The real spectrum of a product of Ginibre matrices

Nick Simm

Mathematics Department, University of Sussex, Brighton, UK

Sums and products of random matrices

August 2018, ZiF, Bielefeld University
Let G be an $N \times N$ real matrix whose entries are i.i.d. standard normal random variables. As a probability density on matrix space: $P(G) = \frac{1}{(2\pi)^{N/2}} \exp\left(-\frac{1}{2} \text{Tr}(GG^T)\right)$.

Clearly invariant under orthogonal transformations $G \rightarrow O_1GO_2$ where $O_1, O_2 \in O(N)$.

Known as the Ginibre orthogonal ensemble (GinOE).

The Ginibre unitary ensemble (GinUE) instead consists of complex variables whose real and imaginary parts are $N(0, 1/2)$.
Ginibre ensembles

Let G be an $N \times N$ real matrix whose entries are $i.i.d.$ standard normal random variables.
Ginibre ensembles

Let \(G \) be an \(N \times N \) real matrix whose entries are \(i.i.d. \) standard normal random variables.

As a probability density on matrix space:

\[
P(G) = \frac{1}{(2\pi)^{N^2/2}} \exp\left(-\frac{1}{2} \text{Tr}(GG^T)\right)
\]

Clearly invariant under orthogonal transformations \(G \rightarrow O_1GO_2 \) where \(O_1, O_2 \in O(N) \).

Known as the Ginibre orthogonal ensemble (GinOE).

The Ginibre unitary ensemble (GinUE) instead consists of complex variables whose real and imaginary parts are \(N(0, 1/2) \).
Ginibre ensembles

- Let G be an $N \times N$ real matrix whose entries are i.i.d. standard normal random variables.
- As a probability density on matrix space:
 \[
P(G) = \frac{1}{(2\pi)^{N^2/2}} \exp\left(-\frac{1}{2} \text{Tr}(GG^T)\right)
 \]

- Clearly **invariant under orthogonal transformations** $G \rightarrow O_1 GO_2$ where $O_1, O_2 \in O(N)$.
Ginibre ensembles

Let G be an $N \times N$ real matrix whose entries are i.i.d. standard normal random variables.

As a probability density on matrix space:

$$P(G) = \frac{1}{(2\pi)^{N^2/2}}\exp\left(-\frac{1}{2}\text{Tr}(GG^T)\right)$$

Clearly invariant under orthogonal transformations $G \rightarrow O_1 GO_2$ where $O_1, O_2 \in O(N)$.

Known as the Ginibre orthogonal ensemble (GinOE).
Ginibre ensembles

Let G be an $N \times N$ real matrix whose entries are i.i.d. standard normal random variables.

As a probability density on matrix space:

$$P(G) = \frac{1}{(2\pi)^{N^2/2}} \exp\left(-\frac{1}{2} \text{Tr}(GG^T)\right)$$

Clearly invariant under orthogonal transformations $G \rightarrow O_1 GO_2$ where $O_1, O_2 \in O(N)$.

Known as the Ginibre orthogonal ensemble (GinOE).

The Ginibre unitary ensemble (GinUE) instead consists of complex variables whose real and imaginary parts are $\mathcal{N}(0, 1/2)$.
Eigenvalues of G/\sqrt{N} where $G \sim \text{GinUE}$
Eigenvalues of G/\sqrt{N} where $G \sim \text{GinOE}$

Eigenvalues of the GinOE
Early discoveries for the Ginibre ensemble

Jean Ginibre's 1965 paper introduced a total of three ensembles: GinUE, GinSE and GinOE, in increasing order of difficulty.

Eigenvalue distribution: Ginibre completely solved the GinUE, partially solved GinSE and left GinOE unsolved.

Lehmann and Sommers 1991. Joint PDF of GinOE complex eigenvalues $x_j + iy_j$ and N_R real eigenvalues λ_j:

$$\frac{1}{c^N |\Delta|} e^{\frac{1}{N} \sum_{j=1}^{N_R} \frac{\lambda_j^2}{2}} \prod_{j=1}^{N_R} \text{erf} \left(y_j \sqrt{2} \right)$$

Early discoveries for the Ginibre ensemble

- Jean Ginibre’s 1965 paper introduced a total of three ensembles: GinUE, GinSE and GinOE, in increasing order of difficulty.

\[
1 \cdot N \prod_{j=1}^{N-R} \text{erf}(y_j \sqrt{2})
+ \frac{1}{2} N \cdot N \sum_{j=1}^{N-R} \left(y_j^2 - x_j^2 \right) - N \sum_{j=1}^{N-R} \lambda_j^2 / 2
\]

Early discoveries for the Ginibre ensemble

- Jean Ginibre’s 1965 paper introduced a total of three ensembles: GinUE, GinSE and GinOE, in increasing order of difficulty.
- Eigenvalue distribution: Ginibre completely solved the GinUE, partially solved GinSE and left GinOE unsolved.

\[
\begin{align*}
&\text{Lehmann and Sommers 1991. Joint PDF of GinOE complex eigenvalues } x_j + iy_j \text{ and } N_R \text{ real eigenvalues } \lambda_j : \\
&\quad \frac{1}{c_N} \left| \Delta \right| \exp \left(\frac{N - N_R}{2} \sum_{j=1}^{N} \left(y_j^2 - x_j^2 \right) - \frac{N_R}{2} \sum_{j=1}^{N_R} \lambda_j^2 \right) \prod_{j=1}^{N} \operatorname{erf} \left(y_j \sqrt{2} \right)
\end{align*}
\]

Early discoveries for the Ginibre ensemble

- Jean Ginibre’s 1965 paper introduced a total of three ensembles: GinUE, GinSE and GinOE, in increasing order of difficulty.
- Eigenvalue distribution: Ginibre completely solved the GinUE, partially solved GinSE and left GinOE unsolved.
- Lehmann and Sommers 1991. Joint PDF of GinOE complex eigenvalues $x_j + iy_j$ and N_R real eigenvalues λ_j:

$$\frac{1}{c_N} |\Delta| \exp \left(\sum_{j=1}^{N-N_R} (y_j^2 - x_j^2) - \sum_{j=1}^{N_R} \lambda_j^2 / 2 \right) \prod_{j=1}^{N-N_R} \text{erf}(y_j \sqrt{2})$$
Early discoveries for the Ginibre ensemble

- Jean Ginibre’s 1965 paper introduced a total of three ensembles: GinUE, GinSE and GinOE, in increasing order of difficulty.

