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Abstract—We consider a MIMO (linear Gaussian) channel
where the inputs are turned on and off at random, and the
outputs are sampled at random with probability p. In partic-
ular, for a given probability of “on” input q (input sparsity),
we consider a scenario where the transmitter wishes to send
information to a family of possible receivers characterized by
different random sampling rates p 2 [0, 1]. For this setting, we
focus on the broadcast approach, i.e., a coding technique where
the transmitter sends information encoded into superposition
layers, such that the number of decoded layers depends on the
receiver sampling rate p. We obtain a method for calculating
the power allocation across the layers for given statistics of
the MIMO channel matrix in order to maximize the system
weighted sum rate for arbitrary non-negative weighting function
w(p). In particular, we provide analytical solutions both for iid
and Haar distributed MIMO channel matrices. The latter case
accounts also for DFT matrices (see [1]), with application to
sparse spectrum signals with random sub-Nyquist sampling.

Index Terms—Random sampling, broadcast approach, com-
pound channels, degraded message set.

I. PROBLEM DEFINITION

Consider a Gaussian MIMO channel with input x 2 CN ,
output y 2 CN , matrices A,U,B 2 CN⇥N and transition
probability density described by

y = AUBx+ z, (1)

where z ⇠ CN (0, I) is a Gaussian i.i.d. N -dimensional
random vector and the input is subject to the usual total power
constraint E[kxk2]  P .

In this paper, A,B are random diagonal matrices with
diagonal elements in {0, 1} with probability P[Ai,i = 1] = p

and P[Bi,i = 1] = q, and U is a random matrix with
distribution discussed later on. Notice that the matrix A
describes which outputs of the MIMO channel are effectively
sampled at the receiver, and B describes which inputs of the
MIMO channels are effectively transmitted. We refer to p as
the (spatial) “sampling rate” of the receiver, and to q and the
(spatial) “sparsity” of the transmitter. Regarding the evolution
in time, i.e., across successive channel uses of (1), we focus on
the stationary and ergodic case where A,U,B are stationary
and ergodic matrix processes with respect to time, and z is an
iid vector process. This assumption is used for convenience, in
order to express achievable rates using the single-letter mutual
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information of the N -dimensional channel (1). As a matter of
fact, we are interested in the large system limit N ! 1, such
that even in the case of quasi-static channels (i.e., for random
realizations of A,U,B, constant over whole codewords), the
achievable rate expressions take the same form as for the case
of stationary ergodic case.

We fix q and consider the case where a single N -input
transmitter (producing x) wishes to send information to a set
of receivers, each of which is characterized by its own value
of p 2 (0, 1]. This yields the ensemble of channels1

yp = ApUBx+ z. (2)

Furthermore, we assume that the codebook must be designed a
priori, for known and fixed input sparsity q, but independently
of the realization of the matrix B.2 This includes the case
where some inputs may be shut off because of causes that
are uncontrollable by the transmitter itself. Hence, while each
receiver is aware of the realization of the channel matrix
ApUB, the transmitter is aware only of its statistics. The
results in a stochastically degraded MIMO broadcast channel
such that a channel with p = p

1

is a stochastically degraded
version of a channel with state p = p

2

if p
1

 p

2

.
It is well-known that superposition coding is optimal (capac-

ity achieving) for the stochastically degraded broadcast chan-
nel with independent messages [3]. In addition, in this work
we consider the broadcast approach (see [4] and references
therein), which consists of sending incremental information
using superposition layers, such that the number of decoded
layers at any receiver depends on its own sampling rate.
Receivers with large p will be able to decode a large number
of layers, while receivers with smaller p will be able to
decode smaller number of layers. The broadcast approach is
particularly useful in the presence of a degraded message set,
i.e., when the information to be delivered to a receiver with
sampling rate p

1

is a subset of the information to be delivered
to a receiver with p

2

> p

1

.

1Given that the capacity region of the broadcast channel depends only on the
marginal distributions on the joint transition probability distribution and z and
U are identically distributed across the receivers, for notational convenience
we shall omit the subscript p from z and U.

2The case where the channel family is indexed by both p and q is considered
in an on-going work [2].
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Furthermore, we assume that the codebook must be designed a
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where the inputs are turned on and off at random, and the
outputs are sampled at random with probability p. In partic-
ular, for a given probability of “on” input q (input sparsity),
we consider a scenario where the transmitter wishes to send
information to a family of possible receivers characterized by
different random sampling rates p 2 [0, 1]. For this setting, we
focus on the broadcast approach, i.e., a coding technique where
the transmitter sends information encoded into superposition
layers, such that the number of decoded layers depends on the
receiver sampling rate p. We obtain a method for calculating
the power allocation across the layers for given statistics of
the MIMO channel matrix in order to maximize the system
weighted sum rate for arbitrary non-negative weighting function
w(p). In particular, we provide analytical solutions both for iid
and Haar distributed MIMO channel matrices. The latter case
accounts also for DFT matrices (see [?]), with application to
sparse spectrum signals with random sub-Nyquist sampling.

Index Terms—Random sampling, broadcast approach, com-
pound channels, degraded message set.

I. PROBLEM DEFINITION

Consider a Gaussian MIMO channel with input x 2 CN ,
output y 2 CN , matrices A,U,B 2 CN⇥N and transition
probability density described by

y = AUBx+ z, (1)

where z ⇠ CN (0, I) is a Gaussian i.i.d. N -dimensional
random vector and the input is subject to the usual total power
constraint E[kxk2]  P .

In this paper, A,B are random diagonal matrices with
diagonal elements in {0, 1} with probability P[Aj,j = 1] = pi

and P[Bj,j = 1] = q, and U is a random matrix with
distribution discussed later on. Notice that the matrix A
describes which outputs of the MIMO channel are effectively
sampled at the receiver, and B describes which inputs of the
MIMO channels are effectively transmitted. We refer to p as
the (spatial) “sampling rate” of the receiver, and to q and the
(spatial) “sparsity” of the transmitter. Regarding the evolution
in time, i.e., across successive channel uses of (1), we focus on
the stationary and ergodic case where A,U,B are stationary
and ergodic matrix processes with respect to time, and z is an
iid vector process. This assumption is used for convenience, in
order to express achievable rates using the single-letter mutual

This work has been supported by the US-Israel Binational Science Foun-
dation (BSF).

information of the N -dimensional channel (1). As a matter of
fact, we are interested in the large system limit N ! 1, such
that even in the case of quasi-static channels (i.e., for random
realizations of A,U,B, constant over whole codewords), the
achievable rate expressions take the same form as for the case
of stationary ergodic case.

We fix q and consider the case where a single N -input
transmitter (producing x) wishes to send information to a set
of receivers, each of which is characterized by its own value
of p 2 (0, 1]. This yields the ensemble of channels1

yp1 = Ap1UBx+ z; (2)

yp2 = Ap2UBx+ z; (3)

Furthermore, we assume that the codebook must be de-
signed a priori, for known and fixed input sparsity q, but in-
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we consider the broadcast approach (see [?] and references
therein), which consists of sending incremental information
using superposition layers, such that the number of decoded
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Receivers with large p will be able to decode a large number
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information of the N -dimensional channel (1). As a matter of
fact, we are interested in the large system limit N ! 1, such
that even in the case of quasi-static channels (i.e., for random
realizations of A,U,B, constant over whole codewords), the
achievable rate expressions take the same form as for the case
of stationary ergodic case.

We fix q and consider the case where a single N -input
transmitter (producing x) wishes to send information to a set
of receivers, each of which is characterized by its own value
of p 2 (0, 1]. This yields the ensemble of channels1

yp1 = Ap1UBx+ z; (2)

yp2 = Ap2UBx+ z; (3)

Furthermore, we assume that the codebook must be de-
signed a priori, for known and fixed input sparsity q, but in-
dependently of the realization of the matrix B.2 This includes
the case where some inputs may be shut off because of causes
that are uncontrollable by the transmitter itself. Hence, while
each receiver is aware of the realization of the channel matrix
ApUB, the transmitter is aware only of its statistics. The
results in a stochastically degraded MIMO broadcast channel
such that a channel with p = p

1

is a stochastically degraded
version of a channel with state p = p

2

if p
1

 p

2

.
It is well-known that superposition coding is optimal (capac-

ity achieving) for the stochastically degraded broadcast chan-
nel with independent messages [?]. In addition, in this work
we consider the broadcast approach (see [?] and references
therein), which consists of sending incremental information
using superposition layers, such that the number of decoded
layers at any receiver depends on its own sampling rate.
Receivers with large p will be able to decode a large number
of layers, while receivers with smaller p will be able to
decode smaller number of layers. The broadcast approach is
particularly useful in the presence of a degraded message set,
i.e., when the information to be delivered to a receiver with
sampling rate p

1

is a subset of the information to be delivered
to a receiver with p

2

> p

1

.

1Given that the capacity region of the broadcast channel depends only on the
marginal distributions on the joint transition probability distribution and z and
U are identically distributed across the receivers, for notational convenience
we shall omit the subscript p from z and U.

2The case where the channel family is indexed by both p and q is considered
in an on-going work [?].

S. SHAMAI AND A. STEINER, “A BROADCAST APPROACH FOR A SINGLE-USER SLOWLY FADING MIMO 
CHANNEL,” IEEE TRANS. ON INFORM. THEORY. 

Our objective will be to maximize the total multicast average rate. 
 
To do this we will resort to the broadcast approach  
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Abstract—We consider a MIMO (linear Gaussian) channel
where the inputs are turned on and off at random, and the
outputs are sampled at random with probability p. In partic-
ular, for a given probability of “on” input q (input sparsity),
we consider a scenario where the transmitter wishes to send
information to a family of possible receivers characterized by
different random sampling rates p 2 [0, 1]. For this setting, we
focus on the broadcast approach, i.e., a coding technique where
the transmitter sends information encoded into superposition
layers, such that the number of decoded layers depends on the
receiver sampling rate p. We obtain a method for calculating
the power allocation across the layers for given statistics of
the MIMO channel matrix in order to maximize the system
weighted sum rate for arbitrary non-negative weighting function
w(p). In particular, we provide analytical solutions both for iid
and Haar distributed MIMO channel matrices. The latter case
accounts also for DFT matrices (see [1]), with application to
sparse spectrum signals with random sub-Nyquist sampling.

Index Terms—Random sampling, broadcast approach, com-
pound channels, degraded message set.

I. PROBLEM DEFINITION

Consider a Gaussian MIMO channel with input x 2 CN ,
output y 2 CN , matrices A,U,B 2 CN⇥N and transition
probability density described by

y = AUBx+ z, (1)

where z ⇠ CN (0, I) is a Gaussian i.i.d. N -dimensional
random vector and the input is subject to the usual total power
constraint E[kxk2]  P .

In this paper, A,B are random diagonal matrices with
diagonal elements in {0, 1} with probability P[Ai,i = 1] = p

and P[Bi,i = 1] = q, and U is a random matrix with
distribution discussed later on. Notice that the matrix A
describes which outputs of the MIMO channel are effectively
sampled at the receiver, and B describes which inputs of the
MIMO channels are effectively transmitted. We refer to p as
the (spatial) “sampling rate” of the receiver, and to q and the
(spatial) “sparsity” of the transmitter. Regarding the evolution
in time, i.e., across successive channel uses of (1), we focus on
the stationary and ergodic case where A,U,B are stationary
and ergodic matrix processes with respect to time, and z is an
iid vector process. This assumption is used for convenience, in
order to express achievable rates using the single-letter mutual
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information of the N -dimensional channel (1). As a matter of
fact, we are interested in the large system limit N ! 1, such
that even in the case of quasi-static channels (i.e., for random
realizations of A,U,B, constant over whole codewords), the
achievable rate expressions take the same form as for the case
of stationary ergodic case.

We fix q and consider the case where a single N -input
transmitter (producing x) wishes to send information to a set
of receivers, each of which is characterized by its own value
of p 2 (0, 1]. This yields the ensemble of channels1

ypi = ApiUBx+ z (2)

Furthermore, we assume that the codebook must be designed a
priori, for known and fixed input sparsity q, but independently
of the realization of the matrix B.2 This includes the case
where some inputs may be shut off because of causes that
are uncontrollable by the transmitter itself. Hence, while each
receiver is aware of the realization of the channel matrix
ApUB, the transmitter is aware only of its statistics. The
results in a stochastically degraded MIMO broadcast channel
such that a channel with p = p

1

is a stochastically degraded
version of a channel with state p = p

2

if p
1

 p

2

.
It is well-known that superposition coding is optimal (capac-

ity achieving) for the stochastically degraded broadcast chan-
nel with independent messages [3]. In addition, in this work
we consider the broadcast approach (see [4] and references
therein), which consists of sending incremental information
using superposition layers, such that the number of decoded
layers at any receiver depends on its own sampling rate.
Receivers with large p will be able to decode a large number
of layers, while receivers with smaller p will be able to
decode smaller number of layers. The broadcast approach is
particularly useful in the presence of a degraded message set,
i.e., when the information to be delivered to a receiver with
sampling rate p

1

is a subset of the information to be delivered
to a receiver with p

2

> p

1

.

1Given that the capacity region of the broadcast channel depends only on the
marginal distributions on the joint transition probability distribution and z and
U are identically distributed across the receivers, for notational convenience
we shall omit the subscript p from z and U.

2The case where the channel family is indexed by both p and q is considered
in an on-going work [2].
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Abstract—We consider a MIMO (linear Gaussian) channel
where the inputs are turned on and off at random, and the
outputs are sampled at random with probability p. In partic-
ular, for a given probability of “on” input q (input sparsity),
we consider a scenario where the transmitter wishes to send
information to a family of possible receivers characterized by
different random sampling rates p 2 [0, 1]. For this setting, we
focus on the broadcast approach, i.e., a coding technique where
the transmitter sends information encoded into superposition
layers, such that the number of decoded layers depends on the
receiver sampling rate p. We obtain a method for calculating
the power allocation across the layers for given statistics of
the MIMO channel matrix in order to maximize the system
weighted sum rate for arbitrary non-negative weighting function
w(p). In particular, we provide analytical solutions both for iid
and Haar distributed MIMO channel matrices. The latter case
accounts also for DFT matrices (see [?]), with application to
sparse spectrum signals with random sub-Nyquist sampling.

Index Terms—Random sampling, broadcast approach, com-
pound channels, degraded message set.

I. PROBLEM DEFINITION

Consider a Gaussian MIMO channel with input x 2 CN ,
output y 2 CN , matrices A,U,B 2 CN⇥N and transition
probability density described by

y = AUBx+ z, (1)

where z ⇠ CN (0, I) is a Gaussian i.i.d. N -dimensional
random vector and the input is subject to the usual total power
constraint E[kxk2]  P .

In this paper, A,B are random diagonal matrices with
diagonal elements in {0, 1} with probability P[Ai,i = 1] = p

and P[Bi,i = 1] = q, and U is a random matrix with
distribution discussed later on. Notice that the matrix A
describes which outputs of the MIMO channel are effectively
sampled at the receiver, and B describes which inputs of the
MIMO channels are effectively transmitted. We refer to p as
the (spatial) “sampling rate” of the receiver, and to q and the
(spatial) “sparsity” of the transmitter. Regarding the evolution
in time, i.e., across successive channel uses of (1), we focus on
the stationary and ergodic case where A,U,B are stationary
and ergodic matrix processes with respect to time, and z is an
iid vector process. This assumption is used for convenience, in
order to express achievable rates using the single-letter mutual
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information of the N -dimensional channel (1). As a matter of
fact, we are interested in the large system limit N ! 1, such
that even in the case of quasi-static channels (i.e., for random
realizations of A,U,B, constant over whole codewords), the
achievable rate expressions take the same form as for the case
of stationary ergodic case.

We fix q and consider the case where a single N -input
transmitter (producing x) wishes to send information to a set
of receivers, each of which is characterized by its own value
of p 2 (0, 1]. This yields the ensemble of channels1

yp = ApUBx+ z; (2)

Furthermore, we assume that the codebook must be designed a
priori, for known and fixed input sparsity q, but independently
of the realization of the matrix B.2 This includes the case
where some inputs may be shut off because of causes that
are uncontrollable by the transmitter itself. Hence, while each
receiver is aware of the realization of the channel matrix
ApUB, the transmitter is aware only of its statistics. The
results in a stochastically degraded MIMO broadcast channel
such that a channel with p = p

1

is a stochastically degraded
version of a channel with state p = p

2

if p
1

 p

2

.
It is well-known that superposition coding is optimal (capac-

ity achieving) for the stochastically degraded broadcast chan-
nel with independent messages [?]. In addition, in this work
we consider the broadcast approach (see [?] and references
therein), which consists of sending incremental information
using superposition layers, such that the number of decoded
layers at any receiver depends on its own sampling rate.
Receivers with large p will be able to decode a large number
of layers, while receivers with smaller p will be able to
decode smaller number of layers. The broadcast approach is
particularly useful in the presence of a degraded message set,
i.e., when the information to be delivered to a receiver with
sampling rate p

1

is a subset of the information to be delivered
to a receiver with p

2

> p

1

.

1Given that the capacity region of the broadcast channel depends only on the
marginal distributions on the joint transition probability distribution and z and
U are identically distributed across the receivers, for notational convenience
we shall omit the subscript p from z and U.

2The case where the channel family is indexed by both p and q is considered
in an on-going work [?].
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Abstract—We consider a MIMO (linear Gaussian) channel
where the inputs are turned on and off at random, and the
outputs are sampled at random with probability p. In partic-
ular, for a given probability of “on” input q (input sparsity),
we consider a scenario where the transmitter wishes to send
information to a family of possible receivers characterized by
different random sampling rates p 2 [0, 1]. For this setting, we
focus on the broadcast approach, i.e., a coding technique where
the transmitter sends information encoded into superposition
layers, such that the number of decoded layers depends on the
receiver sampling rate p. We obtain a method for calculating
the power allocation across the layers for given statistics of
the MIMO channel matrix in order to maximize the system
weighted sum rate for arbitrary non-negative weighting function
w(p). In particular, we provide analytical solutions both for iid
and Haar distributed MIMO channel matrices. The latter case
accounts also for DFT matrices (see [?]), with application to
sparse spectrum signals with random sub-Nyquist sampling.

Index Terms—Random sampling, broadcast approach, com-
pound channels, degraded message set.

I. PROBLEM DEFINITION

Consider a Gaussian MIMO channel with input x 2 CN ,
output y 2 CN , matrices A,U,B 2 CN⇥N and transition
probability density described by

y = AUBx+ z, (1)

where z ⇠ CN (0, I) is a Gaussian i.i.d. N -dimensional
random vector and the input is subject to the usual total power
constraint E[kxk2]  P .

