



Global parametrix

Function φ(z) has the property that

<φ(z) > 0 for all z ∈ Σ1 ∪ Σ2,

φ(z) < 0 for all z ∈ (b,+∞).

It seems that we can approximate the jump matrix JS into J∞ that

is
(

0 (2z)−1

−2z 0

)
on (0, b), and trivial on (b,+∞) and Σ1,Σ2.

The solution P(∞) to the simplified RHP is called the global
parametrix. It is exactly solvable, but there is a serious problem:
The convergence of JS to J∞ is not uniform. Then the
convergence of S to P(∞) is dubious.
(Actually, S does not converge to P(∞) at the points where JS
does not converge uniformly to J∞, namely 0 and b.)



The first patch: Global

Define R = (R1,R2) on the outer region of C×H such that

Ri (z) = Si (z)/P
(∞)
i (z). It is clear that on (a, b), the jump of R is

very simple: (
0 1
1 0

)
and on Σ1,Σ2, the jump of R is very small, if we do not consider
the two local patches.



Search for the local parametrix at 0

To solve the problem, we resort to tech-
niques from the large size RHP (and this
is why we need to assume that θ is inte-
ger).
Let U = (U1,U2,U3) whose components
are defined on Dε(0) ⊆ C, a small disk
centred at 0, such that

+

−+

−

+ −

+−

Σ̃1

Σ̃2

U1(w) = S1(−
√
w)[P

(∞)
1 (−

√
w)]−1 w ∈ Dε(0) \ (Σ̃ ∪ Σ̃2 ∪ R),

U2(w) = S1(
√
w)[P

(∞)
1 (
√
w)]−1 w ∈ Dε(0) \ (Σ̃ ∪ Σ̃2 ∪ R),

U3(w) = S2(
√
w)[P

(∞)
2 (
√
w)]−1 w ∈ Dε(0) \ (Σ̃ ∪ Σ̃2 ∪ R+),

where Σ̃i = {w ∈ C | √w ∈ Σi}. We note that

P
(∞)
1 (z)/P

(∞)
2 (z)→ 2z as z → 0.



RHP of the local parametrix

Then U satisfies the RHP U+(w) = U−(w)JU(w), where

JU(w) =




1 0 0

0 1 0

0 e−nφ(
√
w) 2
√
wP

(∞)
2 (
√
w)

P
(∞)
1 (
√
w)

1

 w ∈ Σ̃1 ∪ Σ̃2,

1 0 0

0 0 1

0 −1 0

 w ∈ R+,

0 1 0

1 0 0

0 0 −1

 w ∈ R−.

This is a quite simple RHP, and we can construct an explicit 3× 3
matrix-valued function that satisfies the same RHP, with the help
of Meijer G functions.



Model RHP
We let

y
(k)
1 (w) = (−1)k−1

√
3 · 2 2k

3
−1√wG 2,0

0,3

( −
−1

2 , 0, k

∣∣∣∣ z24
)∣∣∣∣

z2=w , arg(z)∈(π
2
, 3π
2
)

,

y
(k)
2 (w) = (−1)k

√
3 · 2 2k

3
−1√wG 2,0

0,3

( −
−1

2 , 0, k

∣∣∣∣ z24
)∣∣∣∣

z2=w , arg(z)∈(−π
2
,π
2
)

,

y
(k)
3 (w) =

√
3 · 2 2k

3
−1

2πi

√
wG 3,0

0,3

( −
−1

2 , 0, k

∣∣∣∣−z2

4

)∣∣∣∣∣
z2=w , arg(z)∈(−π

2
,π
2
)

,

and then define the 3× 3 matrix P(0) by

(P(0))k,1(w) = y
(k−1)
1 (w), (P(0))k,3(w) = y

(k−1)
3 (w),

(P(0))k,2(w) = y
(k−1)
2 (w) arg(w) ∈ (

π

2
, π) ∪ (−π,−π

2
),

(P(0))k,2(w) = y
(k−1)
3 (w)− y

(k−1)
3 (w) arg(w) ∈ (0,

π

2
),

(P(0))k,2(w) = y
(k−1)
3 (w) + y

(k−1)
3 (w) arg(w) ∈ (−π

2
, 0).



Construction of the local parametrix at 0
At last we let

P̃
(0)
n (w) =

1
(cn)−1

(cn)−2

P(0)((cn)3w)

×


e−nf1(w)

P
(∞)
1 (−

√
w)

e−nf2(w)

P
(∞)
1 (
√
w)

±2
√
w enf3(w)

P
(∞)
2 (
√
w)

 ,

where

f1(w) = g(−
√
w) + V (

√
w)− `+ C ,

f2(w) = g(
√
w)− V (

√
w)− `+ C ,

f3(w) = g̃(
√
w)− C ,

such that C makes f1(0) = f2(0) = 0, and c depends on the
potential V . This matrix solves the RHP with JU , and it is the
local parametrix.



Patches at 0 and b
Why we bother constructing a matrix-valued solution to the RHP
with JU? The reason is that a matrix can be inversed.
Consider the vector

U(P̃
(0)
n )−1

in a small neighbourhood of 0, and this is a 1× 3 vector whose
components are all analytic — because all the jumps are cancelled.
They we can map it back to C×H, and it is a well-defined around
0 with trivial jump.
This is not yet the patch we want. But we can further transform it
into a vector on C×H around 0 with a jump(

0 1
1 0

)
on (0, b). It also satisfies other requirement of the patch, but there
is no time for the details. We let R in the shrinking region around
0 be this vector.
Around b, we can make a similar patch and define R there. It
involves the usual 2× 2 local parametrix for Airy kernel.



Final approximation
R, defined on the patches, satisfies the a RHP with the following
jump cuts:

Σ1

Σ2

We note that the jump on (0, b) is the simple one(
0 1
1 0

)
and on the other cuts, although the jump can be complicated, they
are all small. So the solution to this RHP converges to a constant
(actually identity).
Therefore the solution is done.