- Eigenvalue distribution: Ginibre completely solved the GinUE, partially solved GinSE and left GinOE unsolved.

- Lehmann and Sommers 1991. Joint PDF of GinOE complex eigenvalues $x_j + iy_j$ and N_R real eigenvalues λ_j:

\[
\frac{1}{\sqrt[2]{c_N}} |\Delta| \exp \left(\sum_{j=1}^{N-N_R} (y_j^2 - x_j^2) - \sum_{j=1}^{N_R} \frac{\lambda_j^2}{2} \right) \prod_{j=1}^{N-N_R} \text{erf}(y_j \sqrt{2})
\]

How many eigenvalues of a random real matrix are real?
Theorem (Edelman, Kostlan and Shub ’94)

For an $N \times N$ real Ginibre matrix G, one has

$$\mathbb{E}(N_R) = \sqrt{2N/\pi} + O(1) \quad N \to \infty$$

and the convergence to the uniform law

$$\frac{1}{\mathbb{E}(N_R)} \mathbb{E} \left[\sum_{j=1}^{N} \delta(\lambda_j - x) \right] \to \begin{cases} \frac{1}{2} & |x| < 1 \\ 0 & |x| > 1 \end{cases}$$
How many eigenvalues of a random real matrix are real?

Theorem (Edelman, Kostlan and Shub '94)

For an $N \times N$ real Ginibre matrix G, one has

$$\mathbb{E}(N_{R}) = \sqrt{2N/\pi} + O(1) \quad N \to \infty$$

and the convergence to the uniform law

$$\frac{1}{\mathbb{E}(N_{R})} \mathbb{E} \left[\sum_{j=1}^{N} \delta(\lambda_j - x) \right] \to \begin{cases} \frac{1}{2} & |x| < 1 \\ 0 & |x| > 1 \end{cases}$$

Products: What is the analogue of this result for products of independent Ginibre random matrices?
How many eigenvalues of a random real matrix are real?

Theorem (Edelman, Kostlan and Shub ’94)

For an $N \times N$ real Ginibre matrix G, one has

$$\mathbb{E}(N_R) = \sqrt{2N/\pi} + O(1) \quad N \to \infty$$

and the convergence to the uniform law

$$\frac{1}{\mathbb{E}(N_R)} \mathbb{E} \left[\sum_{j=1}^{N} \delta(\lambda_j - x) \right] \to \begin{cases} \frac{1}{2} & |x| < 1 \\ 0 & |x| > 1 \end{cases}$$

Products: What is the analogue of this result for products of independent Ginibre random matrices?

Fluctuations: Variance and central limit theorem?
Products
Products

Let G_1, \ldots, G_m be m independent real Ginibre matrices of size $N \times N$ and set $X_m = N^{-m/2} G_1 G_2 \ldots G_m$.

Theorem (S. '17) For every fixed $m \in \mathbb{N}$ we have $E \left(\sum_{j=1}^m \delta(\lambda_j - \lambda_j) \right) \rightarrow \left\{ \frac{1}{2} \biggm| \lambda \biggm| - \frac{1}{2} \right\}$ as $N \rightarrow \infty$.

Compare to known density for the complex eigenvalues (Burda et al., Götze and Tikhomirov, O'Rourke and Soshnikov 2010): $p(z) = \frac{1}{m \pi} \frac{|z|^{-2}}{|z| < 1}$.
Products

Let G_1, \ldots, G_m be m independent real Ginibre matrices of size $N \times N$ and set $X_m = N^{-m/2} G_1 G_2 \ldots G_m$.

Theorem (S. '17)

For every fixed $m \in \mathbb{N}$ we have

$$\mathbb{E}(N_R^{(m)}) = \sqrt{\frac{2N^m}{\pi}} + O(\log(N))$$
Let G_1, \ldots, G_m be m independent real Ginibre matrices of size $N \times N$ and set $X_m = N^{-m/2} G_1 G_2 \cdots G_m$.

Theorem (S. ’17)

For every fixed $m \in \mathbb{N}$ we have

$$
\mathbb{E}(N_R^{(m)}) = \sqrt{\frac{2Nm}{\pi}} + O(\log(N))
$$

and the weak convergence

$$
\frac{1}{\mathbb{E}(N_R^{(m)})} \mathbb{E} \left[\sum_{j=1}^{N_R^{(m)}} \delta(\lambda_j - \lambda) \right] \rightarrow \begin{cases}
\frac{1}{2m} |\lambda|^{\frac{1}{m}-1} & |\lambda| < 1 \\
0 & |\lambda| > 1
\end{cases}
$$

as $N \rightarrow \infty$.

Compare to known density for the complex eigenvalues (Burda et al., Götze and Tikhomirov, O'Rourke and Soshnikov 2010):

$$p(z) = \frac{1}{m \pi} \frac{1}{|z|^{2m-2}} \mathbb{1}_{|z| < 1}.$$
Products

Let G_1, \ldots, G_m be m independent real Ginibre matrices of size $N \times N$ and set $X_m = N^{-m/2} G_1 G_2 \ldots G_m$.

Theorem (S. ’17)

For every fixed $m \in \mathbb{N}$ we have

$$
\mathbb{E}(N_R^{(m)}) = \sqrt{\frac{2Nm}{\pi}} + O(\log(N))
$$

and the weak convergence

$$
\frac{1}{\mathbb{E}(N_R^{(m)})} \mathbb{E} \left[\sum_{j=1}^{N_R^{(m)}} \delta(\lambda_j - \lambda) \right] \rightarrow \begin{cases}
\frac{1}{2m} |\lambda|^{1 - \frac{1}{m}} & |\lambda| < 1 \\
0 & |\lambda| > 1
\end{cases}
$$

as $N \rightarrow \infty$.

Compare to known density for the complex eigenvalues (Burda et al., Götze and Tikhomirov, O’Rourke and Soshnikov 2010): $p(z) = \frac{1}{m\pi} |z|^{2/m-2} 1_{|z|<1}$.
Remarks

This theorem (but without the leading constant \sqrt{m}) was conjectured by Forrester and Ipsen (2016).