In this paper, A,B are random diagonal matrices with
diagonal elements in {0, 1} with probability P[Ai,i = 1] = p

and P[Bi,i = 1] = q, and U is a random matrix with
distribution discussed later on. Notice that the matrix A
describes which outputs of the MIMO channel are effectively
sampled at the receiver, and B describes which inputs of the
MIMO channels are effectively transmitted. We refer to p as
the (spatial) “sampling rate” of the receiver, and to q and the
(spatial) “sparsity” of the transmitter. Regarding the evolution
in time, i.e., across successive channel uses of (1), we focus on
the stationary and ergodic case where A,U,B are stationary
and ergodic matrix processes with respect to time, and z is an
iid vector process. This assumption is used for convenience, in
order to express achievable rates using the single-letter mutual
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information of the N -dimensional channel (1). As a matter of
fact, we are interested in the large system limit N ! 1, such
that even in the case of quasi-static channels (i.e., for random
realizations of A,U,B, constant over whole codewords), the
achievable rate expressions take the same form as for the case
of stationary ergodic case.

We fix q and consider the case where a single N -input
transmitter (producing x) wishes to send information to a set
of receivers, each of which is characterized by its own value
of p 2 (0, 1]. This yields the ensemble of channels1

yp = ApUBx+ z; (2)

Furthermore, we assume that the codebook must be designed a
priori, for known and fixed input sparsity q, but independently
of the realization of the matrix B.2 This includes the case
where some inputs may be shut off because of causes that
are uncontrollable by the transmitter itself. Hence, while each
receiver is aware of the realization of the channel matrix
ApUB, the transmitter is aware only of its statistics. The
results in a stochastically degraded MIMO broadcast channel
such that a channel with p = p

1

is a stochastically degraded
version of a channel with state p = p

2

if p
1

 p

2

.
It is well-known that superposition coding is optimal (capac-

ity achieving) for the stochastically degraded broadcast chan-
nel with independent messages [?]. In addition, in this work
we consider the broadcast approach (see [?] and references
therein), which consists of sending incremental information
using superposition layers, such that the number of decoded
layers at any receiver depends on its own sampling rate.
Receivers with large p will be able to decode a large number
of layers, while receivers with smaller p will be able to
decode smaller number of layers. The broadcast approach is
particularly useful in the presence of a degraded message set,
i.e., when the information to be delivered to a receiver with
sampling rate p

1

is a subset of the information to be delivered
to a receiver with p

2

> p

1

.

1Given that the capacity region of the broadcast channel depends only on the
marginal distributions on the joint transition probability distribution and z and
U are identically distributed across the receivers, for notational convenience
we shall omit the subscript p from z and U.

2The case where the channel family is indexed by both p and q is considered
in an on-going work [?].
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R p  A pUB

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (16)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

1

N

R =

1

N

Z 1

0

w(p)R(p)dp

=

Z 1

0

w(p)

Z p

0

@

@⇢

VRp(⇢)

����
⇢=�(p)

dp

In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (13) and (16), we
obtain

1

N

R =

Z 1

0

(1�W (p))

@

@⇢

VRp(⇢)

����
⇢=�(p)

e�(p)dp, (17)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (13))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (17) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (14)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (17) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (18)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (17) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (19)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (20)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s) (21)

d

ds

F�̇ = w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

+ (W (s)� 1)⇥

⇥
"

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

+

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s)

#
,

(22)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (21) and (22) into (20), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(23)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃
III. APPLICATION TO THE SPARSE-INPUT

RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

VRp(⇢)
�

=

1

N

E [log |I+ ⇢Rp|] , (24)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(�) = E


1

1 + ��(Rp)

�
(25)
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I. PROBLEM DEFINITION

Consider a Gaussian MIMO channel with input x 2 CN ,
output y 2 CN , matrices A,U,B 2 CN⇥N and transition
probability density described by

y = AUBx+ z, (1)

where z ⇠ CN (0, I) is a Gaussian i.i.d. N -dimensional
random vector and the input is subject to the usual total power
constraint E[kxk2]  P .

In this paper, A,B are random diagonal matrices with
diagonal elements in {0, 1} with probability P[Ai,i = 1] = p

and P[Bi,i = 1] = q, and U is a random matrix with
distribution discussed later on. Notice that the matrix A
describes which outputs of the MIMO channel are effectively
sampled at the receiver, and B describes which inputs of the
MIMO channels are effectively transmitted. We refer to p as
the (spatial) “sampling rate” of the receiver, and to q and the
(spatial) “sparsity” of the transmitter. Regarding the evolution
in time, i.e., across successive channel uses of (1), we focus on
the stationary and ergodic case where A,U,B are stationary
and ergodic matrix processes with respect to time, and z is an
iid vector process. This assumption is used for convenience, in
order to express achievable rates using the single-letter mutual

This work has been supported by the US-Israel Binational Science Foun-
dation (BSF).

information of the N -dimensional channel (1). As a matter of
fact, we are interested in the large system limit N ! 1, such
that even in the case of quasi-static channels (i.e., for random
realizations of A,U,B, constant over whole codewords), the
achievable rate expressions take the same form as for the case
of stationary ergodic case.

We fix q and consider the case where a single N -input
transmitter (producing x) wishes to send information to a set
of receivers, each of which is characterized by its own value
of p 2 (0, 1]. This yields the ensemble of channels1

yp = ApUBx+ z; (2)

Furthermore, we assume that the codebook must be designed a
priori, for known and fixed input sparsity q, but independently
of the realization of the matrix B.2 This includes the case
where some inputs may be shut off because of causes that
are uncontrollable by the transmitter itself. Hence, while each
receiver is aware of the realization of the channel matrix
ApUB, the transmitter is aware only of its statistics. The
results in a stochastically degraded MIMO broadcast channel
such that a channel with p = p

1

is a stochastically degraded
version of a channel with state p = p

2

if p
1

 p

2

.
It is well-known that superposition coding is optimal (capac-

ity achieving) for the stochastically degraded broadcast chan-
nel with independent messages [?]. In addition, in this work
we consider the broadcast approach (see [?] and references
therein), which consists of sending incremental information
using superposition layers, such that the number of decoded
layers at any receiver depends on its own sampling rate.
Receivers with large p will be able to decode a large number
of layers, while receivers with smaller p will be able to
decode smaller number of layers. The broadcast approach is
particularly useful in the presence of a degraded message set,
i.e., when the information to be delivered to a receiver with
sampling rate p

1

is a subset of the information to be delivered
to a receiver with p

2

> p

1

.

1Given that the capacity region of the broadcast channel depends only on the
marginal distributions on the joint transition probability distribution and z and
U are identically distributed across the receivers, for notational convenience
we shall omit the subscript p from z and U.

2The case where the channel family is indexed by both p and q is considered
in an on-going work [?].

 p∈ 0,1( ]W (p)

p = pi

Ri =
X

ji

I(Xj ;Yj |X1, . . . , Xj�1),dRj =
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A. Motivations

While the channel model and problem set-up defined above
is mathematically well-defined on its own right, it is worth-
while to discuss some possible applications. For example,
consider the case where U = F, a unitary N⇥N DFT matrix.
In this case, (??) represents a system where a transmitter uses
OFDM with randomly sparse subcarrier aggregation, where
the subcarriers used for transmission are indicated by the
non-zero diagonal elements of B, communicating to multiple
receivers with random time-domain sampling at rate p 2 [0, 1].
The codeword of the transmitter must be designed indepen-
dently of the set of carriers effectively used, which may depend
on some “cognitive radio” opportunistic approach (e.g., the set
of subcarriers may be determined by some spectrum sensing
technique which turns on and off each frequency subband with
probability q). In the case of U with i.i.d. ⇠ CN (0, 1/N)

entries, our model may be applied to a MIMO transmitter
with qN RF chains and N antennas. For example, in mm-wave
bands [?], a very large number of antennas can be implemented
in a small form factor due to the small wavelength, but the
number of RF chains to drive such antennas is limited by
hardware complexity and power consumption. Hence, we may
imagine that, for the sake of diversity, antennas are connected
to the RF chains by a random switching network indicated by
the matrix B. Such transmitter communicates with receivers
with N antennas and pN RF chains, which apply random
sampling in the spatial domain.

II. BROADCAST APPROACH WITH SCALAR CHANNEL STATE

In this section we review in slightly more general terms
the broadcast approach of [?] in the scalar Gaussian chan-
nel case, with the purpose of extending the approach to
the model at hand. Consider a linear Gaussian channel that
depends on a state s 2 R

+

that determines the (stochastic)
degradation order (i.e., s

1

is degraded with respect to s

2

if
s

1

 s

2

). Consider a family of such channels with states
s

1

< s

2

< · · · < sM and common input X . In order to send
a message w = (w

1

, . . . , wM ), we create a layered code with
additive layers, such that the transmitted codeword (length n

vector) is X

n
(w

1

, . . . , wM ) = X

n
1

(w

1

)+X

n
2

(w

1

, w

2

)+ · · ·+
X

n
M (w

1

, . . . , wM ). Layer i has power Pi, and all receivers
with state si are required to decode messages w

1

, . . . , wi. By
standard results of the degraded Gaussian broadcast channel
[?], the aggregate rate decodable at the i-th receiver is given
by

Ri =

X

ji

I(Xj ;Yj |X1

, . . . , Xj�1

), (3)

since the receiver with output Yj can decode the layers
X

n
1

, . . . , X

n
j using successive decoding.

We define a power density function e�(s) such that the power
of layer j can be written as

Pj = e�(pj)�pj , �pj = pj � pj�1

, (4)

where we define �sj = sj�sj�1

, with s

0

= 0. With Gaussian
random coding and due to the linear nature of the channel, we

have that: 1) the mutual information is a function of the state
s and of the aggregate received signal power; 2) conditioning
is equivalent to signal cancellation. These two facts imply that

I(Xj , . . . , XM ;Yj |X1

, . . . , Xj�1

) = I

0

@
sj ,

X

k�j

e�(sk)�sk

1

A

(5)
where I(s, �) denotes the mutual information for the channel
with state s and aggregate signal power � =

P
k�j e�(sk)�sk.

Using the chain rule of mutual information, we obtain

I(Xj ;Yj |X1

, . . . , Xj�1

)

= I

0

@
pj ,

X

k�j

e�(pk)�sk

1

A� I

0

@
pj ,

X

k>j

e�(pk)�sk

1

A (6)

⇡ @

@⇢

I(pj , ⇢)
����
⇢=

P
k>j e�(pk)�pk

⇥ e�(pj)�pj . (7)

I(Xj ;Yj |X1

, . . . , Xj�1

)

= VRpj

0

@
X

k�j

e�(pk)�sk

1

A� VRpj

0

@
X

k>j

e�(pk)�sk

1

A (8)

⇡ @

@⇢

I(pj , ⇢)
����
⇢=

P
k>j e�(pk)�pk

⇥ e�(pj)�pj . (9)

Replacing (??) into (??) we have

Ri =

X

ji

@

@⇢

I(pj , ⇢)
����
⇢=

P
k>j e�(pk)�pk

⇥ e�(pj)�pj . (10)

Ri =

X

ji

I(Xj ;Yj |X1

, . . . , Xj�1

) =

X

ji

@

@⇢

I(sj , ⇢)
����
⇢=

P
k>j e�(sk)�sk

⇥e�(sj)�sj .

(11)
Going to the limit for M ! 1 and �sj ! 0, the rate for

a receiver with state s is given by

R(p) =

Z p

0

f(a, �(a))da, (12)

R(p)

�pj!0!
Z pi

0

@

@⇢

I(a, ⇢)
����
⇢=

R 1
a e�(u)du

e�(a)da, (13)

where we define the functions

f(a, ⇢) =

@

@⇢

I(a, ⇢)e�(a) (14)

and
�(a) =

Z 1

a
e�(u)du. (15)

Alternatively, we can eliminate the power density function
e�(a) noticing that

d

da

�(a)

�

= �̇(a) = �e�(a). (16)

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (17)

 
R p  A pUB

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (16)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

1

N

R =

1

N

Z 1

0

w(p)R(p)dp

=

Z 1

0

w(p)

Z p

0

@

@⇢

VRp(⇢)

����
⇢=�(p)

dp

In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (13) and (16), we
obtain

1

N

R =

Z 1

0

(1�W (p))

@

@⇢

VRp(⇢)

����
⇢=�(p)

e�(p)dp, (17)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (13))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (17) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (14)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (17) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (18)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (17) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (19)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (20)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s) (21)

d

ds

F�̇ = w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

+ (W (s)� 1)⇥

⇥
"

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

+

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s)

#
,

(22)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (21) and (22) into (20), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(23)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃
III. APPLICATION TO THE SPARSE-INPUT

RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

VRp(⇢)
�

=

1

N

E [log |I+ ⇢Rp|] , (24)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(�) = E


1

1 + ��(Rp)

�
(25)
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Abstract—We consider a MIMO (linear Gaussian) channel
where the inputs are turned on and off at random, and the
outputs are sampled at random with probability p. In partic-
ular, for a given probability of “on” input q (input sparsity),
we consider a scenario where the transmitter wishes to send
information to a family of possible receivers characterized by
different random sampling rates p 2 [0, 1]. For this setting, we
focus on the broadcast approach, i.e., a coding technique where
the transmitter sends information encoded into superposition
layers, such that the number of decoded layers depends on the
receiver sampling rate p. We obtain a method for calculating
the power allocation across the layers for given statistics of
the MIMO channel matrix in order to maximize the system
weighted sum rate for arbitrary non-negative weighting function
w(p). In particular, we provide analytical solutions both for iid
and Haar distributed MIMO channel matrices. The latter case
accounts also for DFT matrices (see [?]), with application to
sparse spectrum signals with random sub-Nyquist sampling.

Index Terms—Random sampling, broadcast approach, com-
pound channels, degraded message set.

I. PROBLEM DEFINITION

Consider a Gaussian MIMO channel with input x 2 CN ,
output y 2 CN , matrices A,U,B 2 CN⇥N and transition
probability density described by

y = AUBx+ z, (1)

where z ⇠ CN (0, I) is a Gaussian i.i.d. N -dimensional
random vector and the input is subject to the usual total power
constraint E[kxk2]  P .

In this paper, A,B are random diagonal matrices with
diagonal elements in {0, 1} with probability P[Ai,i = 1] = p

and P[Bi,i = 1] = q, and U is a random matrix with
distribution discussed later on. Notice that the matrix A
describes which outputs of the MIMO channel are effectively
sampled at the receiver, and B describes which inputs of the
MIMO channels are effectively transmitted. We refer to p as
the (spatial) “sampling rate” of the receiver, and to q and the
(spatial) “sparsity” of the transmitter. Regarding the evolution
in time, i.e., across successive channel uses of (1), we focus on
the stationary and ergodic case where A,U,B are stationary
and ergodic matrix processes with respect to time, and z is an
iid vector process. This assumption is used for convenience, in
order to express achievable rates using the single-letter mutual

This work has been supported by the US-Israel Binational Science Foun-
dation (BSF).

information of the N -dimensional channel (1). As a matter of
fact, we are interested in the large system limit N ! 1, such
that even in the case of quasi-static channels (i.e., for random
realizations of A,U,B, constant over whole codewords), the
achievable rate expressions take the same form as for the case
of stationary ergodic case.

We fix q and consider the case where a single N -input
transmitter (producing x) wishes to send information to a set
of receivers, each of which is characterized by its own value
of p 2 (0, 1]. This yields the ensemble of channels1

yp = ApUBx+ z; (2)

Furthermore, we assume that the codebook must be designed a
priori, for known and fixed input sparsity q, but independently
of the realization of the matrix B.2 This includes the case
where some inputs may be shut off because of causes that
are uncontrollable by the transmitter itself. Hence, while each
receiver is aware of the realization of the channel matrix
ApUB, the transmitter is aware only of its statistics. The
results in a stochastically degraded MIMO broadcast channel
such that a channel with p = p

1

is a stochastically degraded
version of a channel with state p = p

2

if p
1

 p

2

.
It is well-known that superposition coding is optimal (capac-

ity achieving) for the stochastically degraded broadcast chan-
nel with independent messages [?]. In addition, in this work
we consider the broadcast approach (see [?] and references
therein), which consists of sending incremental information
using superposition layers, such that the number of decoded
layers at any receiver depends on its own sampling rate.
Receivers with large p will be able to decode a large number
of layers, while receivers with smaller p will be able to
decode smaller number of layers. The broadcast approach is
particularly useful in the presence of a degraded message set,
i.e., when the information to be delivered to a receiver with
sampling rate p

1

is a subset of the information to be delivered
to a receiver with p

2

> p

1

.

1Given that the capacity region of the broadcast channel depends only on the
marginal distributions on the joint transition probability distribution and z and
U are identically distributed across the receivers, for notational convenience
we shall omit the subscript p from z and U.

2The case where the channel family is indexed by both p and q is considered
in an on-going work [?].

A. Motivations

While the channel model and problem set-up defined above
is mathematically well-defined on its own right, it is worth-
while to discuss some possible applications. For example,
consider the case where U = F, a unitary N⇥N DFT matrix.
In this case, (??) represents a system where a transmitter uses
OFDM with randomly sparse subcarrier aggregation, where
the subcarriers used for transmission are indicated by the
non-zero diagonal elements of B, communicating to multiple
receivers with random time-domain sampling at rate p 2 [0, 1].
The codeword of the transmitter must be designed indepen-
dently of the set of carriers effectively used, which may depend
on some “cognitive radio” opportunistic approach (e.g., the set
of subcarriers may be determined by some spectrum sensing
technique which turns on and off each frequency subband with
probability q). In the case of U with i.i.d. ⇠ CN (0, 1/N)

entries, our model may be applied to a MIMO transmitter
with qN RF chains and N antennas. For example, in mm-wave
bands [?], a very large number of antennas can be implemented
in a small form factor due to the small wavelength, but the
number of RF chains to drive such antennas is limited by
hardware complexity and power consumption. Hence, we may
imagine that, for the sake of diversity, antennas are connected
to the RF chains by a random switching network indicated by
the matrix B. Such transmitter communicates with receivers
with N antennas and pN RF chains, which apply random
sampling in the spatial domain.

II. BROADCAST APPROACH WITH SCALAR CHANNEL STATE

In this section we review in slightly more general terms
the broadcast approach of [?] in the scalar Gaussian chan-
nel case, with the purpose of extending the approach to
the model at hand. Consider a linear Gaussian channel that
depends on a state s 2 R

+

that determines the (stochastic)
degradation order (i.e., s

1

is degraded with respect to s

2

if
s

1

 s

2

). Consider a family of such channels with states
s

1

< s

2

< · · · < sM and common input X . In order to send
a message w = (w

1

, . . . , wM ), we create a layered code with
additive layers, such that the transmitted codeword (length n

vector) is X

n
(w

1

, . . . , wM ) = X

n
1

(w

1

)+X

n
2

(w

1

, w

2

)+ · · ·+
X

n
M (w

1

, . . . , wM ). Layer i has power Pi, and all receivers
with state si are required to decode messages w

1

, . . . , wi. By
standard results of the degraded Gaussian broadcast channel
[?], the aggregate rate decodable at the i-th receiver is given
by

Ri =

X

ji

I(Xj ;Yj |X1

, . . . , Xj�1

), (3)

since the receiver with output Yj can decode the layers
X

n
1

, . . . , X

n
j using successive decoding.

We define a power density function e�(s) such that the power
of layer j can be written as

Pj = e�(pj)�pj , �pj = pj � pj�1

, (4)

where we define �sj = sj�sj�1

, with s

0

= 0. With Gaussian
random coding and due to the linear nature of the channel, we

have that: 1) the mutual information is a function of the state
s and of the aggregate received signal power; 2) conditioning
is equivalent to signal cancellation. These two facts imply that

I(Xj , . . . , XM ;Yj |X1

, . . . , Xj�1

) = I

0

@
sj ,

X

k�j

e�(sk)�sk

1

A

(5)
where I(s, �) denotes the mutual information for the channel
with state s and aggregate signal power � =

P
k�j e�(sk)�sk.

Using the chain rule of mutual information, we obtain

I(Xj ;Yj |X1

, . . . , Xj�1

)

= I

0

@
pj ,

X

k�j

e�(pk)�sk

1

A� I

0

@
pj ,

X

k>j

e�(pk)�sk

1

A (6)

⇡ @

@⇢

I(pj , ⇢)
����
⇢=

P
k>j e�(pk)�pk

⇥ e�(pj)�pj . (7)

Replacing (??) into (??) we have

Ri =

X

ji

@

@⇢

I(pj , ⇢)
����
⇢=

P
k>j e�(pk)�pk

⇥ e�(pj)�pj . (8)

Ri =

X

ji

I(Xj ;Yj |X1

, . . . , Xj�1

) =

X

ji

@

@⇢

I(sj , ⇢)
����
⇢=

P
k>j e�(sk)�sk

⇥e�(sj)�sj .

(9)
Going to the limit for M ! 1 and �sj ! 0, the rate for

a receiver with state s is given by

R(p) =

Z p

0

f(a, �(a))da, (10)

R(p) =

Z pi

0

@

@⇢

I(a, ⇢)
����
⇢=

R 1
a e�(u)du

e�(a)da, (11)

where we define the functions

f(a, ⇢) =

@

@⇢

I(a, ⇢)e�(a) (12)

and
�(a) =

Z 1

a
e�(u)du. (13)

Alternatively, we can eliminate the power density function
e�(a) noticing that

d

da

�(a)

�

= �̇(a) = �e�(a). (14)

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (15)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

R =

Z 1

0

w(s)R(s)ds =

Z 1

0

Z s

0

w(s)f(a, �(a))dads.

(16)

 p∈ 0,1( ]W (p)

p = pi

Ri =
X

ji

I(Xj ;Yj |X1, . . . , Xj�1),dRj =
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A. Motivations

While the channel model and problem set-up defined above
is mathematically well-defined on its own right, it is worth-
while to discuss some possible applications. For example,
consider the case where U = F, a unitary N⇥N DFT matrix.
In this case, (??) represents a system where a transmitter uses
OFDM with randomly sparse subcarrier aggregation, where
the subcarriers used for transmission are indicated by the
non-zero diagonal elements of B, communicating to multiple
receivers with random time-domain sampling at rate p 2 [0, 1].
The codeword of the transmitter must be designed indepen-
dently of the set of carriers effectively used, which may depend
on some “cognitive radio” opportunistic approach (e.g., the set
of subcarriers may be determined by some spectrum sensing
technique which turns on and off each frequency subband with
probability q). In the case of U with i.i.d. ⇠ CN (0, 1/N)

entries, our model may be applied to a MIMO transmitter
with qN RF chains and N antennas. For example, in mm-wave
bands [?], a very large number of antennas can be implemented
in a small form factor due to the small wavelength, but the
number of RF chains to drive such antennas is limited by
hardware complexity and power consumption. Hence, we may
imagine that, for the sake of diversity, antennas are connected
to the RF chains by a random switching network indicated by
the matrix B. Such transmitter communicates with receivers
with N antennas and pN RF chains, which apply random
sampling in the spatial domain.

II. BROADCAST APPROACH WITH SCALAR CHANNEL STATE

In this section we review in slightly more general terms
the broadcast approach of [?] in the scalar Gaussian chan-
nel case, with the purpose of extending the approach to
the model at hand. Consider a linear Gaussian channel that
depends on a state s 2 R

+

that determines the (stochastic)
degradation order (i.e., s

1

is degraded with respect to s

2

if
s

1

 s

2

). Consider a family of such channels with states
s

1

< s

2

< · · · < sM and common input X . In order to send
a message w = (w

1

, . . . , wM ), we create a layered code with
additive layers, such that the transmitted codeword (length n

vector) is X

n
(w

1

, . . . , wM ) = X

n
1

(w

1

)+X

n
2

(w

1

, w

2

)+ · · ·+
X

n
M (w

1

, . . . , wM ). Layer i has power Pi, and all receivers
with state si are required to decode messages w

1

, . . . , wi. By
standard results of the degraded Gaussian broadcast channel
[?], the aggregate rate decodable at the i-th receiver is given
by

Ri =

X

ji

I(Xj ;Yj |X1

, . . . , Xj�1

), (3)

since the receiver with output Yj can decode the layers
X

n
1

, . . . , X

n
j using successive decoding.

We define a power density function e�(s) such that the power
of layer j can be written as

Pj = e�(pj)�pj , �pj = pj � pj�1

, (4)

where we define �sj = sj�sj�1

, with s

0

= 0. With Gaussian
random coding and due to the linear nature of the channel, we

have that: 1) the mutual information is a function of the state
s and of the aggregate received signal power; 2) conditioning
is equivalent to signal cancellation. These two facts imply that

I(Xj , . . . , XM ;Yj |X1

, . . . , Xj�1

) = I

0

@
sj ,

X

k�j

e�(sk)�sk

1

A

(5)
where I(s, �) denotes the mutual information for the channel
with state s and aggregate signal power � =

P
k�j e�(sk)�sk.

Using the chain rule of mutual information, we obtain

I(Xj ;Yj |X1

, . . . , Xj�1

)

= I

0

@
pj ,

X

k�j

e�(pk)�sk

1

A� I

0

@
pj ,

X

k>j

e�(pk)�sk

1

A (6)

⇡ @

@⇢

I(pj , ⇢)
����
⇢=

P
k>j e�(pk)�pk

⇥ e�(pj)�pj . (7)

I(Xj ;Yj |X1

, . . . , Xj�1

)

= VRpj

0

@
X

k�j

e�(pk)�sk

1

A� VRpj

0

@
X

k>j

e�(pk)�sk

1

A (8)

⇡ @

@⇢

I(pj , ⇢)
����
⇢=

P
k>j e�(pk)�pk

⇥ e�(pj)�pj . (9)

Replacing (??) into (??) we have

Ri =

X

ji

@

@⇢

I(pj , ⇢)
����
⇢=

P
k>j e�(pk)�pk

⇥ e�(pj)�pj . (10)

Ri =

X

ji

I(Xj ;Yj |X1

, . . . , Xj�1

) =

X

ji

@

@⇢

I(sj , ⇢)
����
⇢=

P
k>j e�(sk)�sk

⇥e�(sj)�sj .

(11)
Going to the limit for M ! 1 and �sj ! 0, the rate for

a receiver with state s is given by

R(p) =

Z p

0

f(a, �(a))da, (12)

R(p)

�pj!0!
Z pi

0

@

@⇢

I(a, ⇢)
����
⇢=

R 1
a e�(u)du

e�(a)da, (13)

where we define the functions

f(a, ⇢) =

@

@⇢

I(a, ⇢)e�(a) (14)

and
�(a) =

Z 1

a
e�(u)du. (15)

Alternatively, we can eliminate the power density function
e�(a) noticing that

d

da

�(a)

�

= �̇(a) = �e�(a). (16)

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (17)

 
R p  A pUB

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (16)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

1

N

R =

1

N

Z 1

0

w(p)R(p)dp

=

Z 1

0

w(p)

Z p

0

@

@⇢

VRp(⇢)

����
⇢=�(p)

dp

In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (13) and (16), we
obtain

1

N

R =

Z 1

0

(1�W (p))

@

@⇢

VRp(⇢)

����
⇢=�(p)

e�(p)dp, (17)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (13))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (17) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (14)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (17) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (18)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (17) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (19)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (20)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s) (21)

d

ds

F�̇ = w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

+ (W (s)� 1)⇥

⇥
"

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

+

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s)

#
,

(22)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (21) and (22) into (20), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(23)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃
III. APPLICATION TO THE SPARSE-INPUT

RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

VRp(⇢)
�

=

1

N

E [log |I+ ⇢Rp|] , (24)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(�) = E


1

1 + ��(Rp)

�
(25)
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Abstract—We consider a MIMO (linear Gaussian) channel
where the inputs are turned on and off at random, and the
outputs are sampled at random with probability p. In partic-
ular, for a given probability of “on” input q (input sparsity),
we consider a scenario where the transmitter wishes to send
information to a family of possible receivers characterized by
different random sampling rates p 2 [0, 1]. For this setting, we
focus on the broadcast approach, i.e., a coding technique where
the transmitter sends information encoded into superposition
layers, such that the number of decoded layers depends on the
receiver sampling rate p. We obtain a method for calculating
the power allocation across the layers for given statistics of
the MIMO channel matrix in order to maximize the system
weighted sum rate for arbitrary non-negative weighting function
w(p). In particular, we provide analytical solutions both for iid
and Haar distributed MIMO channel matrices. The latter case
accounts also for DFT matrices (see [?]), with application to
sparse spectrum signals with random sub-Nyquist sampling.

Index Terms—Random sampling, broadcast approach, com-
pound channels, degraded message set.

I. PROBLEM DEFINITION

Consider a Gaussian MIMO channel with input x 2 CN ,
output y 2 CN , matrices A,U,B 2 CN⇥N and transition
probability density described by

y = AUBx+ z, (1)

where z ⇠ CN (0, I) is a Gaussian i.i.d. N -dimensional
random vector and the input is subject to the usual total power
constraint E[kxk2]  P .

In this paper, A,B are random diagonal matrices with
diagonal elements in {0, 1} with probability P[Ai,i = 1] = p

and P[Bi,i = 1] = q, and U is a random matrix with
distribution discussed later on. Notice that the matrix A
describes which outputs of the MIMO channel are effectively
sampled at the receiver, and B describes which inputs of the
MIMO channels are effectively transmitted. We refer to p as
the (spatial) “sampling rate” of the receiver, and to q and the
(spatial) “sparsity” of the transmitter. Regarding the evolution
in time, i.e., across successive channel uses of (1), we focus on
the stationary and ergodic case where A,U,B are stationary
and ergodic matrix processes with respect to time, and z is an
iid vector process. This assumption is used for convenience, in
order to express achievable rates using the single-letter mutual

This work has been supported by the US-Israel Binational Science Foun-
dation (BSF).

information of the N -dimensional channel (1). As a matter of
fact, we are interested in the large system limit N ! 1, such
that even in the case of quasi-static channels (i.e., for random
realizations of A,U,B, constant over whole codewords), the
achievable rate expressions take the same form as for the case
of stationary ergodic case.

We fix q and consider the case where a single N -input
transmitter (producing x) wishes to send information to a set
of receivers, each of which is characterized by its own value
of p 2 (0, 1]. This yields the ensemble of channels1

yp = ApUBx+ z; (2)

Furthermore, we assume that the codebook must be designed a
priori, for known and fixed input sparsity q, but independently
of the realization of the matrix B.2 This includes the case
where some inputs may be shut off because of causes that
are uncontrollable by the transmitter itself. Hence, while each
receiver is aware of the realization of the channel matrix
ApUB, the transmitter is aware only of its statistics. The
results in a stochastically degraded MIMO broadcast channel
such that a channel with p = p

1

is a stochastically degraded
version of a channel with state p = p

2

if p
1

 p

2

.
It is well-known that superposition coding is optimal (capac-

ity achieving) for the stochastically degraded broadcast chan-
nel with independent messages [?]. In addition, in this work
we consider the broadcast approach (see [?] and references
therein), which consists of sending incremental information
using superposition layers, such that the number of decoded
layers at any receiver depends on its own sampling rate.
Receivers with large p will be able to decode a large number
of layers, while receivers with smaller p will be able to
decode smaller number of layers. The broadcast approach is
particularly useful in the presence of a degraded message set,
i.e., when the information to be delivered to a receiver with
sampling rate p

1

is a subset of the information to be delivered
to a receiver with p

2

> p

1

.

1Given that the capacity region of the broadcast channel depends only on the
marginal distributions on the joint transition probability distribution and z and
U are identically distributed across the receivers, for notational convenience
we shall omit the subscript p from z and U.

2The case where the channel family is indexed by both p and q is considered
in an on-going work [?].

A. Motivations

While the channel model and problem set-up defined above
is mathematically well-defined on its own right, it is worth-
while to discuss some possible applications. For example,
consider the case where U = F, a unitary N⇥N DFT matrix.
In this case, (2) represents a system where a transmitter uses
OFDM with randomly sparse subcarrier aggregation, where
the subcarriers used for transmission are indicated by the
non-zero diagonal elements of B, communicating to multiple
receivers with random time-domain sampling at rate p 2 [0, 1].
The codeword of the transmitter must be designed indepen-
dently of the set of carriers effectively used, which may depend
on some “cognitive radio” opportunistic approach (e.g., the set
of subcarriers may be determined by some spectrum sensing
technique which turns on and off each frequency subband with
probability q). In the case of U with i.i.d. ⇠ CN (0, 1/N)

entries, our model may be applied to a MIMO transmitter
with qN RF chains and N antennas. For example, in mm-wave
bands [?], a very large number of antennas can be implemented
in a small form factor due to the small wavelength, but the
number of RF chains to drive such antennas is limited by
hardware complexity and power consumption. Hence, we may
imagine that, for the sake of diversity, antennas are connected
to the RF chains by a random switching network indicated by
the matrix B. Such transmitter communicates with receivers
with N antennas and pN RF chains, which apply random
sampling in the spatial domain.

II. BROADCAST APPROACH WITH SCALAR CHANNEL STATE

In this section we review in slightly more general terms
the broadcast approach of [?] in the scalar Gaussian chan-
nel case, with the purpose of extending the approach to
the model at hand. Consider a linear Gaussian channel that
depends on a state s 2 R

+

that determines the (stochastic)
degradation order (i.e., s

1

is degraded with respect to s

2

if
s

1

 s

2

). Consider a family of such channels with states
s

1

< s

2

< · · · < sM and common input X . In order to send
a message w = (w

1

, . . . , wM ), we create a layered code with
additive layers, such that the transmitted codeword (length n

vector) is X

n
(w

1

, . . . , wM ) = X

n
1

(w

1

)+X

n
2

(w

1

, w

2

)+ · · ·+
X

n
M (w

1

, . . . , wM ). Layer i has power Pi, and all receivers
with state si are required to decode messages w

1

, . . . , wi. By
standard results of the degraded Gaussian broadcast channel
[?], the aggregate rate decodable at the i-th receiver is given
by

Ri =

X

ji

I(Xj ;Yj |X1

, . . . , Xj�1

), (3)

since the receiver with output Yj can decode the layers
X

n
1

, . . . , X

n
j using successive decoding.

We define a power density function e�(s) such that the power
of layer j can be written as

Pj = e�(pj)�pj , �pj = pj � pj�1

, (4)

where we define �sj = sj�sj�1

, with s

0

= 0. With Gaussian
random coding and due to the linear nature of the channel, we

have that: 1) the mutual information is a function of the state
s and of the aggregate received signal power; 2) conditioning
is equivalent to signal cancellation. These two facts imply that

I(Xj , . . . , XM ;Yj |X1

, . . . , Xj�1

) = I

0

@
sj ,

X

k�j

e�(sk)�sk

1

A

(5)
where I(s, �) denotes the mutual information for the channel
with state s and aggregate signal power � =

P
k�j e�(sk)�sk.

Using the chain rule of mutual information, we obtain

I(Xj ;Yj |X1

, . . . , Xj�1

)

= I

0

@
pj ,

X

k�j

e�(pk)�sk

1

A� I

0
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pj ,

X

k>j

e�(pk)�sk

1

A (6)

⇡ @

@⇢

I(pj , ⇢)
����
⇢=

P
k>j e�(pk)�pk

⇥ e�(pj)�pj . (7)

I(Xj ;Yj |X1

, . . . , Xj�1

)

= VRpj

0

@
X

k�j

e�(pk)�sk

1

A� VRpj

0

@
X

k>j

e�(pk)�sk

1

A (8)
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VRpj
(⇢)

����
⇢=

P
k>j e�(pk)�pk

⇥ e�(pj)�pj . (9)

Replacing (9) into (3) we have

Ri =

X

ji

@

@⇢

I(pj , ⇢)
����
⇢=

P
k>j e�(pk)�pk

⇥ e�(pj)�pj . (10)

Ri =

X

ji

I(Xj ;Yj |X1

, . . . , Xj�1

) =

X

ji
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I(sj , ⇢)
����
⇢=

P
k>j e�(sk)�sk

⇥e�(sj)�sj .

(11)
Going to the limit for M ! 1 and �sj ! 0, the rate for

a receiver with state s is given by

R(p) =

Z p

0

f(a, �(a))da, (12)

R(p)

�pj!0!
Z pi

0

@

@⇢

I(a, ⇢)
����
⇢=

R 1
a e�(u)du

e�(a)da, (13)

where we define the functions

f(a, ⇢) =

@

@⇢

I(a, ⇢)e�(a) (14)

and
�(a) =

Z 1

a
e�(u)du. (15)

Alternatively, we can eliminate the power density function
e�(a) noticing that

d

da

�(a)

�

= �̇(a) = �e�(a). (16)

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (17)

A. Motivations

While the channel model and problem set-up defined above
is mathematically well-defined on its own right, it is worth-
while to discuss some possible applications. For example,
consider the case where U = F, a unitary N⇥N DFT matrix.
In this case, (??) represents a system where a transmitter uses
OFDM with randomly sparse subcarrier aggregation, where
the subcarriers used for transmission are indicated by the
non-zero diagonal elements of B, communicating to multiple
receivers with random time-domain sampling at rate p 2 [0, 1].
The codeword of the transmitter must be designed indepen-
dently of the set of carriers effectively used, which may depend
on some “cognitive radio” opportunistic approach (e.g., the set
of subcarriers may be determined by some spectrum sensing
technique which turns on and off each frequency subband with
probability q). In the case of U with i.i.d. ⇠ CN (0, 1/N)

entries, our model may be applied to a MIMO transmitter
with qN RF chains and N antennas. For example, in mm-wave
bands [?], a very large number of antennas can be implemented
in a small form factor due to the small wavelength, but the
number of RF chains to drive such antennas is limited by
hardware complexity and power consumption. Hence, we may
imagine that, for the sake of diversity, antennas are connected
to the RF chains by a random switching network indicated by
the matrix B. Such transmitter communicates with receivers
with N antennas and pN RF chains, which apply random
sampling in the spatial domain.