Philosophy: $G_1 \ldots G_m \sim G_m$ up to symmetry? (Burda et al. 2010)

The error term $O(\log N)$ can easily be replaced with $O(1)$. True error should be $O(N^{-1/2})$.

Proof still works for $m = N\delta$ for some small $\delta > 0$. What if $m = cN$ for some large constant $c > 0$?

Idea of the proof is to compute moments and show that

$$\lim_{N \to \infty} \frac{1}{E(N(m)R)} \sum_{j=1}^{N(m)} \lambda_{k,j} = \begin{cases} 1 & \text{if } k \text{ is even} \\ 0 & \text{if } k \text{ is odd} \end{cases}$$
This theorem (but without the leading constant \sqrt{m}) was conjectured by Forrester and Ipsen (2016).
Remarks

- This theorem (but without the leading constant \sqrt{m}) was conjectured by Forrester and Ipsen (2016).
- Philosophy: $G_1 \ldots G_m \sim G^m$ up to symmetry? (Burda et al. 2010)
Remarks

- This theorem (but without the leading constant \sqrt{m}) was conjectured by Forrester and Ipsen (2016).
- Philosophy: $G_1 \ldots G_m \sim G^m$ up to symmetry? (Burda et al. 2010)
- The error term $O(\log N)$ can easily be replaced with $O(1)$. True error should be $O(N^{-1/2})$.

Remarks

- This theorem (but without the leading constant \sqrt{m}) was conjectured by Forrester and Ipsen (2016).
- Philosophy: $G_1 \ldots G_m \sim G^m$ up to symmetry? (Burda et al. 2010)
- The error term $O(\log N)$ can easily be replaced with $O(1)$. True error should be $O(N^{-1/2})$.
- Proof still works for $m = N^\delta$ for some small $\delta > 0$. What if $m = cN$ for some large constant $c > 0$?
Remarks

- This theorem (but without the leading constant \sqrt{m}) was conjectured by Forrester and Ipsen (2016).
- Philosophy: $G_1 \ldots G_m \sim G^m$ up to symmetry? (Burda et al. 2010)
- The error term $O(\log N)$ can easily be replaced with $O(1)$. True error should be $O(N^{-1/2})$.
- Proof still works for $m = N^\delta$ for some small $\delta > 0$. What if $m = cN$ for some large constant $c > 0$?

Idea of the proof is to compute moments and show that

$$
\lim_{N \to \infty} \frac{1}{\mathbb{E}(\mathcal{N}_R^{(m)})} \mathbb{E} \left[\sum_{j=1}^{\mathcal{N}_R^{(m)}} \chi_j^k \right] = \begin{cases}
\frac{1}{1+mk}, & k \text{ even} \\
0, & k \text{ odd}
\end{cases}
$$
Products of random variables

Let Y_1, \ldots, Y_m be i.i.d. standard Gaussians. What is the density of the product $X = Y_1 Y_2 \ldots Y_m$?

$$w_m(x) := \int \mathbb{R}^m \prod_{j=1}^m dx_j e^{-x_j^2/2} \delta(x - x_1 x_2 \ldots x_m) = G_{m,0}^{0,m}(0,\ldots,0|\bigg| x^2_1 x^2_2 \ldots x^2_m).$$

where the Meijer G-function is

$$G_{m,n}^{p,q}(a_1,\ldots,a_p|b_1,\ldots,b_q|z) = \frac{1}{2\pi i} \int_{\gamma} \prod_{j=1}^m \Gamma(b_j - s) \prod_{n=1}^p \Gamma(1 - a_j + s) \prod_{q=m+1}^{p+n} \Gamma(1 - b_j + s) z^s ds$$

The contour γ connects $-i\infty$ to $+i\infty$ such that all poles of $\Gamma(b_j - s)$ on right and $\Gamma(1 - a_k + s)$ on left.

Next: the case $N > 1$.
Products of random variables

Let \(Y_1, \ldots, Y_m \) be i.i.d. standard Gaussians. What is the density of the product \(X_{m}^{(N=1)} = Y_1 Y_2 \ldots Y_m \)?
Let Y_1, \ldots, Y_m be i.i.d. standard Gaussians. What is the density of the product $X_m^{(N=1)} = Y_1 Y_2 \ldots Y_m$?

$$w_m(x) := \int_{\mathbb{R}^m} \prod_{j=1}^m dx_j \, e^{-x_j^2/2} \delta(x-x_1 x_2 \ldots x_m) = G_{0,m}^m(0, \ldots, 0 \mid \frac{x^2}{2m})$$

where the **Meijer G-function** is

$$G_{p,q}^{m,n}(a_1, \ldots, a_p \mid b_1, \ldots, b_q \mid z) = \frac{1}{2\pi i} \int_{\gamma} \prod_{j=1}^m \frac{\Gamma(b_j - s) \prod_{j=1}^n \Gamma(1 - a_j + s)}{\prod_{j=m+1}^q \Gamma(1 - b_j + s) \prod_{j=n+1}^p \Gamma(a_j - s)} \, z^s \, ds$$
Let Y_1, \ldots, Y_m be i.i.d. standard Gaussians. What is the density of the product $X_m^{(N=1)} = Y_1 Y_2 \ldots Y_m$?

$$w_m(x) := \int_{\mathbb{R}^m} \prod_{j=1}^m dx_j \ e^{-x_j^2/2} \delta(x-x_1 x_2 \ldots x_m) = G_{0,m}^{m,0} \left(\underbrace{0,...,0}_{m} \bigg| \frac{x^2}{2m} \right).$$

where the Meijer G-function is

$$G_{p,q}^{m,n} \left(\begin{array}{c} a_1,\ldots,a_p \end{array} \bigg| b_1,\ldots,b_q \right| z \right) = \frac{1}{2\pi i} \int_{\gamma} \prod_{j=1}^m \Gamma(b_j - s) \prod_{j=1}^n \Gamma(1 - a_j + s) \prod_{j=m+1}^q \Gamma(1 - b_j + s) \prod_{j=n+1}^p \Gamma(a_j - s) z^s \ ds$$

The contour γ connects $-i\infty$ to $+i\infty$ such that all poles of $\Gamma(b_j - s)$ on right and $\Gamma(1 - a_k + s)$ on left.