II. BROADCAST APPROACH WITH SCALAR CHANNEL STATE

In this section we review in slightly more general terms
the broadcast approach of [?] in the scalar Gaussian chan-
nel case, with the purpose of extending the approach to
the model at hand. Consider a linear Gaussian channel that
depends on a state s 2 R

+

that determines the (stochastic)
degradation order (i.e., s

1

is degraded with respect to s

2

if
s

1

 s

2

). Consider a family of such channels with states
s

1

< s

2

< · · · < sM and common input X . In order to send
a message w = (w

1

, . . . , wM ), we create a layered code with
additive layers, such that the transmitted codeword (length n

vector) is X

n
(w

1

, . . . , wM ) = X

n
1

(w

1

)+X

n
2

(w

1

, w

2

)+ · · ·+
X

n
M (w

1

, . . . , wM ). Layer i has power Pi, and all receivers
with state si are required to decode messages w

1

, . . . , wi. By
standard results of the degraded Gaussian broadcast channel
[?], the aggregate rate decodable at the i-th receiver is given
by

Ri =

X

ji

I(Xj ;Yj |X1

, . . . , Xj�1

), (3)

since the receiver with output Yj can decode the layers
X

n
1

, . . . , X

n
j using successive decoding.

We define a power density function e�(s) such that the power
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where we define �sj = sj�sj�1

, with s
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= 0. With Gaussian
random coding and due to the linear nature of the channel, we

have that: 1) the mutual information is a function of the state
s and of the aggregate received signal power; 2) conditioning
is equivalent to signal cancellation. These two facts imply that
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where I(s, �) denotes the mutual information for the channel
with state s and aggregate signal power � =
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Going to the limit for M ! 1 and �sj ! 0, the rate for
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The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by
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A. Motivations

While the channel model and problem set-up defined above
is mathematically well-defined on its own right, it is worth-
while to discuss some possible applications. For example,
consider the case where U = F, a unitary N⇥N DFT matrix.
In this case, (??) represents a system where a transmitter uses
OFDM with randomly sparse subcarrier aggregation, where
the subcarriers used for transmission are indicated by the
non-zero diagonal elements of B, communicating to multiple
receivers with random time-domain sampling at rate p 2 [0, 1].
The codeword of the transmitter must be designed indepen-
dently of the set of carriers effectively used, which may depend
on some “cognitive radio” opportunistic approach (e.g., the set
of subcarriers may be determined by some spectrum sensing
technique which turns on and off each frequency subband with
probability q). In the case of U with i.i.d. ⇠ CN (0, 1/N)

entries, our model may be applied to a MIMO transmitter
with qN RF chains and N antennas. For example, in mm-wave
bands [?], a very large number of antennas can be implemented
in a small form factor due to the small wavelength, but the
number of RF chains to drive such antennas is limited by
hardware complexity and power consumption. Hence, we may
imagine that, for the sake of diversity, antennas are connected
to the RF chains by a random switching network indicated by
the matrix B. Such transmitter communicates with receivers
with N antennas and pN RF chains, which apply random
sampling in the spatial domain.

II. BROADCAST APPROACH WITH SCALAR CHANNEL STATE

In this section we review in slightly more general terms
the broadcast approach of [?] in the scalar Gaussian chan-
nel case, with the purpose of extending the approach to
the model at hand. Consider a linear Gaussian channel that
depends on a state s 2 R
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The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by
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A. Motivations

While the channel model and problem set-up defined above
is mathematically well-defined on its own right, it is worth-
while to discuss some possible applications. For example,
consider the case where U = F, a unitary N⇥N DFT matrix.
In this case, (??) represents a system where a transmitter uses
OFDM with randomly sparse subcarrier aggregation, where
the subcarriers used for transmission are indicated by the
non-zero diagonal elements of B, communicating to multiple
receivers with random time-domain sampling at rate p 2 [0, 1].
The codeword of the transmitter must be designed indepen-
dently of the set of carriers effectively used, which may depend
on some “cognitive radio” opportunistic approach (e.g., the set
of subcarriers may be determined by some spectrum sensing
technique which turns on and off each frequency subband with
probability q). In the case of U with i.i.d. ⇠ CN (0, 1/N)

entries, our model may be applied to a MIMO transmitter
with qN RF chains and N antennas. For example, in mm-wave
bands [?], a very large number of antennas can be implemented
in a small form factor due to the small wavelength, but the
number of RF chains to drive such antennas is limited by
hardware complexity and power consumption. Hence, we may
imagine that, for the sake of diversity, antennas are connected
to the RF chains by a random switching network indicated by
the matrix B. Such transmitter communicates with receivers
with N antennas and pN RF chains, which apply random
sampling in the spatial domain.

II. BROADCAST APPROACH WITH SCALAR CHANNEL STATE

In this section we review in slightly more general terms
the broadcast approach of [?] in the scalar Gaussian chan-
nel case, with the purpose of extending the approach to
the model at hand. Consider a linear Gaussian channel that
depends on a state s 2 R

+

that determines the (stochastic)
degradation order (i.e., s
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). Consider a family of such channels with states
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< · · · < sM and common input X . In order to send
a message w = (w
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, . . . , wM ), we create a layered code with
additive layers, such that the transmitted codeword (length n

vector) is X
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with state si are required to decode messages w
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standard results of the degraded Gaussian broadcast channel
[?], the aggregate rate decodable at the i-th receiver is given
by
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since the receiver with output Yj can decode the layers
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j using successive decoding.

We define a power density function e�(s) such that the power
of layer j can be written as

Pj = e�(pj)�pj , �pj = pj � pj�1

, (4)

where we define �sj = sj�sj�1

, with s

0

= 0. With Gaussian
random coding and due to the linear nature of the channel, we

have that: 1) the mutual information is a function of the state
s and of the aggregate received signal power; 2) conditioning
is equivalent to signal cancellation. These two facts imply that
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where I(s, �) denotes the mutual information for the channel
with state s and aggregate signal power � =

P
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Going to the limit for M ! 1 and �sj ! 0, the rate for

a receiver with state s is given by
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and
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Alternatively, we can eliminate the power density function
e�(a) noticing that
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This yields
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The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

1

N

R =

1

N

Z 1

0

w(p)R(p)dp

=

Z 1

0

w(p)

Z p

0

@

@⇢

VRp(⇢)

����
⇢=�(p)

dp

In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (13) and (16), we
obtain

1

N

R =

Z 1

0

(1�W (p))

@

@⇢

VRp(⇢)

����
⇢=�(p)

e�(p)dp, (17)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (13))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (17) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (14)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (17) as
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Z

�(A)

(1�W (g(�)))
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I(g(�), ⇢)
����
⇢=�

d�, (18)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (17) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))
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= (W (s)� 1)

@
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I(s, ⇢)
����
⇢=�(s)

�̇(s). (19)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (20)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have
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#
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(22)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (21) and (22) into (20), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(23)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃
III. APPLICATION TO THE SPARSE-INPUT

RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

VRp(⇢)
�

=

1

N

E [log |I+ ⇢Rp|] , (24)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(�) = E


1

1 + ��(Rp)

�
(25)
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Abstract—We consider a MIMO (linear Gaussian) channel
where the inputs are turned on and off at random, and the
outputs are sampled at random with probability p. In partic-
ular, for a given probability of “on” input q (input sparsity),
we consider a scenario where the transmitter wishes to send
information to a family of possible receivers characterized by
different random sampling rates p 2 [0, 1]. For this setting, we
focus on the broadcast approach, i.e., a coding technique where
the transmitter sends information encoded into superposition
layers, such that the number of decoded layers depends on the
receiver sampling rate p. We obtain a method for calculating
the power allocation across the layers for given statistics of
the MIMO channel matrix in order to maximize the system
weighted sum rate for arbitrary non-negative weighting function
w(p). In particular, we provide analytical solutions both for iid
and Haar distributed MIMO channel matrices. The latter case
accounts also for DFT matrices (see [?]), with application to
sparse spectrum signals with random sub-Nyquist sampling.

Index Terms—Random sampling, broadcast approach, com-
pound channels, degraded message set.

I. PROBLEM DEFINITION

Consider a Gaussian MIMO channel with input x 2 CN ,
output y 2 CN , matrices A,U,B 2 CN⇥N and transition
probability density described by

y = AUBx+ z, (1)

where z ⇠ CN (0, I) is a Gaussian i.i.d. N -dimensional
random vector and the input is subject to the usual total power
constraint E[kxk2]  P .

In this paper, A,B are random diagonal matrices with
diagonal elements in {0, 1} with probability P[Ai,i = 1] = p

and P[Bi,i = 1] = q, and U is a random matrix with
distribution discussed later on. Notice that the matrix A
describes which outputs of the MIMO channel are effectively
sampled at the receiver, and B describes which inputs of the
MIMO channels are effectively transmitted. We refer to p as
the (spatial) “sampling rate” of the receiver, and to q and the
(spatial) “sparsity” of the transmitter. Regarding the evolution
in time, i.e., across successive channel uses of (1), we focus on
the stationary and ergodic case where A,U,B are stationary
and ergodic matrix processes with respect to time, and z is an
iid vector process. This assumption is used for convenience, in
order to express achievable rates using the single-letter mutual

This work has been supported by the US-Israel Binational Science Foun-
dation (BSF).

information of the N -dimensional channel (1). As a matter of
fact, we are interested in the large system limit N ! 1, such
that even in the case of quasi-static channels (i.e., for random
realizations of A,U,B, constant over whole codewords), the
achievable rate expressions take the same form as for the case
of stationary ergodic case.

We fix q and consider the case where a single N -input
transmitter (producing x) wishes to send information to a set
of receivers, each of which is characterized by its own value
of p 2 (0, 1]. This yields the ensemble of channels1

yp = ApUBx+ z; (2)

Furthermore, we assume that the codebook must be designed a
priori, for known and fixed input sparsity q, but independently
of the realization of the matrix B.2 This includes the case
where some inputs may be shut off because of causes that
are uncontrollable by the transmitter itself. Hence, while each
receiver is aware of the realization of the channel matrix
ApUB, the transmitter is aware only of its statistics. The
results in a stochastically degraded MIMO broadcast channel
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1Given that the capacity region of the broadcast channel depends only on the
marginal distributions on the joint transition probability distribution and z and
U are identically distributed across the receivers, for notational convenience
we shall omit the subscript p from z and U.

2The case where the channel family is indexed by both p and q is considered
in an on-going work [?].

A. Motivations

While the channel model and problem set-up defined above
is mathematically well-defined on its own right, it is worth-
while to discuss some possible applications. For example,
consider the case where U = F, a unitary N⇥N DFT matrix.
In this case, (2) represents a system where a transmitter uses
OFDM with randomly sparse subcarrier aggregation, where
the subcarriers used for transmission are indicated by the
non-zero diagonal elements of B, communicating to multiple
receivers with random time-domain sampling at rate p 2 [0, 1].
The codeword of the transmitter must be designed indepen-
dently of the set of carriers effectively used, which may depend
on some “cognitive radio” opportunistic approach (e.g., the set
of subcarriers may be determined by some spectrum sensing
technique which turns on and off each frequency subband with
probability q). In the case of U with i.i.d. ⇠ CN (0, 1/N)

entries, our model may be applied to a MIMO transmitter
with qN RF chains and N antennas. For example, in mm-wave
bands [?], a very large number of antennas can be implemented
in a small form factor due to the small wavelength, but the
number of RF chains to drive such antennas is limited by
hardware complexity and power consumption. Hence, we may
imagine that, for the sake of diversity, antennas are connected
to the RF chains by a random switching network indicated by
the matrix B. Such transmitter communicates with receivers
with N antennas and pN RF chains, which apply random
sampling in the spatial domain.

II. BROADCAST APPROACH WITH SCALAR CHANNEL STATE

In this section we review in slightly more general terms
the broadcast approach of [?] in the scalar Gaussian chan-
nel case, with the purpose of extending the approach to
the model at hand. Consider a linear Gaussian channel that
depends on a state s 2 R
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that determines the (stochastic)
degradation order (i.e., s
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[?], the aggregate rate decodable at the i-th receiver is given
by
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We define a power density function e�(s) such that the power
of layer j can be written as
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, (4)
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, with s
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random coding and due to the linear nature of the channel, we
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Going to the limit for M ! 1 and �sj ! 0, the rate for
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While the channel model and problem set-up defined above
is mathematically well-defined on its own right, it is worth-
while to discuss some possible applications. For example,
consider the case where U = F, a unitary N⇥N DFT matrix.
In this case, (??) represents a system where a transmitter uses
OFDM with randomly sparse subcarrier aggregation, where
the subcarriers used for transmission are indicated by the
non-zero diagonal elements of B, communicating to multiple
receivers with random time-domain sampling at rate p 2 [0, 1].
The codeword of the transmitter must be designed indepen-
dently of the set of carriers effectively used, which may depend
on some “cognitive radio” opportunistic approach (e.g., the set
of subcarriers may be determined by some spectrum sensing
technique which turns on and off each frequency subband with
probability q). In the case of U with i.i.d. ⇠ CN (0, 1/N)

entries, our model may be applied to a MIMO transmitter
with qN RF chains and N antennas. For example, in mm-wave
bands [?], a very large number of antennas can be implemented
in a small form factor due to the small wavelength, but the
number of RF chains to drive such antennas is limited by
hardware complexity and power consumption. Hence, we may
imagine that, for the sake of diversity, antennas are connected
to the RF chains by a random switching network indicated by
the matrix B. Such transmitter communicates with receivers
with N antennas and pN RF chains, which apply random
sampling in the spatial domain.
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nel case, with the purpose of extending the approach to
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since the receiver with output Yj can decode the layers
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j using successive decoding.

We define a power density function e�(s) such that the power
of layer j can be written as

Pj = e�(pj)�pj , �pj = pj � pj�1

, (4)

where we define �sj = sj�sj�1

, with s

0

= 0. With Gaussian
random coding and due to the linear nature of the channel, we

have that: 1) the mutual information is a function of the state
s and of the aggregate received signal power; 2) conditioning
is equivalent to signal cancellation. These two facts imply that
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where I(s, �) denotes the mutual information for the channel
with state s and aggregate signal power � =

P
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Using the chain rule of mutual information, we obtain
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The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by
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with qN RF chains and N antennas. For example, in mm-wave
bands [?], a very large number of antennas can be implemented
in a small form factor due to the small wavelength, but the
number of RF chains to drive such antennas is limited by
hardware complexity and power consumption. Hence, we may
imagine that, for the sake of diversity, antennas are connected
to the RF chains by a random switching network indicated by
the matrix B. Such transmitter communicates with receivers
with N antennas and pN RF chains, which apply random
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While the channel model and problem set-up defined above
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while to discuss some possible applications. For example,
consider the case where U = F, a unitary N⇥N DFT matrix.
In this case, (2) represents a system where a transmitter uses
OFDM with randomly sparse subcarrier aggregation, where
the subcarriers used for transmission are indicated by the
non-zero diagonal elements of B, communicating to multiple
receivers with random time-domain sampling at rate p 2 [0, 1].
The codeword of the transmitter must be designed indepen-
dently of the set of carriers effectively used, which may depend
on some “cognitive radio” opportunistic approach (e.g., the set
of subcarriers may be determined by some spectrum sensing
technique which turns on and off each frequency subband with
probability q). In the case of U with i.i.d. ⇠ CN (0, 1/N)

entries, our model may be applied to a MIMO transmitter
with qN RF chains and N antennas. For example, in mm-wave
bands [?], a very large number of antennas can be implemented
in a small form factor due to the small wavelength, but the
number of RF chains to drive such antennas is limited by
hardware complexity and power consumption. Hence, we may
imagine that, for the sake of diversity, antennas are connected
to the RF chains by a random switching network indicated by
the matrix B. Such transmitter communicates with receivers
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I(Xj ;Yj |X1, . . . , Xj�1),dRj =
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A. Motivations

While the channel model and problem set-up defined above
is mathematically well-defined on its own right, it is worth-
while to discuss some possible applications. For example,
consider the case where U = F, a unitary N⇥N DFT matrix.
In this case, (??) represents a system where a transmitter uses
OFDM with randomly sparse subcarrier aggregation, where
the subcarriers used for transmission are indicated by the
non-zero diagonal elements of B, communicating to multiple
receivers with random time-domain sampling at rate p 2 [0, 1].
The codeword of the transmitter must be designed indepen-
dently of the set of carriers effectively used, which may depend
on some “cognitive radio” opportunistic approach (e.g., the set
of subcarriers may be determined by some spectrum sensing
technique which turns on and off each frequency subband with
probability q). In the case of U with i.i.d. ⇠ CN (0, 1/N)

entries, our model may be applied to a MIMO transmitter
with qN RF chains and N antennas. For example, in mm-wave
bands [?], a very large number of antennas can be implemented
in a small form factor due to the small wavelength, but the
number of RF chains to drive such antennas is limited by
hardware complexity and power consumption. Hence, we may
imagine that, for the sake of diversity, antennas are connected
to the RF chains by a random switching network indicated by
the matrix B. Such transmitter communicates with receivers
with N antennas and pN RF chains, which apply random
sampling in the spatial domain.

II. BROADCAST APPROACH WITH SCALAR CHANNEL STATE

In this section we review in slightly more general terms
the broadcast approach of [?] in the scalar Gaussian chan-
nel case, with the purpose of extending the approach to
the model at hand. Consider a linear Gaussian channel that
depends on a state s 2 R

+

that determines the (stochastic)
degradation order (i.e., s

1

is degraded with respect to s

2

if
s

1

 s

2

). Consider a family of such channels with states
s

1

< s

2

< · · · < sM and common input X . In order to send
a message w = (w

1

, . . . , wM ), we create a layered code with
additive layers, such that the transmitted codeword (length n

vector) is X

n
(w

1

, . . . , wM ) = X

n
1

(w

1

)+X

n
2

(w

1

, w

2

)+ · · ·+
X

n
M (w

1

, . . . , wM ). Layer i has power Pi, and all receivers
with state si are required to decode messages w

1

, . . . , wi. By
standard results of the degraded Gaussian broadcast channel
[?], the aggregate rate decodable at the i-th receiver is given
by

Ri =

X

ji

I(Xj ;Yj |X1

, . . . , Xj�1

), (3)

since the receiver with output Yj can decode the layers
X

n
1

, . . . , X

n
j using successive decoding.

We define a power density function e�(s) such that the power
of layer j can be written as

Pj = e�(pj)�pj , �pj = pj � pj�1

, (4)

where we define �sj = sj�sj�1

, with s

0

= 0. With Gaussian
random coding and due to the linear nature of the channel, we

have that: 1) the mutual information is a function of the state
s and of the aggregate received signal power; 2) conditioning
is equivalent to signal cancellation. These two facts imply that

I(Xj , . . . , XM ;Yj |X1

, . . . , Xj�1

) = I

0

@
sj ,

X

k�j

e�(sk)�sk

1

A

(5)
where I(s, �) denotes the mutual information for the channel
with state s and aggregate signal power � =

P
k�j e�(sk)�sk.

Using the chain rule of mutual information, we obtain

I(Xj ;Yj |X1

, . . . , Xj�1

)

= I

0

@
pj ,

X

k�j

e�(pk)�sk

1

A� I

0

@
pj ,

X

k>j

e�(pk)�sk

1

A (6)

⇡ @

@⇢

I(pj , ⇢)
����
⇢=

P
k>j e�(pk)�pk

⇥ e�(pj)�pj . (7)

I(Xj ;Yj |X1

, . . . , Xj�1

)

= VRpj

0

@
X

k�j

e�(pk)�sk

1

A� VRpj

0

@
X

k>j

e�(pk)�sk

1

A (8)

⇡ @

@⇢

I(pj , ⇢)
����
⇢=

P
k>j e�(pk)�pk

⇥ e�(pj)�pj . (9)

Replacing (??) into (??) we have

Ri =

X

ji

@

@⇢

I(pj , ⇢)
����
⇢=

P
k>j e�(pk)�pk

⇥ e�(pj)�pj . (10)

Ri =

X

ji

I(Xj ;Yj |X1

, . . . , Xj�1

) =

X

ji

@

@⇢

I(sj , ⇢)
����
⇢=

P
k>j e�(sk)�sk

⇥e�(sj)�sj .

(11)
Going to the limit for M ! 1 and �sj ! 0, the rate for

a receiver with state s is given by

R(p) =

Z p

0

f(a, �(a))da, (12)

R(p)

�pj!0!
Z pi

0

@

@⇢

I(a, ⇢)
����
⇢=

R 1
a e�(u)du

e�(a)da, (13)

where we define the functions

f(a, ⇢) =

@

@⇢

I(a, ⇢)e�(a) (14)

and
�(a) =

Z 1

a
e�(u)du. (15)

Alternatively, we can eliminate the power density function
e�(a) noticing that

d

da

�(a)

�

= �̇(a) = �e�(a). (16)

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (17)
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This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (16)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

1

N

R =

1

N

Z 1

0

w(p)R(p)dp

=

Z 1

0

w(p)

Z p

0

@

@⇢

VRp(⇢)

����
⇢=�(p)

dp

In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (13) and (16), we
obtain

1

N

R =

Z 1

0

(1�W (p))

@

@⇢

VRp(⇢)

����
⇢=�(p)

e�(p)dp, (17)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (13))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (17) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (14)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (17) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (18)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (17) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (19)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (20)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s) (21)

d

ds

F�̇ = w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

+ (W (s)� 1)⇥

⇥
"

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

+

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s)

#
,

(22)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (21) and (22) into (20), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(23)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃
III. APPLICATION TO THE SPARSE-INPUT

RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

VRp(⇢)
�

=

1

N

E [log |I+ ⇢Rp|] , (24)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(�) = E


1

1 + ��(Rp)

�
(25)
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Abstract—We consider a MIMO (linear Gaussian) channel
where the inputs are turned on and off at random, and the
outputs are sampled at random with probability p. In partic-
ular, for a given probability of “on” input q (input sparsity),
we consider a scenario where the transmitter wishes to send
information to a family of possible receivers characterized by
different random sampling rates p 2 [0, 1]. For this setting, we
focus on the broadcast approach, i.e., a coding technique where
the transmitter sends information encoded into superposition
layers, such that the number of decoded layers depends on the
receiver sampling rate p. We obtain a method for calculating
the power allocation across the layers for given statistics of
the MIMO channel matrix in order to maximize the system
weighted sum rate for arbitrary non-negative weighting function
w(p). In particular, we provide analytical solutions both for iid
and Haar distributed MIMO channel matrices. The latter case
accounts also for DFT matrices (see [?]), with application to
sparse spectrum signals with random sub-Nyquist sampling.

Index Terms—Random sampling, broadcast approach, com-
pound channels, degraded message set.

I. PROBLEM DEFINITION

Consider a Gaussian MIMO channel with input x 2 CN ,
output y 2 CN , matrices A,U,B 2 CN⇥N and transition
probability density described by

y = AUBx+ z, (1)

where z ⇠ CN (0, I) is a Gaussian i.i.d. N -dimensional
random vector and the input is subject to the usual total power
constraint E[kxk2]  P .

In this paper, A,B are random diagonal matrices with
diagonal elements in {0, 1} with probability P[Ai,i = 1] = p

and P[Bi,i = 1] = q, and U is a random matrix with
distribution discussed later on. Notice that the matrix A
describes which outputs of the MIMO channel are effectively
sampled at the receiver, and B describes which inputs of the
MIMO channels are effectively transmitted. We refer to p as
the (spatial) “sampling rate” of the receiver, and to q and the
(spatial) “sparsity” of the transmitter. Regarding the evolution
in time, i.e., across successive channel uses of (1), we focus on
the stationary and ergodic case where A,U,B are stationary
and ergodic matrix processes with respect to time, and z is an
iid vector process. This assumption is used for convenience, in
order to express achievable rates using the single-letter mutual

This work has been supported by the US-Israel Binational Science Foun-
dation (BSF).

information of the N -dimensional channel (1). As a matter of
fact, we are interested in the large system limit N ! 1, such
that even in the case of quasi-static channels (i.e., for random
realizations of A,U,B, constant over whole codewords), the
achievable rate expressions take the same form as for the case
of stationary ergodic case.

We fix q and consider the case where a single N -input
transmitter (producing x) wishes to send information to a set
of receivers, each of which is characterized by its own value
of p 2 (0, 1]. This yields the ensemble of channels1

yp = ApUBx+ z; (2)

Furthermore, we assume that the codebook must be designed a
priori, for known and fixed input sparsity q, but independently
of the realization of the matrix B.2 This includes the case
where some inputs may be shut off because of causes that
are uncontrollable by the transmitter itself. Hence, while each
receiver is aware of the realization of the channel matrix
ApUB, the transmitter is aware only of its statistics. The
results in a stochastically degraded MIMO broadcast channel
such that a channel with p = p

1

is a stochastically degraded
version of a channel with state p = p

2

if p
1

 p

2

.
It is well-known that superposition coding is optimal (capac-

ity achieving) for the stochastically degraded broadcast chan-
nel with independent messages [?]. In addition, in this work
we consider the broadcast approach (see [?] and references
therein), which consists of sending incremental information
using superposition layers, such that the number of decoded
layers at any receiver depends on its own sampling rate.
Receivers with large p will be able to decode a large number
of layers, while receivers with smaller p will be able to
decode smaller number of layers. The broadcast approach is
particularly useful in the presence of a degraded message set,
i.e., when the information to be delivered to a receiver with
sampling rate p

1

is a subset of the information to be delivered
to a receiver with p

2

> p

1

.

1Given that the capacity region of the broadcast channel depends only on the
marginal distributions on the joint transition probability distribution and z and
U are identically distributed across the receivers, for notational convenience
we shall omit the subscript p from z and U.

2The case where the channel family is indexed by both p and q is considered
in an on-going work [?].

A. Motivations

While the channel model and problem set-up defined above
is mathematically well-defined on its own right, it is worth-
while to discuss some possible applications. For example,
consider the case where U = F, a unitary N⇥N DFT matrix.
In this case, (2) represents a system where a transmitter uses
OFDM with randomly sparse subcarrier aggregation, where
the subcarriers used for transmission are indicated by the
non-zero diagonal elements of B, communicating to multiple
receivers with random time-domain sampling at rate p 2 [0, 1].
The codeword of the transmitter must be designed indepen-
dently of the set of carriers effectively used, which may depend
on some “cognitive radio” opportunistic approach (e.g., the set
of subcarriers may be determined by some spectrum sensing
technique which turns on and off each frequency subband with
probability q). In the case of U with i.i.d. ⇠ CN (0, 1/N)

entries, our model may be applied to a MIMO transmitter
with qN RF chains and N antennas. For example, in mm-wave
bands [?], a very large number of antennas can be implemented
in a small form factor due to the small wavelength, but the
number of RF chains to drive such antennas is limited by
hardware complexity and power consumption. Hence, we may
imagine that, for the sake of diversity, antennas are connected
to the RF chains by a random switching network indicated by
the matrix B. Such transmitter communicates with receivers
with N antennas and pN RF chains, which apply random
sampling in the spatial domain.

II. BROADCAST APPROACH WITH SCALAR CHANNEL STATE

In this section we review in slightly more general terms
the broadcast approach of [?] in the scalar Gaussian chan-
nel case, with the purpose of extending the approach to
the model at hand. Consider a linear Gaussian channel that
depends on a state s 2 R

+

that determines the (stochastic)
degradation order (i.e., s

1

is degraded with respect to s

2

if
s

1

 s

2

). Consider a family of such channels with states
s

1

< s

2

< · · · < sM and common input X . In order to send
a message w = (w

1

, . . . , wM ), we create a layered code with
additive layers, such that the transmitted codeword (length n

vector) is X

n
(w

1

, . . . , wM ) = X

n
1

(w

1

)+X

n
2

(w

1

, w

2

)+ · · ·+
X

n
M (w

1

, . . . , wM ). Layer i has power Pi, and all receivers
with state si are required to decode messages w

1

, . . . , wi. By
standard results of the degraded Gaussian broadcast channel
[?], the aggregate rate decodable at the i-th receiver is given
by

Ri =

X

ji

I(Xj ;Yj |X1

, . . . , Xj�1

), (3)

since the receiver with output Yj can decode the layers
X

n
1

, . . . , X

n
j using successive decoding.

We define a power density function e�(s) such that the power
of layer j can be written as

Pj = e�(pj)�pj , �pj = pj � pj�1

, (4)

where we define �sj = sj�sj�1

, with s

0

= 0. With Gaussian
random coding and due to the linear nature of the channel, we

have that: 1) the mutual information is a function of the state
s and of the aggregate received signal power; 2) conditioning
is equivalent to signal cancellation. These two facts imply that

I(Xj , . . . , XM ;Yj |X1

, . . . , Xj�1

) = I

0

@
sj ,

X

k�j

e�(sk)�sk

1

A

(5)
where I(s, �) denotes the mutual information for the channel
with state s and aggregate signal power � =

P
k�j e�(sk)�sk.

Using the chain rule of mutual information, we obtain

I(Xj ;Yj |X1
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)

= I
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Replacing (9) into (3) we have

Ri =

X
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P
k>j e�(pk)�pk
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k>j e�(sk)�sk

⇥e�(sj)�sj .

(11)
Going to the limit for M ! 1 and �sj ! 0, the rate for

a receiver with state s is given by

R(p) =

Z p

0

f(a, �(a))da, (12)

R(p)
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Z pi
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I(a, ⇢)
����
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R 1
a e�(u)du

e�(a)da, (13)

where we define the functions

f(a, ⇢) =
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I(a, ⇢)e�(a) (14)

and
�(a) =

Z 1

a
e�(u)du. (15)

Alternatively, we can eliminate the power density function
e�(a) noticing that

d
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= �̇(a) = �e�(a). (16)

This yields
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I(a, ⇢)�̇(a). (17)

A. Motivations

While the channel model and problem set-up defined above
is mathematically well-defined on its own right, it is worth-
while to discuss some possible applications. For example,
consider the case where U = F, a unitary N⇥N DFT matrix.
In this case, (??) represents a system where a transmitter uses
OFDM with randomly sparse subcarrier aggregation, where
the subcarriers used for transmission are indicated by the
non-zero diagonal elements of B, communicating to multiple
receivers with random time-domain sampling at rate p 2 [0, 1].
The codeword of the transmitter must be designed indepen-
dently of the set of carriers effectively used, which may depend
on some “cognitive radio” opportunistic approach (e.g., the set
of subcarriers may be determined by some spectrum sensing
technique which turns on and off each frequency subband with
probability q). In the case of U with i.i.d. ⇠ CN (0, 1/N)

entries, our model may be applied to a MIMO transmitter
with qN RF chains and N antennas. For example, in mm-wave
bands [?], a very large number of antennas can be implemented
in a small form factor due to the small wavelength, but the
number of RF chains to drive such antennas is limited by
hardware complexity and power consumption. Hence, we may
imagine that, for the sake of diversity, antennas are connected
to the RF chains by a random switching network indicated by
the matrix B. Such transmitter communicates with receivers
with N antennas and pN RF chains, which apply random
sampling in the spatial domain.

II. BROADCAST APPROACH WITH SCALAR CHANNEL STATE

In this section we review in slightly more general terms
the broadcast approach of [?] in the scalar Gaussian chan-
nel case, with the purpose of extending the approach to
the model at hand. Consider a linear Gaussian channel that
depends on a state s 2 R

+

that determines the (stochastic)
degradation order (i.e., s

1

is degraded with respect to s

2

if
s

1

 s

2

). Consider a family of such channels with states
s

1

< s

2

< · · · < sM and common input X . In order to send
a message w = (w

1

, . . . , wM ), we create a layered code with
additive layers, such that the transmitted codeword (length n

vector) is X

n
(w

1

, . . . , wM ) = X

n
1

(w

1

)+X

n
2

(w

1

, w

2

)+ · · ·+
X

n
M (w

1

, . . . , wM ). Layer i has power Pi, and all receivers
with state si are required to decode messages w

1

, . . . , wi. By
standard results of the degraded Gaussian broadcast channel
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where I(s, �) denotes the mutual information for the channel
with state s and aggregate signal power � =
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Going to the limit for M ! 1 and �sj ! 0, the rate for
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The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by
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A. Motivations

While the channel model and problem set-up defined above
is mathematically well-defined on its own right, it is worth-
while to discuss some possible applications. For example,
consider the case where U = F, a unitary N⇥N DFT matrix.
In this case, (??) represents a system where a transmitter uses
OFDM with randomly sparse subcarrier aggregation, where
the subcarriers used for transmission are indicated by the
non-zero diagonal elements of B, communicating to multiple
receivers with random time-domain sampling at rate p 2 [0, 1].
The codeword of the transmitter must be designed indepen-
dently of the set of carriers effectively used, which may depend
on some “cognitive radio” opportunistic approach (e.g., the set
of subcarriers may be determined by some spectrum sensing
technique which turns on and off each frequency subband with
probability q). In the case of U with i.i.d. ⇠ CN (0, 1/N)

entries, our model may be applied to a MIMO transmitter
with qN RF chains and N antennas. For example, in mm-wave
bands [?], a very large number of antennas can be implemented
in a small form factor due to the small wavelength, but the
number of RF chains to drive such antennas is limited by
hardware complexity and power consumption. Hence, we may
imagine that, for the sake of diversity, antennas are connected
to the RF chains by a random switching network indicated by
the matrix B. Such transmitter communicates with receivers
with N antennas and pN RF chains, which apply random
sampling in the spatial domain.
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In this section we review in slightly more general terms
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The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by
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In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (13) and (17), we
obtain
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⇢=�(p)

e�(a)dp, (18)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (13))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (18) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (15)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (18) as
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where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (18) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional
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A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d
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F�̇ = 0 (21)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have
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where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (22) and (23) into (21), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation
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Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]
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III. APPLICATION TO THE SPARSE-INPUT

RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as
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A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (21)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s) (22)

d

ds

F�̇ = w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

+ (W (s)� 1)⇥

⇥
"

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

+

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s)

#
,

(23)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (22) and (23) into (21), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(24)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃
III. APPLICATION TO THE SPARSE-INPUT

RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

VRp

�

=

1

N

E [log |I+ �Rp|] , (25)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(�) = E


1

1 + ��(Rp)

�
(26)

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (17)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

1

N

R =

1

N

Z 1

0

w(p)R(p)dp

=

Z 1

0

w(p)

Z p

0

@

@⇢

VRp(⇢)

����
⇢=�(p)

dp

In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (13) and (17), we
obtain

1

N

R =

Z 1

0

(1�W (p))

@

@⇢

VRp(⇢)

����
⇢=�(p)

e�(p)dp, (18)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (13))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (18) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (15)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (18) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (19)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (18) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (20)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (21)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s) (22)

d

ds

F�̇ = w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

+ (W (s)� 1)⇥

⇥
"

@
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����
⇢=�(s)

+
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2

I(s, ⇢)
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⇢=�(s)

�̇(s)

#
,

(23)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (22) and (23) into (21), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(24)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃
III. APPLICATION TO THE SPARSE-INPUT

RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

VRp

�

=

1

N

E [log |I+ �Rp|] , (25)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(�) = E


1

1 + ��(Rp)

�
(26)

In particular, if s is random and w(s) is the pdf of s, R denotes
the average rate achievable by the broadcast approach for a
random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (11) and (15), we
obtain

R =

Z 1

0

(1�W (p))

@

@⇢

I(p, ⇢)
����
⇢=�(p)

e�(a)dp, (16)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (11))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (16) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (13)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (16) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (17)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (16) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (18)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (19)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s) (20)

d

ds

F�̇ = w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

+ (W (s)� 1)⇥

⇥
"

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

+

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s)

#
,

(21)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (20) and (21) into (19), the

terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(22)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃

III. APPLICATION TO THE SPARSE-INPUT
RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

I(p, �) = lim

N!1

1

N

E [log |I+ �Rp|] , (23)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(�) = E


1

1 + ��(Rp)

�
(24)

denote the ⌘-transform of the limiting (for N ! 1) eigen-
value distribution of Rp, with �(Rp) denoting a random
variable with distribution given by the asymptotic eigenvalue
distribution of Rp. Then, @

@⇢I(p, ⇢) can be expressed in terms
of ⌘Rp(⇢) using the well-known formula [?, Eq. (2.61)]

@

@⇢

I(p, ⇢) = 1

⇢

�
1� ⌘Rp(⇢)

�
. (25)

In contrast, finding a general expression for the partial deriva-
tive ˙I(p, ⇢) of the mutual information (23) with respect to p

is more challenging, and the result depends, in general, on theγ (p)

γ (∞) = 0γ (0) = E x 2⎡⎣ ⎤⎦ = P

γ (p)
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This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (17)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

1

N

R =

1

N

Z 1

0

w(p)R(p)dp

Z 1

0

w(p)

Z p

0

@

@⇢

VRa(⇢)

����
⇢=�(a)

dp

In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (13) and (17), we
obtain

R =

Z 1

0

(1�W (p))

@

@⇢

I(p, ⇢)
����
⇢=�(p)

e�(a)dp, (18)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (13))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (18) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (15)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (18) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (19)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (18) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (20)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (21)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s) (22)

d

ds

F�̇ = w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

+ (W (s)� 1)⇥

⇥
"

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

+

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s)

#
,

(23)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (22) and (23) into (21), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(24)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃
III. APPLICATION TO THE SPARSE-INPUT

RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

I(p, �) = lim

N!1

1

N

E [log |I+ �Rp|] , (25)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(�) = E


1

1 + ��(Rp)

�
(26)

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (17)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

1

N

R =

1

N

Z 1

0

w(p)R(p)dp

=

Z 1

0

w(p)

Z p

0

@

@⇢

VRa(⇢)