Next: the case $N > 1$.
Theorem (Ipsen and Kieburg '14, Forrester and Ipsen '16)

The real eigenvalues of the matrix product $G_1 \ldots G_m$ form a Pfaffian point process with correlation kernel given by

$$K(x, y) = D(x, y)S(x, y) - S(y, x)I(x, y)$$

where

$$S(x, y) = N - 2 \sum_{j=0}^{\infty} w_m(x) x_j (2 \sqrt{2/\pi})^m A_j(y)$$

and

$$A_j(y) = \int_{\mathbb{R}} w_m(v) \text{sgn}(y-v) v_j dv.$$
Products form a Pfaffian point process

Theorem (Ipsen and Kieburg ’14, Forrester and Ipsen ’16)

The real eigenvalues of the matrix product $G_1 \ldots G_m$ form a Pfaffian point process with correlation kernel given by

$$K(x, y) = \begin{pmatrix} D(x, y) & S(x, y) \\ -S(y, x) & I(x, y) \end{pmatrix}$$

where

$$S(x, y) = \sum_{j=0}^{N-2} \frac{w_m(x)x^j}{(2\sqrt{2\pi j!})^m} (xA_j(y) - A_{j+1}(y))$$

and

$$A_j(y) = \int_{\mathbb{R}} w_m(v) \text{sgn}(y - v)v^j \, dv,$$
Products form a Pfaffian point process

Theorem (Ipsen and Kieburg ’14, Forrester and Ipsen ’16)

The real eigenvalues of the matrix product $G_1 \ldots G_m$ form a Pfaffian point process with correlation kernel given by

$$\mathbb{K}(x, y) = \begin{pmatrix} D(x, y) & S(x, y) \\ -S(y, x) & I(x, y) \end{pmatrix}$$

where

$$S(x, y) = \sum_{j=0}^{N-2} \frac{w_m(x)x^j}{(2\sqrt{2\pi j!})^m}(xA_j(y) - A_{j+1}(y))$$

and

$$A_j(y) = \int_{\mathbb{R}} w_m(v) \text{sgn}(y - v)v^j \, dv,$$

In particular, the desired moments are just

$$M_{k,N} := \mathbb{E} \left[\sum_{j=1}^{N_R(m)} \chi_j^k \right] = \int_{\mathbb{R}} x^k S(x, x) \, dx$$
Moments and Meijer G

The last integral splits in two pieces

\[M_2 k, N(\text{m}) = M(1) 2 k, N(\text{m}) - M(2) 2 k, N(\text{m}) \]

where

\[M(1) 2 k, N(\text{m}) = N - mk(\sqrt{\pi} (2j + k)! m(a_j + 1, j + k + 1, j + 1)) \]

\[M(2) 2 k, N(\text{m}) = N - mk N/2 - 2 \sum_{j=0}^2 (2j + 1 + k) m(a_j + 2, j + 2, j + 1) \]

Here \(a_j, k \) is a particular case of the Meijer-G function

\[a_j, k = G_{m+1, m+1}^{m+1, m+1}(3/2 - j, ..., 3/2 - j, 10, ..., k | | 1) = 1/2 \pi i \int_\gamma (\Gamma(k-s)\Gamma(-1/2+j+s)) m-s \, ds \]
The last integral splits in two pieces

\[M_{2k,N}(m) = M_{2k,N}^{(1)}(m) - M_{2k,N}^{(2)}(m) \] where

\[M_{2k,N}^{(1)}(m) = N^{-mk} \sum_{j=0}^{(N-2)/2} \frac{2^{(2j+k)m}}{(\sqrt{\pi}(2j)!)^m} (a_{j+1,j+k+1} + a_{j+k+1,j+1}) \]

\[M_{2k,N}^{(2)}(m) = N^{-mk} \sum_{j=0}^{N/2-2} \frac{2^{(2j+1+k)m}}{(\sqrt{\pi}(2j + 1)!)^m} (a_{j+k+2,j+1} + a_{j+2,j+k+1}) \]
Moments and Meijer G

The last integral splits in two pieces

\[M_{2k,N}(m) = M_{2k,N}^{(1)}(m) - M_{2k,N}^{(2)}(m) \]

where

\[M_{2k,N}^{(1)}(m) = N^{-mk} \sum_{j=0}^{(N-2)/2} \frac{2^{(2j+k)m}}{\left(\sqrt{\pi}(2j)\right)!m} (a_{j+1,j+k+1} + a_{j+k+1,j+1}) \]

\[M_{2k,N}^{(2)}(m) = N^{-mk} \sum_{j=0}^{N/2-2} \frac{2^{(2j+1+k)m}}{\left(\sqrt{\pi}(2j+1)\right)!m} (a_{j+k+2,j+1} + a_{j+2,j+k+1}) \]

Here \(a_{j,k} \) is a particular case of the Meijer-G function

\[
a_{j,k} = G_{m+1,m}^{m+1,0} \left(\begin{array}{c} 3/2-j,\ldots,3/2-j,1 \\ 0,k,\ldots,k \end{array} \right | 1 \right) = \frac{1}{2\pi i} \int_{\gamma} \frac{(\Gamma(k-s)\Gamma(-1/2+j+s))^{m}}{-s} ds
\]
Saddle point analysis

The formula
\[
\Gamma(k - s) \Gamma(-1/2 + j + s) \Gamma(j + k - 1/2) = \int_0^\infty t^{k-s-1} \left(1 + \frac{t}{k+j+1/2}\right)^{k+j+3/2} dt
\]
implies that a_{j+1}, $j+k+1$ can be written
\[
\Gamma(2j+k+3/2) m \int_1^\infty dx m x^{m-1} \prod_{l=1}^m \left[\int_0^\infty dx (x^l + 1)^{j+1/2} \left(1 + \frac{x^l}{x^l+1}\right)^{-j-k-3/2} x^{j+k+1} \right]
\]
Asymptotics as $j \to \infty$ with fixed k, m: Use the classical (multi-dimensional) saddle point method. Because of cancellations one has to get the first sub-leading correction.
Saddle point analysis

The formula

\[
\left(\frac{\Gamma(k - s) \Gamma(-1/2 + j + s)}{\Gamma(j + k - 1/2)} \right) = \int_0^\infty \frac{t^{k-s-1}}{(1 + t)^{k+j+1/2}} \, dt
\]

implies that \(a_{j+1,j+k+1} \) can be written.
Saddle point analysis

The formula

\[
\left(\frac{\Gamma(k - s) \Gamma(-1/2 + j + s)}{\Gamma(j + k - 1/2)} \right) = \int_0^\infty \frac{t^{k-s-1}}{(1 + t)^{k+j+1/2}} \, dt
\]

implies that \(a_{j+1,j+k+1}\) can be written

\[
\Gamma(2j + k + 3/2)^m \int_1^\infty \frac{dx_m}{x_m} \prod_{l=1}^{m-1} \left[\int_0^\infty \frac{dx_l}{x_l} \frac{(x_l/x_{l+1})^{j+1/2}}{(1 + x_l/x_{l+1})^{2j+k+3/2}} \right] \frac{x_1^{j+k+1}}{(1 + x_1)^{2j+k+3/2}}
\]

Asymptotics as \(j \to \infty\) with fixed \(k\), \(m\): Use the classical (multi-dimensional) saddle point method. Because of cancellations one has to get the first sub-leading correction.
Saddle point analysis

The formula

\[
\left(\frac{\Gamma(k-s)\Gamma(-1/2+j+s)}{\Gamma(j+k-1/2)} \right) = \int_0^\infty \frac{t^{k-s-1}}{(1+t)^{k+j+1/2}} \, dt
\]

implies that \(a_{j+1,j+k+1} \) can be written

\[
\Gamma(2j+k+3/2)^m \int_1^\infty \frac{dx_m}{x_m} \prod_{l=1}^{m-1} \left[\int_0^\infty \frac{dx_l}{x_l} \frac{(x_l/x_{l+1})^{j+1/2}}{(1+x_l/x_{l+1})^{2j+k+3/2}} \right] \frac{x_l^{j+k+1}}{(1+x_l)^{2j+k+3/2}}
\]

Asymptotics as \(j \to \infty \) with fixed \(k,m \): Use the classical (multi-dimensional) saddle point method.
Saddle point analysis

The formula

\[
\left(\frac{\Gamma(k-s)\Gamma(-1/2+j+s)}{\Gamma(j+k-1/2)} \right) = \int_0^\infty \frac{t^{k-s-1}}{(1 + t)^{k+j+1/2}} \, dt
\]

implies that \(a_{j+1,j+k+1} \) can be written

\[
\Gamma(2j + k + 3/2)^m \int_1^\infty \frac{dx_m}{x_m} \prod_{l=1}^{m-1} \left[\int_0^\infty \frac{dx_l}{x_l} \frac{(x_l/x_{l+1})^{j+1/2}}{(1 + x_l/x_{l+1})^{2j+k+3/2}} \right] \frac{x_1^{j+k+1}}{(1 + x_1)^{2j+k+3/2}}
\]

\[
= \Gamma(2j + k + 3/2)^m \int_1^\infty \int_{[0,\infty)^{m-1}} e^{i\Phi(x)} F(x) \, dx_1 \ldots dx_m
\]

Asymptotics as \(j \to \infty \) with fixed \(k, m \): Use the classical (multi-dimensional) saddle point method.

Because of cancellations one has to get the first sub-leading correction.
Possible alternative approach

\begin{equation}
S(x, y) = \int \limits_{-\infty}^{\infty} (x - v) \text{sgn}(y - v) w_r(x) w_r(v) N - 2 \sum_{j=0}^{m} (xv)^j (j!) \, dv
\end{equation}

Idea: Compute asymptotics of $S(x/\sqrt{N}, y/\sqrt{N})$. Then use:

\begin{equation}
E(N(m) R) = \sqrt{\frac{m}{N}} \int \limits_{-\infty}^{\infty} S(u/\sqrt{N}, u/\sqrt{N}) \, du
\end{equation}

Difficulties: near the edge $|x| = \pm 1$ and $|uv| = \pm 1/\sqrt{N}$. Even $m = 1!$ Uniformity? This is overcome by directly integrating $S(x, x)$ in our case.
Possible alternative approach

The correlation kernel of real eigenvalues is

\[
S(x, y) = \int_{-\infty}^{\infty} (x - v) \text{sgn}(y - v) w_r(x) w_r(v) \sum_{j=0}^{N-2} \frac{(xv)^j}{(j!)^m} dv
\]
Possible alternative approach

The correlation kernel of real eigenvalues is

$$S(x, y) = \int_{-\infty}^{\infty} (x - v) \text{sgn}(y - v) w_r(x) w_r(v) \sum_{j=0}^{N-2} \frac{(xv)^j}{(j!)^m} dv$$

Idea: Compute asymptotics of $S(x/\sqrt{N}, y/\sqrt{N})$. Then use:

$$\mathbb{E}(N^{(m)}_\mathbb{R}) = \frac{1}{\sqrt{N}} \int_{-\infty}^{\infty} S(u/\sqrt{N}, u/\sqrt{N}) du$$

Difficulties: near the edge $|x| = \pm 1$ and $|uv| = \pm 1/\sqrt{N}$. Even $m = 1!$ Uniformity? This is overcome by directly integrating $S(x, x)$ in our case.
Possible alternative approach

The correlation kernel of real eigenvalues is

\[S(x, y) = \int_{-\infty}^{\infty} (x - v) \text{sgn}(y - v) w_r(x) w_r(v) \sum_{j=0}^{N-2} \frac{(xv)^j}{(j!)^m} \, dv \]

Idea: Compute asymptotics of \(S(x/\sqrt{N}, y/\sqrt{N}) \). Then use:

\[E(N^{(m)}_R) = \frac{1}{\sqrt{N}} \int_{-\infty}^{\infty} S(u/\sqrt{N}, u/\sqrt{N}) \, du \]

Difficulties: near the edge \(|x| = \pm 1 \) and \(|uv| = \pm 1/\sqrt{N} \). Even \(m = 1! \) Uniformity?

This is overcome by directly integrating \(S(x, x) \) in our case.
Linear statistics of random matrix models

The linear eigenvalue statistic $X_N[f] = \sum_{j=1}^{N} f(z_j)$ is usually studied in two main cases.