����
⇢=�(a)

dp

In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (13) and (17), we
obtain

1

N

R =

Z 1

0

(1�W (p))

@

@⇢

VRp(⇢)

����
⇢=�(p)

e�(p)dp, (18)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (13))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (18) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (15)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (18) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (19)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (18) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (20)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (21)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)

@
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I(s, ⇢)
����
⇢=�(s)

�̇(s) (22)

d

ds

F�̇ = w(s)
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where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (22) and (23) into (21), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation
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Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =
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�a�̇(a)
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da,

The corresponding Eüler equation for the functional
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conditions �(s
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) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃
III. APPLICATION TO THE SPARSE-INPUT

RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

VRp

�

=

1

N

E [log |I+ �Rp|] , (25)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(�) = E


1

1 + ��(Rp)

�
(26)

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (17)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by
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In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (13) and (17), we
obtain

1
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where W (s) =

R s
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w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (13))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (18) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (15)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (18) as
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where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (18) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional
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A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation
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where F� and F�̇ are the partial derivatives of F with respect
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where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (22) and (23) into (21), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation
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Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]
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1 + a�(a)

da,

The corresponding Eüler equation for the functional
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yields
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Solving for �(s), we obtain [?]
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where s
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are determined by imposing the boundary
conditions �(s

0

) = P and �(s
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) = 0, and where �(s) =
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RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as
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=
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E [log |I+ �Rp|] , (25)

where we let Rp
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= ApUBUHAp. Let

⌘Rp(�) = E
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In particular, if s is random and w(s) is the pdf of s, R denotes
the average rate achievable by the broadcast approach for a
random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (11) and (15), we
obtain
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where W (s) =
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w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (11))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (16) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (13)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (16) as

R =
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where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (16) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (18)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation
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ds
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where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have
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where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (20) and (21) into (19), the

terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation
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Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =
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1 + a�(a)

da,

The corresponding Eüler equation for the functional
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yields
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) = 0, and where �(s) =
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III. APPLICATION TO THE SPARSE-INPUT
RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

I(p, �) = lim
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where we let Rp
�

= ApUBUHAp. Let
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denote the ⌘-transform of the limiting (for N ! 1) eigen-
value distribution of Rp, with �(Rp) denoting a random
variable with distribution given by the asymptotic eigenvalue
distribution of Rp. Then, @

@⇢I(p, ⇢) can be expressed in terms
of ⌘Rp(⇢) using the well-known formula [?, Eq. (2.61)]
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In contrast, finding a general expression for the partial deriva-
tive ˙I(p, ⇢) of the mutual information (23) with respect to p

is more challenging, and the result depends, in general, on theγ (p)
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The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by
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In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (15) and (18), we
obtain

1

N

R =

Z 1

0

(1�W (p))

@

@⇢

VRp(⇢)

����
⇢=�(p)

e�(p)dp, (19)

where W (s) =

R s
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w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (15))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (19) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (16)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (19) as
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where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (19) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional
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F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation
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where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have
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where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (23) and (24) into (22), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation
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Example 1: In [?], a scalar fading Gaussian channel is
considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,
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Abstract—We consider a MIMO (linear Gaussian) channel
where the inputs are turned on and off at random, and the
outputs are sampled at random with probability p. In partic-
ular, for a given probability of “on” input q (input sparsity),
we consider a scenario where the transmitter wishes to send
information to a family of possible receivers characterized by
different random sampling rates p 2 [0, 1]. For this setting, we
focus on the broadcast approach, i.e., a coding technique where
the transmitter sends information encoded into superposition
layers, such that the number of decoded layers depends on the
receiver sampling rate p. We obtain a method for calculating
the power allocation across the layers for given statistics of
the MIMO channel matrix in order to maximize the system
weighted sum rate for arbitrary non-negative weighting function
w(p). In particular, we provide analytical solutions both for iid
and Haar distributed MIMO channel matrices. The latter case
accounts also for DFT matrices (see [?]), with application to
sparse spectrum signals with random sub-Nyquist sampling.

Index Terms—Random sampling, broadcast approach, com-
pound channels, degraded message set.

I. PROBLEM DEFINITION

Consider a Gaussian MIMO channel with input x 2 CN ,
output y 2 CN , matrices A,U,B 2 CN⇥N and transition
probability density described by

y = AUBx+ z, (1)

where z ⇠ CN (0, I) is a Gaussian i.i.d. N -dimensional
random vector and the input is subject to the usual total power
constraint E[kxk2]  P .

In this paper, A,B are random diagonal matrices with
diagonal elements in {0, 1} with probability P[Ai,i = 1] = p

and P[Bi,i = 1] = q, and U is a random matrix with
distribution discussed later on. Notice that the matrix A
describes which outputs of the MIMO channel are effectively
sampled at the receiver, and B describes which inputs of the
MIMO channels are effectively transmitted. We refer to p as
the (spatial) “sampling rate” of the receiver, and to q and the
(spatial) “sparsity” of the transmitter. Regarding the evolution
in time, i.e., across successive channel uses of (1), we focus on
the stationary and ergodic case where A,U,B are stationary
and ergodic matrix processes with respect to time, and z is an
iid vector process. This assumption is used for convenience, in
order to express achievable rates using the single-letter mutual

This work has been supported by the US-Israel Binational Science Foun-
dation (BSF).

information of the N -dimensional channel (1). As a matter of
fact, we are interested in the large system limit N ! 1, such
that even in the case of quasi-static channels (i.e., for random
realizations of A,U,B, constant over whole codewords), the
achievable rate expressions take the same form as for the case
of stationary ergodic case.

We fix q and consider the case where a single N -input
transmitter (producing x) wishes to send information to a set
of receivers, each of which is characterized by its own value
of p 2 (0, 1]. This yields the ensemble of channels1

yp = ApUBx+ z; (2)

Furthermore, we assume that the codebook must be designed a
priori, for known and fixed input sparsity q, but independently
of the realization of the matrix B.2 This includes the case
where some inputs may be shut off because of causes that
are uncontrollable by the transmitter itself. Hence, while each
receiver is aware of the realization of the channel matrix
ApUB, the transmitter is aware only of its statistics. The
results in a stochastically degraded MIMO broadcast channel
such that a channel with p = p

1

is a stochastically degraded
version of a channel with state p = p

2

if p
1

 p

2

.
It is well-known that superposition coding is optimal (capac-

ity achieving) for the stochastically degraded broadcast chan-
nel with independent messages [?]. In addition, in this work
we consider the broadcast approach (see [?] and references
therein), which consists of sending incremental information
using superposition layers, such that the number of decoded
layers at any receiver depends on its own sampling rate.
Receivers with large p will be able to decode a large number
of layers, while receivers with smaller p will be able to
decode smaller number of layers. The broadcast approach is
particularly useful in the presence of a degraded message set,
i.e., when the information to be delivered to a receiver with
sampling rate p

1

is a subset of the information to be delivered
to a receiver with p

2

> p

1

.

1Given that the capacity region of the broadcast channel depends only on the
marginal distributions on the joint transition probability distribution and z and
U are identically distributed across the receivers, for notational convenience
we shall omit the subscript p from z and U.

2The case where the channel family is indexed by both p and q is considered
in an on-going work [?].

ASYMP. RANDOM MATRIX THEORY: CLOSE-FORM EXPRESSION FOR SHANNON AND η� TRANSFORM 

Solving the Euler-Lagrange equation we need expressions: 

This yields

f(a, ⇢)
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I(a, ⇢)�̇(a). (17)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

1

N

R =

1

N

Z 1

0

w(p)R(p)dp

=

Z 1

0

w(p)

Z p

0

@

@⇢

VRp(⇢)

����
⇢=�(p)

dp

In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (??) and (??), we
obtain

1

N

R =

Z 1

0

(1�W (p))

@

@⇢

VRp(⇢)

����
⇢=�(p)

e�(p)dp, (18)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (??))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (??) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (??)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (??) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (19)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (??) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (20)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (21)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s) (22)

d

ds

F�̇ = w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

+ (W (s)� 1)⇥

⇥
"

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

+

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s)

#
,

(23)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (??) and (??) into (??), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(24)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃

III. APPLICATION TO THE SPARSE-INPUT
RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (??) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

VRp(⇢)
�

=

1

N

E [log |I+ ⇢Rp|] , (25)

VRp(⇢)
�

= lim

N!1

1

N

E [log |I+ ⇢Rp|] , (26)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(⇢)
�

= E


1

1 + ⇢�(Rp)

�
(27)

denote the ⌘-transform of the limiting (for N ! 1) eigen-
value distribution of Rp, with �(Rp) denoting a random
variable with distribution given by the asymptotic eigenvalue
distribution of Rp.

VUBUH(P ) (28)

Then, @
@⇢I(p, ⇢) can be expressed in terms of ⌘Rp(⇢) using

the well-known formula [?, Eq. (2.61)]

@

@⇢

VRp(⇢) =

1

⇢

�
1� ⌘Rp(⇢)

�
. (29)

In contrast, finding a general expression for the partial deriva-
tive ˙I(p, ⇢) of the mutual information (28) with respect to p

is more challenging, and the result depends, in general, on the
nature of the channel matrix U. Note that @

@⇢
˙I(s, ⇢) can be

rewritten as:
@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (30)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(27) with respect to p. Then, replacing (29) and (30) in (24)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (31)

Using (29) into the rate expression (19), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (32)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (18).

Example 2: It is useful to compare the rate R in (32)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (33)

⌃

A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (34)

with

F(x, z) =

✓q
1 + x

�
1 +

p
z

�
2 �

q
1 + x

�
1�

p
z

�
2

◆
2

.

Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

� 1

#
(35)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (31) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total
power) for some interval [0, p

0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (31)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (31) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2, and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (36)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (31) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(37)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p

2�

"
1� 1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

#
�

F(�p,

q
p )

4�

2

= 0.

(38)

Notice that we cannot replace � = 0 in (38) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation
�!0! q(1� 2p) = 0, (39)

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (17)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

1

N

R =

1

N

Z 1

0

w(p)R(p)dp

=

Z 1

0

w(p)

Z p

0

@

@⇢

VRa(⇢)

����
⇢=�(a)

dp

In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (13) and (17), we
obtain

1

N

R =

Z 1

0

(1�W (p))

@

@⇢

VRp(⇢)

����
⇢=�(p)

e�(p)dp, (18)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (13))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (18) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (15)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (18) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (19)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (18) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (20)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (21)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s) (22)

d

ds

F�̇ = w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

+ (W (s)� 1)⇥

⇥
"

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

+

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s)

#
,

(23)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (22) and (23) into (21), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(24)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃
III. APPLICATION TO THE SPARSE-INPUT

RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

VRp

�

=

1

N

E [log |I+ �Rp|] , (25)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(�) = E


1

1 + ��(Rp)

�
(26)

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (18)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

1

N

R =

1

N

Z 1

0

w(p)R(p)dp

=

Z 1

0

w(p)

Z p

0

@

@⇢

VRp(⇢)

����
⇢=�(p)

dp

In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (15) and (18), we
obtain

1

N

R =

Z 1

0

(1�W (p))

@

@⇢

VRp(⇢)

����
⇢=�(p)

e�(p)dp, (19)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (15))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (19) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (16)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (19) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (20)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (19) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (21)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (22)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s) (23)

d

ds

F�̇ = w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

+ (W (s)� 1)⇥

⇥
"

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

+

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s)

#
,

(24)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (23) and (24) into (22), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(25)

(1�W (p))

@

@⇢

˙VRp(⇢)

����
⇢=�(p)

�w(p)

@

@⇢

VRp(⇢)

����
⇢=�(p)

= 0.

Example 1: In [?], a scalar fading Gaussian channel is
considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃

III. APPLICATION TO THE SPARSE-INPUT
RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (??) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

VRp(⇢)
�

=

1

N

E [log |I+ ⇢Rp|] , (26)

VX(⇢)

�

= E [log (1 + ⇢X)] , (27)

I(s, ⇢) �

= lim

N!1

1

N

E [log |I+ ⇢Rp|] , (28)

VRp(⇢)
�

= lim

N!1

1

N

E [log |I+ ⇢Rp|] , (29)

VR(⇢)

�

= E [log (1 + ⇢�(R))] = lim

N!1

1

N

E [log |I+ ⇢R|]

⌘R(⇢)

�

= E


1

1 + ⇢�(R)

�
= lim

N!1

1

N

E
h
Tr (I+ ⇢R)

�1

i

(30)
where we let Rp

�

= ApUBUHAp. Let

⌘Rp(⇢)
�

= E


1

1 + ⇢�(Rp)

�
= lim

N!1

1

N

E
h
(I+ ⇢Rp)

�1

i

(31)

⌘X(⇢)

�

= E


1

1 + ⇢�(Rp)

�
(32)

denote the ⌘-transform of the limiting (for N ! 1) eigen-
value distribution of Rp, with �(Rp) denoting a random
variable with distribution given by the asymptotic eigenvalue
distribution of Rp.

VUBUH(P ) (33)

Then, @
@⇢I(p, ⇢) can be expressed in terms of ⌘Rp(⇢) using

the well-known formula [?, Eq. (2.61)]

@

@⇢

VR(⇢) =

1

⇢

(1� ⌘R(⇢)) . (34)

In contrast, finding a general expression for the partial deriva-
tive ˙I(p, ⇢) of the mutual information (??) with respect to p

is more challenging, and the result depends, in general, on the
nature of the channel matrix U. Note that @

@⇢
˙I(s, ⇢) can be

rewritten as:
@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (35)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(??) with respect to p. Then, replacing (??) and (??) in (??)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (36)

Using (??) into the rate expression (??), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (37)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (??).

Example 2: It is useful to compare the rate R in (??)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (38)

⌃

A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (39)

with

F(x, z) =

✓q
1 + x

�
1 +

p
z

�
2 �

q
1 + x

�
1�

p
z

�
2

◆
2

.

Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

� 1

#
(40)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (??) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total
power) for some interval [0, p

0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (??)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (??) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.
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R p = A pUBU
†A p

(A p )i ∈ 0,1{ }

Arbitrary Matrix U

N x N diag matrix A p P (A p )i = 1{ } = p

P (B)i = 1{ } = q(B)i ∈ 0,1{ }N x N diag matrix B

OBJECTIVE 

Evaluate Shannon and η-transform  of the following matrix 
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Interlude: 

RANDOM MATRIX THEORY   
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THE STIELTJES TRANSFORM  

The Stieltjes transform (also called the Cauchy transform) of an arbitrary 
random variable X is defined as:  

 

 

 

Inversion formula was obtained by Stieltjes in 1894:  

 

 

The Stieltjes transform

The Stieltjes transform (also called the Cauchy transform) of an arbitrary
random variable X is defined as

SX(z) = E


1

X � z

�

Inversion formula was obtained by Stieltjes in 1894:

fX(�) = lim

!!0+

1

⇡

Im


SX(� + ⌘!)

�

4

The Stieltjes transform

The Stieltjes transform (also called the Cauchy transform) of an arbitrary
random variable X is defined as

SX(z) = E


1

X � z

�

Inversion formula was obtained by Stieltjes in 1894:

fX(�) = lim

!!0+

1

⇡

Im


SX(� + ⌘!)

�

4

Rationale for Stieltjes: Description of Asymptotic Distribution of Singular Values 
(Marčenko-Pastur (1967)) 
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THE   η-TRANSFORM 
  
 The η-transform of a nonnegative random variable X is given by:  

 

 

 

 

 

where ρ is a nonnegative real number, and thus,  0 <ηX (ρ) ≤1

VRp(⇢)
�

= lim

N!1

1

N

E [log |I+ ⇢Rp|] , (28)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(⇢)
�

= E


1

1 + ⇢�(Rp)

�
(29)

⌘X(⇢)

�

= E


1

1 + ⇢X

�
(30)

denote the ⌘-transform of the limiting (for N ! 1) eigen-
value distribution of Rp, with �(Rp) denoting a random
variable with distribution given by the asymptotic eigenvalue
distribution of Rp.

VUBUH(P ) (31)

Then, @
@⇢I(p, ⇢) can be expressed in terms of ⌘Rp(⇢) using

the well-known formula [?, Eq. (2.61)]

@

@⇢

VR(⇢) =

1

⇢

(1� ⌘R(⇢)) . (32)

In contrast, finding a general expression for the partial deriva-
tive ˙I(p, ⇢) of the mutual information (30) with respect to p

is more challenging, and the result depends, in general, on the
nature of the channel matrix U. Note that @

@⇢
˙I(s, ⇢) can be

rewritten as:
@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (33)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(29) with respect to p. Then, replacing (31) and (32) in (25)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (34)

Using (31) into the rate expression (20), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (35)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (19).

Example 2: It is useful to compare the rate R in (34)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (36)

⌃

A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (37)

with

F(x, z) =

✓q
1 + x

�
1 +

p
z

�
2 �

q
1 + x

�
1�

p
z

�
2

◆
2

.

Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

� 1

#
(38)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (33) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total
power) for some interval [0, p

0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (33)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (33) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2, and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (39)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (33) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(40)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p

2�

"
1� 1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

#
�

F(�p,

q
p )

4�

2

= 0.

(41)

Notice that we cannot replace � = 0 in (40) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation
�!0! q(1� 2p) = 0, (42)

Rationale for η: Description of Asymptotic Distribution of Singular Values + Signal 
Processing Insight  
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THE SHANNON TRANSFORM  
 

The Shannon transform of a nonnegative random variable X is defined as:  

 

 

 

where ρ is a nonnegative real number.  