1. Hermitian ensembles: Bounded variance CLT with the $H^{1/2}$ noise (e.g. Johansson '98):
 \[
 \lim_{N \to \infty} \text{Var}(X_N[f]) = \sum_{k=1}^{\infty} |k||\hat{c}_k[f]|^2
 \]

2. Non-Hermitian ensembles: Bounded variance CLT with GFF-type structure (Rider and Virag '07):
 \[
 \lim_{N \to \infty} \text{Var}(X_N[f]) = \int U |\nabla f|^2 \, d^2z + \sum_{k=1}^{\infty} |k||\hat{f}_k[k]|^2
 \]

What if we restrict to the real axis? For simplicity, consider $m = 1$.
Linear statistics of random matrix models

The linear eigenvalue statistic

\[X_N[f] = \sum_{j=1}^{N} f(z_j) \]

is usually studied in two main cases.

1. Hermitian ensembles: Bounded variance CLT with the \(H^{1/2} \) noise (e.g. Johansson ’98):
 \[\lim_{N \to \infty} \text{Var}(X_N[f]) = \infty \sum_{k=1}^{\infty} |k| \| c_k(f) \|^2 \]

2. Non-Hermitian ensembles: Bounded variance CLT with GFF-type structure (Rider and Virag ’07):
 \[\lim_{N \to \infty} \text{Var}(X_N[f]) = \int \nabla^2 f \, d2z + \infty \sum_{k=1}^{\infty} |k| \| \hat{f}(k) \|^2 \]

What if we restrict to the real axis? For simplicity, consider \(m = 1 \).
Linear statistics of random matrix models

The linear eigenvalue statistic

\[X_N[f] = \sum_{j=1}^{N} f(z_j) \]

is usually studied in two main cases.

1. Hermitian ensembles: **Bounded variance CLT** with the \(H^{1/2} \) noise (e.g. Johansson '98):

\[
\lim_{N \to \infty} \text{Var}(X_N(f)) = \sum_{k=1}^{\infty} |k||c_k(f)|^2
\]
Linear statistics of random matrix models

The linear eigenvalue statistic

\[X_N[f] = \sum_{j=1}^{N} f(z_j) \]

is usually studied in two main cases.

1. Hermitian ensembles: Bounded variance CLT with the \(H^{1/2} \) noise (e.g. Johansson '98):

\[
\lim_{N \to \infty} \text{Var}(X_N(f)) = \sum_{k=1}^{\infty} |k||c_k(f)|^2
\]

2. Non-Hermitian ensembles: Bounded variance CLT with GFF-type structure (Rider and Virag '07):

\[
\lim_{N \to \infty} \text{Var}(X_N(f)) = \int_{\mathbb{U}} |\nabla f|^2 d^2z + \sum_{k=1}^{\infty} |k||\hat{f}(k)|^2
\]

What if we restrict to the real axis? For simplicity, consider \(m = 1 \).
Linear statistics of random matrix models

The linear eigenvalue statistic

\[X_N[f] = \sum_{j=1}^{N} f(z_j) \]

is usually studied in two main cases.

1. Hermitian ensembles: Bounded variance CLT with the \(H^{1/2} \) noise (e.g. Johansson '98):

\[
\lim_{N \to \infty} \text{Var}(X_N(f)) = \sum_{k=1}^{\infty} |k||c_k(f)|^2
\]

2. Non-Hermitian ensembles: Bounded variance CLT with GFF-type structure (Rider and Virag '07):

\[
\lim_{N \to \infty} \text{Var}(X_N(f)) = \int_{\mathbb{U}} |\nabla f|^2 d^2 z + \sum_{k=1}^{\infty} |k||\hat{f}(k)|^2
\]

What if we restrict to the real axis? For simplicity, consider \(m = 1 \).
Theorem (S. '15)

The variance of the total number of real eigenvalues of a real $(2^n 	imes 2^n)$ Gaussian random matrix is given by the following explicit formula

$$\text{Var}(N_R) = 2 \sqrt{2} \sqrt{\pi} \sum_{k=1} \frac{\Gamma(2k-3/2)}{\Gamma(2k-1)} - 2 \pi \sum_{k_1, k_2} \frac{\Gamma(k_1+k_2-3/2)}{\Gamma(2k_1-1)\Gamma(2k_2-1)}$$

where $\Gamma(x)$ is the Gamma function.

Furthermore, the CLT holds:

$$N_R - \mathbb{E}(N_R) \sqrt{\text{Var}(N_R)} \xrightarrow{d} \mathcal{N}(0, 1), \quad n \to \infty.$$
Fluctuations of the real eigenvalue count

Theorem (S. ’15)

The variance of the total number of real eigenvalues of a real $(2n \times 2n)$ Gaussian random matrix is given by the following explicit formula

$$\text{Var}(N_R) = \frac{2\sqrt{2}}{\sqrt{\pi}} \sum_{k=1}^{n} \frac{\Gamma(2k - 3/2)}{\Gamma(2k - 1)} - \frac{2}{\pi} \sum_{k_1, k_2} \frac{\Gamma(k_1 + k_2 - 3/2)^2}{\Gamma(2k_1 - 1)\Gamma(2k_2 - 1)}$$

where $\Gamma(x)$ is the Gamma function.
Fluctuations of the real eigenvalue count

Theorem (S. ’15)

The variance of the total number of real eigenvalues of a real \((2n \times 2n)\) Gaussian random matrix is given by the following explicit formula

\[
\text{Var}(N_R) = \frac{2\sqrt{2}}{\sqrt{\pi}} \sum_{k=1}^{n} \frac{\Gamma(2k - 3/2)}{\Gamma(2k - 1)} - \frac{2}{\pi} \sum_{k_1, k_2} \frac{\Gamma(k_1 + k_2 - 3/2)^2}{\Gamma(2k_1 - 1)\Gamma(2k_2 - 1)}
\]

where \(\Gamma(x)\) is the Gamma function. The asymptotics are

\[
\text{Var}(N_R) = \frac{2 - \sqrt{2}}{\sqrt{\pi}} 2\sqrt{n} + O(1)
\]

(1.1)
Theorem (S. ’15)

The variance of the total number of real eigenvalues of a real $(2n \times 2n)$ Gaussian random matrix is given by the following explicit formula

\[
\text{Var}(N_R) = \frac{2\sqrt{2}}{\sqrt{\pi}} \sum_{k=1}^{n} \frac{\Gamma(2k - 3/2)}{\Gamma(2k - 1)} - \frac{2}{\pi} \sum_{k_1, k_2} \frac{\Gamma(k_1 + k_2 - 3/2)^2}{\Gamma(2k_1 - 1)\Gamma(2k_2 - 1)}
\]

where $\Gamma(x)$ is the Gamma function. The asymptotics are

\[
\text{Var}(N_R) = \frac{2 - \sqrt{2}}{\sqrt{\pi}} 2\sqrt{n} + O(1)
\]

(1.1)

Furthermore, the CLT holds:

\[
\frac{N_R - \mathbb{E}(N_R)}{\sqrt{\text{Var}(N_R)}} \xrightarrow{d} \mathcal{N}(0, 1), \quad n \to \infty.
\]
The variance of the total number of real eigenvalues of a real $(2n \times 2n)$ Gaussian random matrix is given by the following explicit formula

$$\text{Var}(N_R) = \frac{2\sqrt{2}}{\sqrt{\pi}} \sum_{k=1}^{n} \frac{\Gamma(2k - 3/2)}{\Gamma(2k - 1)} - \frac{2}{\pi} \sum_{k_1, k_2} \frac{\Gamma(k_1 + k_2 - 3/2)^2}{\Gamma(2k_1 - 1)\Gamma(2k_2 - 1)}$$

where $\Gamma(x)$ is the Gamma function. The asymptotics are

$$\text{Var}(N_R) = \frac{2 - \sqrt{2}}{\sqrt{\pi}} 2\sqrt{n} + O(1) \quad (1.1)$$

Furthermore, the CLT holds:

$$\frac{N_R - \mathbb{E}(N_R)}{\sqrt{\text{Var}(N_R)}} \xrightarrow{d} \mathcal{N}(0, 1), \quad n \to \infty.$$

So no bounded variance CLT for this linear statistic.
Smooth linear statistics of the real eigenvalues

Now consider the linear statistic

\[R_N[\phi] = \sum_{j=1}^{N} \phi(\lambda_j) \]

Theorem (Kopel '15, S. '15)

Let \(\phi \) be either:

▶ K. Any smooth test function such that for some \(\delta > 0 \) we have \(\text{supp}(\phi) \subset (-1 + \delta, 1 - \delta) \).

▶ S. Any even polynomial.

Then we have the central limit theorem:

\[n^{-1/4} \left(R_N[\phi] - E(R_N[\phi]) \right) \xrightarrow{d} N(0, 2 - \sqrt{2} \sqrt{\pi} \int_{-1}^{1} \phi(x)^2 \, dx) \]

Phil Kopel also proved this under a (fourth) moment matching hypothesis.
Smooth linear statistics of the real eigenvalues

Now consider the linear statistic

\[R_N[\phi] = \sum_{j=1}^{N_{\mathbb{R}}} \phi(\lambda_j) \]

Theorem (Kopel '15, S. '15)

Let \(\phi \) be either:
- K. Any smooth test function such that for some \(\delta > 0 \) we have \(\text{supp}(\phi) \subset (-1 + \delta, 1 - \delta) \).
- S. Any even polynomial.

Then we have the central limit theorem:

\[\frac{n - 1}{4} (R_N[\phi] - E(R_N[\phi])) \rightarrow N(0, 2 - \sqrt{2}/\sqrt{\pi} \int_{-1}^{1} \phi(x)^2 dx) \]

Phil Kopel also proved this under a (fourth) moment matching hypothesis.
Smooth linear statistics of the real eigenvalues

Now consider the linear statistic

\[R_N[\phi] = \sum_{j=1}^{N_R} \phi(\lambda_j) \]

Theorem (Kopel ’15, S. ’15)

Let \(\phi \) be either:

- **K.** Any smooth test function such that for some \(\delta > 0 \) we have \(\text{supp}(\phi) \subset (-1 + \delta, 1 - \delta) \).
- **S.** Any even polynomial.

Then we have the central limit theorem:

\[n^{-1/4}(R_N[\phi] - \mathbb{E}(R_N[\phi])) \xrightarrow{d} \mathcal{N} \left(0, \frac{2 - \sqrt{2}}{\sqrt{\pi}} \int_{-1}^{1} \phi(x)^2 \, dx \right). \]
Smooth linear statistics of the real eigenvalues

Now consider the linear statistic

\[R_N[\phi] = \sum_{j=1}^{N_{\mathbb{R}}} \phi(\lambda_j) \]

Theorem (Kopel '15, S. '15)

Let \(\phi \) be either:

- **K.** Any smooth test function such that for some \(\delta > 0 \) we have \(\text{supp}(\phi) \subset (-1 + \delta, 1 - \delta) \).
- **S.** Any even polynomial.

Then we have the central limit theorem:

\[
n^{-1/4}(R_N[\phi] - \mathbb{E}(R_N[\phi])) \overset{d}{\to} \mathcal{N} \left(0, \frac{2 - \sqrt{2}}{\sqrt{\pi}} \int_{-1}^{1} \phi(x)^2 \, dx \right).
\]

Phil Kopel also proved this under a (fourth) moment matching hypothesis.
Proof starting point
Proof starting point

Lemma
The moment generating function of any even linear statistic is a determinant:

\[\mathbb{E} e^{s \sum_{j=1}^{N} f(\lambda_j)} = \det \left(\delta_{jk} + \frac{A[e^{s(f(x)+f(y))} - 1]_{2j,2k-1}}{\sqrt{2\pi} \Gamma(2j - 1) \Gamma(2k - 1)} \right)_{j,k=1} \]

Can be extracted from a result of Sinclair (2007), combined with evenness of \(f \).
Proof starting point

Lemma

The moment generating function of any even linear statistic is a determinant:

\[
\mathbb{E} e^{s \sum_{j=1}^{N} f(\lambda_j)} = \text{det} \left(\delta_{jk} + \frac{A[e^{s(f(x)+f(y))} - 1]_{2j,2k-1}}{\sqrt{2\pi} \Gamma(2j-1) \Gamma(2k-1)} \right)_{j,k=1}^{n}
\]

Can be extracted from a result of Sinclair (2007), combined with evenness of \(f \). Scalar product:

\[
A[\psi]_{jk} = \frac{1}{2} \int_{\mathbb{R}} dx \int_{\mathbb{R}} dy \psi(x)\psi(y)e^{-x^2/2-y^2/2} P_{j-1}(x) P_{k-1}(y) \text{sign}(y-x)
\]

where

\[
P_{2j}(x) = x^{2j} \]
\[
P_{2j+1}(x) = x^{2j+1} - 2jx^{2j-1}
\]
Compute cumulants

Key idea: Use log det = Tr log

Find that

Lemma

The pth cumulant of the linear statistic $\sum_{R=1}^{N} f(\lambda_j)$ is

$\kappa_p = p! \sum_{\nu_1 + \ldots + \nu_q = p} \nu_1! \ldots \nu_q! \text{Tr} \left(M(\nu_1) n_{[f]} \ldots M(\nu_q) n_{[f]} \right)$

where $M(\nu) n_{[f]} j_k, k = A \left(f(x) + f(y) \right)_{\nu_{2j_2 + \nu_2}} j_k, k = 1, \ldots, n$.