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (18)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

1

N

R =

1

N

Z 1

0

w(p)R(p)dp

=

Z 1

0

w(p)

Z p

0

@

@⇢

VRp(⇢)

����
⇢=�(p)

dp

In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (??) and (??), we
obtain

1

N

R =

Z 1

0

(1�W (p))

@

@⇢

VRp(⇢)

����
⇢=�(p)

e�(p)dp, (19)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (??))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (??) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (??)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (??) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (20)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (??) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (21)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (22)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s) (23)

d

ds

F�̇ = w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

+ (W (s)� 1)⇥

⇥
"

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

+

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s)

#
,

(24)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (??) and (??) into (??), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(25)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃

III. APPLICATION TO THE SPARSE-INPUT
RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (??) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

VRp(⇢)
�

=

1

N

E [log |I+ ⇢Rp|] , (26)

VX(⇢)

�

= E [log (1 + ⇢X)] , (27)

Rationale for Shannon: Description of Asymptotic Distribution of Singular Values + 
Information Theory Insight  



20 

COPYRIGHT © 2014 ALCATEL-LUCENT.  ALL RIGHTS RESERVED.  
ALCATEL-LUCENT — INTERNAL PROPRIETARY —  USE PURSUANT TO COMPANY INSTRUCTION 

RELATIONSHIP BETWEEN TRANSFORMS  
 
•   Relationship η-Shannon  

 

 

•   Relationship η-Stieltjes  

•   Relationship Shannon-Stieltjes  

Relationship between transforms

• Relationship ⌘-Shannon

�

d

d�

VX(�) = 1� ⌘X(�)

• Relationship ⌘-Stieltjes

⌘X(�) =

SX(�1
�)

�

(2)

• Relationship Shannon-Stieltjes

�

d

d�

VX(�) = 1� 1

�

SX

✓

�1

�

◆

7

Relationship between transforms

• Relationship ⌘-Shannon

�

d

d�

VX(�) = 1� ⌘X(�)

• Relationship ⌘-Stieltjes

⌘X(�) =

SX(�1
�)

�

(2)

• Relationship Shannon-Stieltjes

�

d

d�

VX(�) = 1� 1

�

SX

✓

�1

�

◆

7

Relationship between transforms

• Relationship ⌘-Shannon

�

d

d�

VX(�) = 1� ⌘X(�)

• Relationship ⌘-Stieltjes

⌘X(�) =

SX(�1
�)

�

(2)

• Relationship Shannon-Stieltjes

�

d

d�

VX(�) = 1� 1

�

SX

✓

�1

�

◆

7
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η-TRANSFORM OF A RANDOM MATRIX  
 
Given a N × N Hermitian matrix  R: 

 

The η-transform of its asymptotic ESD us given by  

III. APPLICATION TO THE SPARSE-INPUT
RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (??) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

VRp(⇢)
�

=

1

N

E [log |I+ ⇢Rp|] , (26)

VX(⇢)

�

= E [log (1 + ⇢X)] , (27)

I(s, ⇢) �

= lim

N!1

1

N

E [log |I+ ⇢Rp|] , (28)

VRp(⇢)
�

= lim

N!1

1

N

E [log |I+ ⇢Rp|] , (29)

VR(⇢)

�

= E [log (1 + ⇢�(R))] = lim

N!1

1

N

E [log |I+ ⇢R|]

⌘R(⇢)

�

= E


1

1 + ⇢�(R)

�
= lim

N!1

1

N

E
h
Tr (I+ ⇢R)

�1

i

(30)
where we let Rp

�

= ApUBUHAp. Let

⌘Rp(⇢)
�

= E


1

1 + ⇢�(Rp)

�
= lim

N!1

1

N

E
h
(I+ ⇢Rp)

�1

i

(31)

⌘X(⇢)

�

= E


1

1 + ⇢�(Rp)

�
(32)

denote the ⌘-transform of the limiting (for N ! 1) eigen-
value distribution of Rp, with �(Rp) denoting a random
variable with distribution given by the asymptotic eigenvalue
distribution of Rp.

VUBUH(P ) (33)

Then, @
@⇢I(p, ⇢) can be expressed in terms of ⌘Rp(⇢) using

the well-known formula [?, Eq. (2.61)]

@

@⇢

VR(⇢) =

1

⇢

(1� ⌘R(⇢)) . (34)

In contrast, finding a general expression for the partial deriva-
tive ˙I(p, ⇢) of the mutual information (??) with respect to p

is more challenging, and the result depends, in general, on the
nature of the channel matrix U. Note that @

@⇢
˙I(s, ⇢) can be

rewritten as:
@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (35)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(??) with respect to p. Then, replacing (??) and (??) in (??)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (36)

Using (??) into the rate expression (??), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (37)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (??).

Example 2: It is useful to compare the rate R in (??)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (38)

⌃

A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (39)

with

F(x, z) =

✓q
1 + x

�
1 +

p
z

�
2 �

q
1 + x

�
1�

p
z

�
2

◆
2

.

Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

� 1

#
(40)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (??) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total
power) for some interval [0, p

0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (??)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (??) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.
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SHANNON TRANSFORM OF A RANDOM MATRIX  
 
Given a N × N Hermitian matrix  R: 

 

The Shannon transform of its asymptotic ESD is given by 

Shannon–tranform of a Random Matrix: Mutual Information of the N-vector channel  

I(s, ⇢) �

= lim

N!1

1

N

E [log |I+ ⇢Rp|] , (28)

VRp(⇢)
�

= lim

N!1

1

N

E [log |I+ ⇢Rp|] , (29)

VR(⇢)

�

= E [log (1 + ⇢�(R))] = lim

N!1

1

N

E [log |I+ ⇢R|]

⌘R(⇢)

�

= E


1

1 + ⇢�(R)

�
= lim

N!1

1

N

E
h
(I+ ⇢R)

�1

i
(30)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(⇢)
�

= E


1

1 + ⇢�(Rp)

�
= lim

N!1

1

N

E
h
(I+ ⇢Rp)

�1

i

(31)

⌘X(⇢)

�

= E


1

1 + ⇢�(Rp)

�
(32)

denote the ⌘-transform of the limiting (for N ! 1) eigen-
value distribution of Rp, with �(Rp) denoting a random
variable with distribution given by the asymptotic eigenvalue
distribution of Rp.

VUBUH(P ) (33)

Then, @
@⇢I(p, ⇢) can be expressed in terms of ⌘Rp(⇢) using

the well-known formula [?, Eq. (2.61)]
@

@⇢

VR(⇢) =

1

⇢

(1� ⌘R(⇢)) . (34)

In contrast, finding a general expression for the partial deriva-
tive ˙I(p, ⇢) of the mutual information (34) with respect to p

is more challenging, and the result depends, in general, on the
nature of the channel matrix U. Note that @

@⇢
˙I(s, ⇢) can be

rewritten as:
@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (35)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(33) with respect to p. Then, replacing (35) and (36) in (25)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (36)

Using (35) into the rate expression (20), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (37)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (19).

Example 2: It is useful to compare the rate R in (38)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a

threshold sampling rate p
th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (38)

⌃

A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (39)

with

F(x, z) =
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1 + x
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p
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Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

� 1

#
(40)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (37) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total
power) for some interval [0, p

0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (37)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (37) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2, and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (41)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (37) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(42)

VRp(⇢)
�
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N!1

1

N

E [log |I+ ⇢Rp|] , (28)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(⇢)
�

= E


1

1 + ⇢�(Rp)

�
(29)

denote the ⌘-transform of the limiting (for N ! 1) eigen-
value distribution of Rp, with �(Rp) denoting a random
variable with distribution given by the asymptotic eigenvalue
distribution of Rp.

VUBUH(P ) (30)

Then, @
@⇢I(p, ⇢) can be expressed in terms of ⌘Rp(⇢) using

the well-known formula [?, Eq. (2.61)]

@

@⇢

VR(⇢) =

1

⇢

(1� ⌘R(⇢)) . (31)

In contrast, finding a general expression for the partial deriva-
tive ˙I(p, ⇢) of the mutual information (30) with respect to p

is more challenging, and the result depends, in general, on the
nature of the channel matrix U. Note that @

@⇢
˙I(s, ⇢) can be

rewritten as:
@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (32)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(29) with respect to p. Then, replacing (31) and (32) in (25)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (33)

Using (31) into the rate expression (20), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (34)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (19).

Example 2: It is useful to compare the rate R in (34)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (35)

⌃

A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )
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, (36)

with
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Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2
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#
(37)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (33) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total
power) for some interval [0, p

0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (33)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (33) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2, and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (38)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (33) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(39)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p

2�

"
1� 1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

#
�

F(�p,

q
p )

4�

2

= 0.

(40)

Notice that we cannot replace � = 0 in (40) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation
�!0! q(1� 2p) = 0, (41)
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In particular, if s is random and w(s) is the pdf of s, R denotes
the average rate achievable by the broadcast approach for a
random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (11) and (15), we
obtain

R =

Z 1

0

(1�W (p))

@

@⇢

I(p, ⇢)
����
⇢=�(p)

e�(a)dp, (16)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (11))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (16) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (13)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (16) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (17)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (16) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (18)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (19)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s) (20)

d

ds

F�̇ = w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

+ (W (s)� 1)⇥

⇥
"

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

+

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s)

#
,

(21)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (20) and (21) into (19), the

terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(22)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃

III. APPLICATION TO THE SPARSE-INPUT
RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

I(p, �) = lim

N!1

1

N

E [log |I+ �Rp|] , (23)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(�) = E


1

1 + ��(Rp)

�
(24)

denote the ⌘-transform of the limiting (for N ! 1) eigen-
value distribution of Rp, with �(Rp) denoting a random
variable with distribution given by the asymptotic eigenvalue
distribution of Rp. Then, @

@⇢I(p, ⇢) can be expressed in terms
of ⌘Rp(⇢) using the well-known formula [?, Eq. (2.61)]

@

@⇢

I(p, ⇢) = 1

⇢

�
1� ⌘Rp(⇢)

�
. (25)

In contrast, finding a general expression for the partial deriva-
tive ˙I(p, ⇢) of the mutual information (23) with respect to p

is more challenging, and the result depends, in general, on the

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (17)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

1

N

R =

1

N

Z 1

0

w(p)R(p)dp

=

Z 1

0

w(p)

Z p

0

@
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VRp(⇢)

����
⇢=�(p)

dp

In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (??) and (??), we
obtain
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where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (??))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (??) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (??)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (??) as

R =
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�(A)

(1�W (g(�)))
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I(g(�), ⇢)
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⇢=�

d�, (19)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (??) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))
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= (W (s)� 1)
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I(s, ⇢)
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⇢=�(s)

�̇(s). (20)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (21)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have
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�̇(s) (22)
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(23)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (??) and (??) into (??), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))
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˙I(s, ⇢)
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⇢=�(s)

� w(s)
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= 0.

(24)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =
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1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)
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yields
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� sw(s)
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= 0.

Solving for �(s), we obtain [?]

�(s) =
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:

P for s < s

0
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s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃

III. APPLICATION TO THE SPARSE-INPUT
RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (??) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

VRp(⇢)
�

=

1

N

E [log |I+ ⇢Rp|] , (25)

VRp(⇢)
�

= lim

N!1

1

N

E [log |I+ ⇢Rp|] , (26)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(⇢)
�

= E


1

1 + ⇢�(Rp)

�
(27)

denote the ⌘-transform of the limiting (for N ! 1) eigen-
value distribution of Rp, with �(Rp) denoting a random
variable with distribution given by the asymptotic eigenvalue
distribution of Rp.

VUBUH(P ) (28)

Then, @
@⇢I(p, ⇢) can be expressed in terms of ⌘Rp(⇢) using

the well-known formula [?, Eq. (2.61)]

VRp(⇢) =

1

⇢

�
1� ⌘Rp(⇢)

�
. (29)

In contrast, finding a general expression for the partial deriva-
tive ˙I(p, ⇢) of the mutual information (28) with respect to p

is more challenging, and the result depends, in general, on the
nature of the channel matrix U. Note that @

@⇢
˙I(s, ⇢) can be

rewritten as:
@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (30)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(27) with respect to p. Then, replacing (29) and (30) in (24)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (31)

Using (29) into the rate expression (19), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (32)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (18).

Example 2: It is useful to compare the rate R in (32)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (33)

⌃

A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (34)

with
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p
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�
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◆
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Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

� 1

#
(35)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (31) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total
power) for some interval [0, p

0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (31)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (31) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2, and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (36)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (31) is given by

�(p) =

8
<
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P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(37)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p

2�
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1� 1 + �(p� q)p
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(p� q)

2

#
�
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q
p )

4�

2

= 0.

(38)

Notice that we cannot replace � = 0 in (38) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation
�!0! q(1� 2p) = 0, (39)
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Abstract

We consider a MIMO (linear Gaussian) channel where the inputs are turned on and off at random, and the outputs are sampled
at random with probability p. In particular, for a given probability of “on” input q (input sparsity), we consider a scenario where
the transmitter wishes to send information to a family of possible receivers characterized by different random sampling rates
p 2 [0, 1]. For this setting, we focus on the broadcast approach, i.e., a coding technique where the transmitter sends information
encoded into superposition layers, such that the number of decoded layers depends on the receiver sampling rate p. We obtain
a method for calculating the power allocation across the layers for given statistics of the MIMO channel matrix in order to
maximize the system weighted sum rate for arbitrary non-negative weighting function w(p). In particular, we provide analytical
solutions both for iid and Haar distributed MIMO channel matrices. The latter case accounts also for DFT matrices (see [?]), with
application to sparse spectrum signals with random sub-Nyquist sampling.

Index Terms

Random sampling, broadcast approach, compound channels, degraded message set.
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R = HH†

S. SHAMAI AND S. VERDU, “THE EFFECT OF FREQUENCY-FLAT FADING ON THE SPECTRAL 
EFFICIENCY OF CDMA”, IEEE TRANS. INFORMATION THEORY,  2001.  

H pN × qN

β = p
q
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R p = A pUBU
†A p

(A p )i ∈ 0,1{ }

Arbitrary Matrix U

N x N diag matrix A p P (A p )i = 1{ } = p

P (B)i = 1{ } = q(B)i ∈ 0,1{ }N x N diag matrix B

OBJECTIVE 

Evaluate Shannon and η-transform  of the following matrix 
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R p = A pUBU
†A p

(A p )i ∈ 0,1{ }

N x N IID matrix U N x N diag matrix A p

P (A p )i = 1{ } = p

β = p
q

P (B)i = 1{ } = q(B)i ∈ 0,1{ }

N x N diag matrix B
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                         WITH             HAAR MATRIX  
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nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (30)

with
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Explicitly, ⌘̇Rp(�) is given by
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1

2
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1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)
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(31)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2 and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:
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Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:
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p
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(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.
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Abstract

We consider a MIMO (linear Gaussian) channel where the inputs are turned on and off at random, and the outputs are sampled
at random with probability p. In particular, for a given probability of “on” input q (input sparsity), we consider a scenario where
the transmitter wishes to send information to a family of possible receivers characterized by different random sampling rates
p 2 [0, 1]. For this setting, we focus on the broadcast approach, i.e., a coding technique where the transmitter sends information
encoded into superposition layers, such that the number of decoded layers depends on the receiver sampling rate p. We obtain
a method for calculating the power allocation across the layers for given statistics of the MIMO channel matrix in order to
maximize the system weighted sum rate for arbitrary non-negative weighting function w(p). In particular, we provide analytical
solutions both for iid and Haar distributed MIMO channel matrices. The latter case accounts also for DFT matrices (see [?]), with
application to sparse spectrum signals with random sub-Nyquist sampling.
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Theorem: 

             and         are asymptotically  free.         

 

•   Shannon Transform: 

•   η-Transform: 

 

                         WITH             FOURIER MATRIX  N × NR p = A pUBU
†A p U
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where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:
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Using (25) into the rate expression (17), we obtain the total
weighted rate expression as
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. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
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A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1
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Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
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the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.
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Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0
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with sampling rate larger than 0.5 can decode all layers.
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as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
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Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.
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maximize the system weighted sum rate for arbitrary non-negative weighting function w(p). In particular, we provide analytical
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SOLVING THE EULER-LAGRANGE EQUATION 

We need expressions for the mutual information and its derivatives,  
for the channel model: 

yp = ApUBx+ z,

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (17)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

1

N

R =

1

N

Z 1

0

w(p)R(p)dp

=

Z 1

0

w(p)

Z p

0

@

@⇢

VRp(⇢)

����
⇢=�(p)

dp

In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (??) and (??), we
obtain

1

N

R =

Z 1

0

(1�W (p))

@

@⇢

VRp(⇢)

����
⇢=�(p)

e�(p)dp, (18)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (??))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (??) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (??)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (??) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (19)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (??) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (20)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (21)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)
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I(s, ⇢)
����
⇢=�(s)

�̇(s) (22)
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+ (W (s)� 1)⇥

⇥
"

@
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˙I(s, ⇢)
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⇢=�(s)

+

@

2

@⇢
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I(s, ⇢)
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⇢=�(s)

�̇(s)

#
,

(23)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (??) and (??) into (??), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(24)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃

III. APPLICATION TO THE SPARSE-INPUT
RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (??) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

VRp(⇢)
�

=

1

N

E [log |I+ ⇢Rp|] , (25)

VRp(⇢)
�

= lim

N!1

1

N

E [log |I+ ⇢Rp|] , (26)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(⇢)
�

= E


1

1 + ⇢�(Rp)

�
(27)

denote the ⌘-transform of the limiting (for N ! 1) eigen-
value distribution of Rp, with �(Rp) denoting a random
variable with distribution given by the asymptotic eigenvalue
distribution of Rp.

VUBUH(P ) (28)

Then, @
@⇢I(p, ⇢) can be expressed in terms of ⌘Rp(⇢) using

the well-known formula [?, Eq. (2.61)]

@

@⇢

VRp(⇢) =

1

⇢

�
1� ⌘Rp(⇢)

�
. (29)

In contrast, finding a general expression for the partial deriva-
tive ˙I(p, ⇢) of the mutual information (28) with respect to p

is more challenging, and the result depends, in general, on the
nature of the channel matrix U. Note that @

@⇢
˙I(s, ⇢) can be

rewritten as:
@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (30)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(27) with respect to p. Then, replacing (29) and (30) in (24)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (31)

Using (29) into the rate expression (19), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (32)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (18).

Example 2: It is useful to compare the rate R in (32)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (33)

⌃

A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (34)

with
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Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

� 1

#
(35)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (31) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total
power) for some interval [0, p

0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (31)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (31) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2, and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (36)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (31) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(37)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p
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1� 1 + �(p� q)p
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(p� q)
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2

= 0.

(38)

Notice that we cannot replace � = 0 in (38) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation
�!0! q(1� 2p) = 0, (39)

This yields

f(a, ⇢)

�

= � @

@⇢

I(a, ⇢)�̇(a). (18)

The optimization of the power allocation across the layers
can be formulated as follows. Let w(s)ds denote the reward
proportional to the rate of a user with state s. Then, we wish
to maximize the total reward (weighted sum rate) given by

1

N

R =

1

N

Z 1

0

w(p)R(p)dp

=

Z 1

0

w(p)

Z p

0

@

@⇢

VRp(⇢)

����
⇢=�(p)

dp

In particular, if s is random and w(s) is the pdf of s, R
denotes the average rate achievable by the broadcast approach
for a random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (15) and (18), we
obtain

1

N

R =

Z 1

0

(1�W (p))

@

@⇢

VRp(⇢)

����
⇢=�(p)

e�(p)dp, (19)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (15))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (19) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (16)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (19) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (20)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (19) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (21)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (22)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)
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I(s, ⇢)
����
⇢=�(s)

�̇(s) (23)
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#
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(24)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (23) and (24) into (22), the
terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))
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= 0.

Example 1: In [?], a scalar fading Gaussian channel is
considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]
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0
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da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
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Solving for �(s), we obtain [?]
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where s

0

and s

1
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CHANGE OF VARIABLE 
We can rewrite the Euler-Lagrange equation in terms of the eta-transform and 
its derivative with respect to p: 

�(1�W (p))
⌘̇Rp(�(p))

�(p)
� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0

With a change of variable                , we can re-write the rate: 

R =

Z

�(A)
(1�W (g(�)))

1� ⌘Rg(�)
(�)

�
d�.

as: 

R =

Z 1

0
(W (p)� 1)
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����
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�̇(p)dp

� = �(p)
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RANDOM MATRIX THEORY (          ) 

ASYMP. RM THEORY: CLOSE-FORM EXPRESSION FOR SHANNON AND η� TRANSFORM 

nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (30)

with

F(x, z) =

✓q
1 + x

�
1 +

p
z

�
2 �

q
1 + x

�
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p
z

�
2

◆
2

.

Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

� 1

#
(31)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2 and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p

2�

"
1� 1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

#

�
F(�p,

q
p )

4�

2

= 0. (34)

Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain

⌘̇Rp(�)=

2�(1� q)

⇣
1�

p
G(�, p, q)(1 + �(1� q)) + �

⌘

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

+

2�(1� q)

�
�

2

(1� q)(p� q) + �(p� 2pq)

�

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.

nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (30)

with

F(x, z) =
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Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2
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#
(31)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2 and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:
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(p� q)
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2

= 0. (34)

Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain

⌘̇Rp(�)=

2�(1� q)

⇣
1�

p
G(�, p, q)(1 + �(1� q)) + �

⌘

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
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+

2�(1� q)
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2

(1� q)(p� q) + �(p� 2pq)

�

p
G(�, p, q)

⇣
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p
G(�, p, q) + �(�2 + p+ q)

⌘
2

(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.

nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (30)

with

F(x, z) =
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Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2
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#
(31)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2 and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p
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1� 1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2
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p )
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2

= 0. (34)

Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain

⌘̇Rp(�)=

2�(1� q)

⇣
1�

p
G(�, p, q)(1 + �(1� q)) + �

⌘

p
G(�, p, q)

⇣
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p
G(�, p, q) + �(�2 + p+ q)

⌘
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(1� q)(p� q) + �(p� 2pq)

�

p
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p
G(�, p, q) + �(�2 + p+ q)

⌘
2

(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.

nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (30)

with
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Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2
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#
(31)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2 and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p
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2

(p� q)
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2

= 0. (34)

Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain

⌘̇Rp(�)=

2�(1� q)

⇣
1�

p
G(�, p, q)(1 + �(1� q)) + �

⌘
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⇣
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p
G(�, p, q) + �(�2 + p+ q)
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p
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p
G(�, p, q) + �(�2 + p+ q)

⌘
2

(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.

nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (30)

with

F(x, z) =

✓q
1 + x

�
1 +

p
z

�
2 �

q
1 + x

�
1�

p
z

�
2

◆
2

.

Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

� 1

#
(31)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2 and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p

2�

"
1� 1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

#

�
F(�p,

q
p )

4�

2

= 0. (34)

Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain

⌘̇Rp(�)=

2�(1� q)

⇣
1�

p
G(�, p, q)(1 + �(1� q)) + �

⌘

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

+

2�(1� q)

�
�

2

(1� q)(p� q) + �(p� 2pq)

�

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.

nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (30)

with

F(x, z) =

✓q
1 + x

�
1 +

p
z

�
2 �

q
1 + x

�
1�

p
z

�
2

◆
2

.

Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

� 1

#
(31)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2 and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p

2�

"
1� 1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

#

�
F(�p,

q
p )

4�

2

= 0. (34)

Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain

⌘̇Rp(�)=

2�(1� q)

⇣
1�

p
G(�, p, q)(1 + �(1� q)) + �

⌘

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

+

2�(1� q)

�
�

2

(1� q)(p� q) + �(p� 2pq)

�

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.

In particular, if s is random and w(s) is the pdf of s, R denotes
the average rate achievable by the broadcast approach for a
random user with s ⇠ w(s), or the total multicast rate to
an ensemble of users with channel parameter distributed with
density w(s). Integrating by parts and using (11) and (15), we
obtain

R =

Z 1

0

(1�W (p))

@

@⇢

I(p, ⇢)
����
⇢=�(p)

e�(a)dp, (16)

where W (s) =

R s
0

w(a)da is the cdf of the weight density
function w(s), and we used the fact that R(0) = 0 (from (11))
ad the normalization (without loss of generality) W (1) = 1.
Then, the optimization of R with respect to the power allo-
cation function �(s) consists of maximizing (16) subject to
the boundary conditions �(0) = P , �(1) = 0, and that �(s)
is a monotonically non-increasing and non-negative function
of s (see (13)). It is also interesting to notice that, under the
additional assumption that �(s) is constant over a collection of
intervals Ac ⇢ R

+

and strictly monotonically decreasing (and
hence invertible) on the complement set A, using the change
of variable �(s) = � and s = g(�) where g(·) is the inverse
function of �(·) over A, we can write (16) as

R =

Z

�(A)

(1�W (g(�)))

@

@⇢

I(g(�), ⇢)
����
⇢=�

d�, (17)

where, with some abuse of notation, we denote by �(A) the
image of A under �. By construction, �(A) is a collection of
disjoint intervals included in [0, P ].

For the sake of completeness, we review here the variational
approach to the maximization of R in (16) (for more details,
see [?] and references therein). We wish to maximize the
integral of the functional

F (s, �(s), �̇(s))

�

= (W (s)� 1)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

�̇(s). (18)

A necessary condition for a maximum of the integral of
F (s, �(s), �̇(s)) over s is a zero variation of the functional.
This yields the Eüler equation

F� � d

ds

F�̇ = 0 (19)

where F� and F�̇ are the partial derivatives of F with respect
to arguments � and �̇. Explicitly, we have

F� = (W (s)� 1)

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s) (20)

d

ds

F�̇ = w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

+ (W (s)� 1)⇥

⇥
"

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

+

@

2

@⇢

2

I(s, ⇢)
����
⇢=�(s)

�̇(s)

#
,

(21)

where ˙I(s, ⇢) denotes the partial derivative of I with respect
to its first argument s. Replacing (20) and (21) into (19), the

terms containing the second derivative of I with respect to ⇢

cancel out, and we obtain the equation

(1�W (s))

@

@⇢

˙I(s, ⇢)
����
⇢=�(s)

� w(s)

@

@⇢

I(s, ⇢)
����
⇢=�(s)

= 0.

(22)
Example 1: In [?], a scalar fading Gaussian channel is

considered. In this case, we have

I(s, �) = log(1 + s�)

and the achievable rate of the broadcast layered scheme at a
receiver with channel state s is given by [?, Eq. (6)]

R(s) =

Z s

0

�a�̇(a)

1 + a�(a)

da,

The corresponding Eüler equation for the functional

F (s, �, �̇) = (W (s)� 1)

s�̇(s)

1 + s�(s)

yields
1�W (s)

(1 + s�(s))

2

� sw(s)

1 + s�(s)

= 0.

Solving for �(s), we obtain [?]

�(s) =

8
<

:

P for s < s

0

1�W (s)�sw(s)
s2w(s) for s

0

 s  s

1

0 for s > s

1

where s

0

and s

1

are determined by imposing the boundary
conditions �(s

0

) = P and �(s

1

) = 0, and where �(s) =

�(s

0

) = P for s 2 [0, s

0

). ⌃

III. APPLICATION TO THE SPARSE-INPUT
RANDOM-SAMPLED VECTOR GAUSSIAN CHANNEL

In our case, the set of channels is given by (2) with scalar
degradation parameter p 2 [0, 1]. We focus on the large-system
limit N ! 1 and define the mutual information per spatial
dimension N as

I(p, �) = lim

N!1

1

N

E [log |I+ �Rp|] , (23)

where we let Rp
�

= ApUBUHAp. Let

⌘Rp(�) = E


1

1 + ��(Rp)

�
(24)

denote the ⌘-transform of the limiting (for N ! 1) eigen-
value distribution of Rp, with �(Rp) denoting a random
variable with distribution given by the asymptotic eigenvalue
distribution of Rp. Then, @

@⇢I(p, ⇢) can be expressed in terms
of ⌘Rp(⇢) using the well-known formula [?, Eq. (2.61)]

@

@⇢

I(p, ⇢) = 1

⇢

�
1� ⌘Rp(⇢)

�
. (25)

In contrast, finding a general expression for the partial deriva-
tive ˙I(p, ⇢) of the mutual information (23) with respect to p

is more challenging, and the result depends, in general, on the

�(1�W (p))
⌘̇Rp(�(p))

�(p)
� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0
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FINDING THE RIGHT SOLUTION 

•  Having expressions for both             and            , we can replace them into the 
Euler-Lagrange and solve for              for all values of                 .  

•  Such solution must be discussed carefully. In general,          is equal to the 
constant P (total power) for some interval            and it is equal to the 
constant 0 for some interval             with  

•  In the range            ,                      where the latter is a monotonically non-
increasing function of p.  

•  In order to find         and          we replace the boundary conditions                    
and                 into the Euler-Lagrange equation and solve for p. Hence, we 
verify that in the interval             the solution is indeed unique and monotonic. 

⌘Rp(�) ⌘̇Rp(�)
�(p) p 2 [0, 1]

�(p)
[0, p0]

[p1, 1]

[p0, p1] �(p) = �̂(p)

p0 p1 � = P
� = 0

[p0, p1]

Using (24) into the rate expression (16), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (27)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (15).

Example 2: It is useful to compare the rate R in (27)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (28)

⌃

A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [7, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [6, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (29)

with

F(x, z) =

✓q
1 + x

�
1 +

p
z

�
2 �

q
1 + x

�
1�

p
z

�
2

◆
2

.

Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

� 1

#
(30)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (26) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total
power) for some interval [0, p

0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (26)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (26) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2 and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (31)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (26) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(32)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p

2�

"
1� 1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

#

�
F(�p,

q
p )

4�

2

= 0. (33)

Notice that we cannot replace � = 0 in (33) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (34)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [6, Example 2.44] , [7, Theorem 9] and the
result derived in [7, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(35)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain

⌘̇Rp(�)=

2�(1� q)

⇣
1�

p
G(�, p, q)(1 + �(1� q)) + �

⌘

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

+

2�(1� q)

�
�

2

(1� q)(p� q) + �(p� 2pq)

�

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

(36)

Then, we can use (35) and (36) into (26) and operate as before,
for the iid case.

3) U = F is a Fourier deterministic matrix : If U is a
unitary DFT deterministic matrix, i.e., it has (m, `) element
[F]m,` =

e�j 2⇡
m

`
p
N

for m, ` 2 {0, . . . , N�1}, using [1, Theorem
11], we have that ⌘Rp(�) takes on the same expression given
in (35). Consequently the optimal power distribution is the
same as in the previous example.
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    : AN IID RANDOM MATRIX 
Fix: 

 

 

Then: 

 

 

 
 

where          is the solution for      

nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (30)

with
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Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2
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#
(31)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2 and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p
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"
1� 1 + �(p� q)p

1 + 2�(p+ q) + �
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(p� q)
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2

= 0. (34)

Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain
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⌘
2

(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.

nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp
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= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )
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, (30)

with
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Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1
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1 + �(p� q)p

1 + 2�(p+ q) + �
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(31)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2 and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:
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Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain

⌘̇Rp(�)=

2�(1� q)

⇣
1�

p
G(�, p, q)(1 + �(1� q)) + �

⌘
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(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.

nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (30)

with
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Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1
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(31)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2 and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:
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Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain

⌘̇Rp(�)=

2�(1� q)

⇣
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(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.

nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )
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, (30)

with
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Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1
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(31)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2 and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:
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Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain

⌘̇Rp(�)=
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⇣
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Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.

nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (30)

with
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Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)
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#
(31)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2, and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p
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1� 1 + �(p� q)p
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2

(p� q)
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4�

2

= 0. (34)

Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain
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p
G(�, p, q)(1 + �(1� q)) + �

⌘

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

+

2�(1� q)

�
�

2

(1� q)(p� q) + �(p� 2pq)

�

p
G(�, p, q)

⇣
�1 +

p
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(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.

nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )
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, (30)

with

F(x, z) =

✓q
1 + x

�
1 +

p
z

�
2 �

q
1 + x

�
1�

p
z

�
2

◆
2

.

Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =
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Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2, and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:
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Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain

⌘̇Rp(�)=

2�(1� q)

⇣
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⌘

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

+

2�(1� q)

�
�

2

(1� q)(p� q) + �(p� 2pq)

�

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.

nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (30)

with
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Explicitly, ⌘̇Rp(�) is given by
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Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2, and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p

2�

"
1� 1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

#
�

F(�p,

q
p )

4�

2

= 0.

(34)

Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain

⌘̇Rp(�)=

2�(1� q)
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(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.

nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,
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p )
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, (30)

with
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Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1
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Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2, and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:
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Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain

⌘̇Rp(�)=

2�(1� q)

⇣
1�

p
G(�, p, q)(1 + �(1� q)) + �

⌘

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

+

2�(1� q)

�
�

2

(1� q)(p� q) + �(p� 2pq)

�

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.

   

nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (30)

with

F(x, z) =

✓q
1 + x

�
1 +

p
z

�
2 �

q
1 + x

�
1�

p
z

�
2

◆
2

.

Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

� 1

#
(31)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2, and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p

2�

"
1� 1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

#
�

F(�p,

q
p )

4�

2

= 0.

(34)

Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation
�!0! q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain

⌘̇Rp(�)=

2�(1� q)

⇣
1�

p
G(�, p, q)(1 + �(1� q)) + �

⌘

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

+

2�(1� q)

�
�

2

(1� q)(p� q) + �(p� 2pq)

�

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.
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nature of the channel matrix U. Note that @
@⇢

˙I(s, ⇢) can be
rewritten as:

@

@⇢

˙I(p, ⇢) = �
⌘̇Rp(⇢)

⇢

, (26)

where ⌘̇Rp(�) denotes the partial derivative of the ⌘-transform
(24) with respect to p. Then, replacing (25) and (26) in (22)
we obtain the desired form for the Eüler equation in terms of
the ⌘-transform and its partial derivative:

�(1�W (p))

⌘̇Rp(�(p))

�(p)

� w(p)

�(p)

�
1� ⌘Rp(�(p))

�
= 0. (27)

Using (25) into the rate expression (17), we obtain the total
weighted rate expression as

R =

Z

�(A)

(1�W (g(�)))(1� ⌘Rg(�)
(�))

d�

�

. (28)

This expression is convenient for computation since it requires
the (numerical) calculation of the inverse function g(·) of �(·),
restricted on the intervals where �(·) is strictly monotonically
decreasing, instead of the derivative �̇(·) as in (16).

Example 2: It is useful to compare the rate R in (28)
achieved by the broadcast approach with the case of a single
layer “outage” approach. This is simply obtained by fixing a
threshold sampling rate p

th

such that all receivers with p > p

th

can decode the whole information message, and all receivers
with p  p

th

decode nothing. Interpreting W (p) as the cdf
of the ensemble of the receivers, the maximum single-layer
“outage” rate is given by

R

outage

= max

pth2[0,1]
{I(p

th

, P )(1�W (p

th

))} , (29)

⌃
A. Special Cases

1) U is an iid random matrix: Assuming that U has iid
entries with mean zero and variance 1

N , according to the result
derived in [?, Section II.D.1], the ⌘–transform of the random
matrix Rp = ApUBUHAp coincides with that of pHHH

where H is a pN⇥qN with iid entries with variance 1/(pN).
Consequently, according to [?, Theorem 2.39], we have that
the ⌘-transform of Rp

�

= ApUBUHAp is given by

⌘Rp(�) = 1�
F(�p,

q
p )

4�

, (30)

with

F(x, z) =

✓q
1 + x

�
1 +

p
z

�
2 �

q
1 + x

�
1�

p
z

�
2

◆
2

.

Explicitly, ⌘̇Rp(�) is given by

⌘̇Rp(�) =

1

2

"
1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

� 1

#
(31)

Having expressions for both ⌘Rp(�) and ⌘̇Rp(�), we can
replace them into (27) and solve for �(p) for all values
of p 2 [0, 1]. However, such solution must be discussed
carefully. In general, �(p) is equal to the constant P (total

power) for some interval [0, p
0

] and it is equal to the constant
0 for some interval [p

1

, 1] with p

0

 p

1

. In the range
p

0

 p  p

1

, �(p) = �̂(p) where the latter is a monotonically
non-increasing function of p. In order to find p

0

and p

1

we
replace the boundary conditions � = P and � = 0 into (27)
and solve for p. Hence, we verify that in the interval [p

0

, p

1

]

the solution of (27) with respect to �, namely, �̂(p), is indeed
unique and monotonic. The following example illustrates the
above general procedure.

Example 3: Fix P = 10, q = 0.2 and w(p) be the uniform
density over [0, 1], i.e.,

w(p) =

⇢
1 0  p  1

0 otherwise (32)

Imposing the boundary conditions, we find p

0

= 0.32 and
p

1

= 0.5. Then, the solution of (27) is given by

�(p) =

8
<

:

P 0  p  0.32

�̂(p) 0.32  p  0.5

0 0.5  p  1

(33)

where �̂(p) is the solution, for given p 2 [0.32, 0.5], of the
equation with respect to �:

1� p

2�

"
1� 1 + �(p� q)p

1 + 2�(p+ q) + �

2

(p� q)

2

#

�
F(�p,

q
p )

4�

2

= 0. (34)

Notice that we cannot replace � = 0 in (34) since we obtain
an undetermined form. Instead, calculating the limit for � # 0

we find the equation

q(1� 2p) = 0, (35)

which yields p

1

= 0.5 for any q. It follows that all receivers
with sampling rate larger than 0.5 can decode all layers.
Instead, the value p

0

depends on the total transmit power P

as well as of the input sparsity q, in general.
2) U is a Haar random matrix: If U is Haar-distributed,

i.e., uniformly distributed on the manifold of N ⇥N unitary
matrices, using [?, Example 2.44] , [?, Theorem 9] and the
result derived in [?, Section II.D.2], the ⌘-transform of Rp is
given by:

⌘Rp(�) =

2�(p� 1)(q � 1)

1� �(p+ q � 2)�
p

G(�, p, q)
(36)

where G(z, x, y) = z

2

(x � y)

2

+ 2z(x + y � 2xy) + 1.
Differentiating, we obtain

⌘̇Rp(�)=

2�(1� q)

⇣
1�

p
G(�, p, q)(1 + �(1� q)) + �

⌘

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

+

2�(1� q)

�
�

2

(1� q)(p� q) + �(p� 2pq)

�

p
G(�, p, q)

⇣
�1 +

p
G(�, p, q) + �(�2 + p+ q)

⌘
2

(37)

Then, we can use (36) and (37) into (27) and operate as before,
for the iid case.
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CONCLUSIONS 
• MIMO (linear Gaussian) channel where: 
-  Inputs turned on and off at random,  
-  Outputs  sampled at random 
  
• Given:  
-  input sparsity probability,  
-  statistics of the MIMO channel     
-  broadcast approach as coding technique  
method for calculating the power allocation across the layers, in order to 
maximize the system weighted sum rate for arbitrary non-negative weighting 
function .  
 

•  Analytical solutions  both for iid and Haar distributed MIMO channel 
matrices are provided. 

•  The Haar case accounts also for DFT matrices, with application to sparse 
spectrum signals with random sub-Nyquist sampling.  

 