Proof proceeds by expanding the above trace. Estimates in the limit $n \to \infty$ obtained using complex analysis.

See also work of Kanzieper, Poplavskyi, Timm, Tribe, Zaboronski '15.

Ultimately obtain $\kappa_p = O(\sqrt{n})$ as $n \to \infty$.
Compute cumulants

Key idea: Use $\log \det = \text{Tr} \log$!
Compute cumulants

Key idea: Use $\log \det = \mathrm{Tr} \log !$

Find that

Lemma

The p^{th} cumulant of the linear statistic $\sum_{j=1}^{N_R} f(\lambda_j)$ is

$$\kappa_p = p! \sum_{m=1}^{p} \frac{(-1)^{q+1}}{q} \sum_{\nu_1+\ldots+\nu_q=p} \frac{\mathrm{Tr}(M_n^{(\nu_1)}[f] \ldots M_n^{(\nu_q)}[f])}{\nu_1! \ldots \nu_q!}$$

where $M_n^{(\nu)}[f]_{j,k} = A[(f(x) + f(y))^\nu]_{2j,2k-1}$, $j, k = 1, \ldots, n$.

Proof proceeds by expanding the above trace. Estimates in the limit $n \to \infty$ obtained using complex analysis.

See also work of Kanzieper, Poplavskyi, Timm, Tribe, Zaboronski '15. Ultimately obtain $\kappa_p = O(\sqrt{n})$ as $n \to \infty$.
Compute cumulants

Key idea: Use $\log \det = \text{Tr} \log$!

Find that

Lemma

The p^{th} cumulant of the linear statistic $\sum_{j=1}^{N_R} f(\lambda_j)$ is

$$\kappa_p = p! \sum_{m=1}^{p} \frac{(-1)^{q+1}}{q} \sum_{\nu_1+\ldots+\nu_q=p} \frac{\text{Tr}(M_n^{(\nu_1)}[f] \ldots M_n^{(\nu_q)}[f])}{\nu_1! \ldots \nu_q!}$$

where $M_n^{(\nu)}[f]_{j,k} = A[(f(x) + f(y))^\nu]_{2j,2k-1}$, $j, k = 1, \ldots, n$.

Proof proceeds by expanding the above trace. Estimates in the limit $n \to \infty$ obtained using complex analysis.

See also work of Kanzieper, Poplavskyi, Timm, Tribe, Zaboronski ’15.
Compute cumulants

Key idea: Use \(\log \det = \text{Tr} \log \)!

Find that

Lemma

The \(p \)-th cumulant of the linear statistic \(\sum_{j=1}^{N_R} f(\lambda_j) \) is

\[
\kappa_p = p! \sum_{m=1}^{p} \frac{(-1)^{q+1}}{q} \sum_{\nu_1 + \ldots + \nu_q = p} \frac{\text{Tr}(M_{n}^{(\nu_1)}[f] \ldots M_{n}^{(\nu_q)}[f])}{\nu_1! \ldots \nu_q!}
\]

where \(M_{n}^{(\nu)}[f]_{j,k} = A[(f(x) + f(y))^\nu]_{2j,2k-1}, \ j, k = 1, \ldots, n. \)

Proof proceeds by expanding the above trace. Estimates in the limit \(n \to \infty \) obtained using complex analysis.

See also work of Kanzieper, Poplavskyi, Timm, Tribe, Zaboronski ’15.

Ultimately obtain \(\kappa_p = O(\sqrt{n}) \) as \(n \to \infty \).
Conclusion and discussion

We found that $E(N^m) = \sqrt{2N}\pi/\log(N) + O(\log(N))$ and proved weak convergence of the real eigenvalue distribution.

There are many possible related questions:

▶ Fluctuations: Variance of $N^m R$ and is there a CLT? Conjecture: $\text{Var}(N^m R) \sim \text{Var}(N^1 R)$ as $N \to N^m$.

▶ Large deviations: What is the probability that the product has no real eigenvalues? Conjecture: $N \to N^m$.

▶ What is happening near the origin: distribution of the smallest real eigenvalue of the product?

Thanks for listening!

Potential postdocs or PhD students in RMT? Please contact me.
Conclusion and discussion

We found that $\mathbb{E}(N^{(m)}_R) = \sqrt{2Nm/\pi} + O(\log(N))$ and proved weak convergence of the real eigenvalue distribution.
Conclusion and discussion

We found that $\mathbb{E}(N_R^{(m)}) = \sqrt{2Nm/\pi} + O(\log(N))$ and proved weak convergence of the real eigenvalue distribution.

There are many possible related questions:

- Fluctuations: Variance of $N_R^{(m)}$ and is there a CLT?
 Conjecture: $\text{Var}(N_R^{(m)}) \sim \text{Var}(N_R^{(1)})|_{N \to Nm}$.

- Large deviations: What is the probability that the product has no real eigenvalues? Conjecture: $N \to Nm$.

- What is happening near the origin: distribution of the smallest real eigenvalue of the product?
Conclusion and discussion

We found that $\mathbb{E}(N_{\mathbb{R}}^{(m)}) = \sqrt{2Nm/\pi} + O(\log(N))$ and proved weak convergence of the real eigenvalue distribution.

There are many possible related questions:

- **Fluctuations**: Variance of $N_{\mathbb{R}}^{(m)}$ and is there a CLT?
 Conjecture: $\text{Var}(N_{\mathbb{R}}^{(m)}) \sim \text{Var}(N_{\mathbb{R}}^{(1)})|_{N \to Nm}$.

- **Large deviations**: What is the probability that the product has no real eigenvalues? Conjecture: $N \to Nm$.

- **What is happening near the origin**: distribution of the smallest real eigenvalue of the product?

Thanks for listening!

Potential postdocs or PhD students in RMT? Please contact me.