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THE PROBLEM: MIMO BROADCAST

Random matrix with distribution
discussed later on
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GIVEN AN INPUT SPARSITY, MAXIMIZE TOTAL MULTICAST RATE WITH CHANNEL PARAMETER

DISTRIBUTED AS P €(0,1]~W(p)



STOCHASTICALLY DEGRADED MIMO BROADCAST
CHANNEL
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The channel with sampling rate P1 is a stochastically degraded version of
a channel with sampling rate p2 if:

P1< P2

Our objective will be to maximize the total multicast average rate.

To do this we will resort to the broadcast approach

S. SHAMAI AND A. STEINER, “A BROADCAST APPROACH FOR A SINGLE-USER SLOWLY FADING MIMO

CHANNEL,” IEEE TRANS. ON INFORM. THEORY.
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BROADCAST APPROACH ;gf
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BROADCAST APPROACH
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BROADCAST APPROACH ;g/f
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BROADCAST APPROACH :/fg/f
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BROADCAST APPROACH W=
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TOTAL MULTICAST RATE R, 2 A,UBU"A,

The average rate achievable by the broadcast approach for a user with p (0,1]~W(p)

V=5 [ wt) R - [ e [ ve,

Optimizing R with respect to y(p) consists of maximizing
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dp
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Y(p)dp,

p=(p)

subject to:
o’J/(O):E|:||X||2:|:P and ’y(oo):()

« ¥(p) is a monotonically non-increasing and non-negative function of p

WE NEED CLOSED-FORM EXPRESSION FOR SHANNON-TRANSFORM
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TOTAL MULTICAST RATE R, 2 A,UBU"A,
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BROADCAST APPROACH
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Solving the Euler-Lagrange equation we need expressions:

A . 1 0 1

= _ —Y -~ (1—
Vi, (p) = lim CE[log[T+pRyll, 5 Vi, (0) = (1, (p))

ASYMP. RANDOM MATRIX THEORY: CLOSE-FORM EXPRESSION FOR SHANNON AND 1n—TRANSFORM



OBJECTIVE

Evaluate Shannon and n-transform of the following matrix

— T
R, =A UBU'A,

U Arbitrary Matrix
Ap N x N diag matrix (Ap)l. c {0,1} P{(Ap)l, = 1} =p
B N x N diag matrix (B), €{0,1} P{B),=1}=¢
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Interlude:

RANDOM MATRIX THEORY
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THE STIELTJES TRANSFORM

The Stieltjes transform (also called the Cauchy transform) of an arbitrary
random variable X is defined as:

Sy(z) = E [X L Z]

Inversion formula was obtained by Stieltjes in 1894:

fx(\) = lim lIm[SX()\ +Jw)]

w—0t+t T

Rationale for Stieltjes: Description of Asymptotic Distribution of Singular Values

(Marcenko-Pastur (1967))



THE n-TRANSFORM

The n-transform of a nonnegative random variable X is given by:

nx(p) = E [1 —|—1,0X]

where p is a nonnegative real number, and thus, 0<n,(p)<1

Rationale for n: Description of Asymptotic Distribution of Singular Values + Signal

Processing Insight



THE SHANNON TRANSFORM

The Shannon transform of a nonnegative random variable X is defined as:

Vx(p) 2 Eflog (1 + pX)],

where p is a nonnegative real number.

Rationale for Shannon: Description of Asymptotic Distribution of Singular Values +

Information Theory Insight



RELATIONSHIP BETWEEN TRANSFORMS

» Relationship n-Shannon

W%VX(V) = 1-nx(v)

» Relationship n-Stieltjes
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Nn-TRANSFORM OF A RANDOM MATRIX

Given a N x N Hermitian matrix R:

The n-transform of its asymptotic ESD us given by

11>

E{ ! w: lim —F [Tr(1+pR)—1}

e (p) 1+ oAR) | ~ NS N

n-ranform of a Random Matrix: Minimum Mean Square Error of the vector channel




SHANNON TRANSFORM OF A RANDOM MATRIX

Given a N x N Hermitian matrix R:

The Shannon transform of its asymptotic ESD is given by

Vr(p) 2 Eflog (1+ pA(R))] = Jim —E [log|T + pR]

N — o0

9 yrlp) = %(1 —nr(p)).

Shannon-tranform of a Random Matrix: Mutual Information of the N-vector channel




RANDOM MATRIX THEORY (N — o)
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ASYMP. RM THEORY: CLOSE-FORM EXPRESSION FOR SHANNON AND n—TRANSFORM




R=HH" WITH H »NxgN IID MATRIX

Shannon Transform:

V(y) = log (1 + — if(%ﬁ))

1 1 loge
+Blog <1+’yﬁ— ZH%B)) - 4MF(’V,B)

n-Transform:

F(v,8)
nmr(Y) = (1— ) _p
4~y p q
Flx,z) = (\/w(1+\/5)2+1— \/x(l—\/g)2+1>2

S. SHAMAI AND S. VERDU, “THE EFFECT OF FREQUENCY-FLAT FADING ON THE SPECTRAL

EFFICIENCY OF CDMA”, IEEE TRANS. INFORMATION THEORY, 2001.




OBJECTIVE

Evaluate Shannon and n-transform of the following matrix

— T
R, =A UBU'A,
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R=HH" WITH H »NxgN IID MATRIX

 Shannon Transform:

V(y) = log (1 +y - if(%ﬁ))

Q |~

1 1 loge _
+Blog<1+’yﬁ—1f(%ﬁ))—457F(v,/3) B

— l
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S. SHAMAI AND S. VERDU, “THE EFFECT OF FREQUENCY-FLAT FADING ON THE SPECTRAL

EFFICIENCY OF CDMA”, IEEE TRANS. INFORMATION THEORY, 2001.




R, =A UBU'A WITHU NxN HAAR MATRIX

 Shannon Transform:

V(y) = qlog(1+~(1—¢))+d(e] e

€

>

an(’Y)
* n-Transform:
29(p—1)(¢—1)
1—v(p+q—2)—/G(7,p,9)

R, (v) =

TULINO, CAIRE, SHAMAI, VERDU, "CAPACITY OF CHANNELS WITH FREQUENCY-SELECTIVE AND
TIME-SELECTIVE FADING," IEEE TRANS. INFORMATION THEORY, 2010.




R, =A UBU'A WITHU NxN FOURIER MATRIX

Theorem:

UBU' and A are asymptotically free.

 Shannon Transform:

V(y) = qlog(1+~(1—¢))+d(e] e

€

>

an (v)
* n-Transform:

2v(p—1)(qg — 1)

an(f)/) - 1 _fy(p—|—q — 2) — \/g<77p7 Q)

TULINO, CAIRE, SHAMAI, VERDU, "CAPACITY OF CHANNELS WITH FREQUENCY-SELECTIVE AND

TIME-SELECTIVE FADING," IEEE TRANS. INFORMATION THEORY, 2010.



BACK TO OUR PROBLEM
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SOLVING THE EULER-LAGRANGE EQUATION

o . o
(1-=W(p)) ==Vr,(p) —w(p) VR, (p) =0
a10 p==(p) (9,0 p="(p)

We need expressions for the mutual information and its derivatives,
for the channel model:

yp, = A,UBx + z,
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CHANGE OF VARIABLE

We can rewrite the Euler-Lagrange equation in terms of the eta-transform and
its derivative with respect to p:

im0 w) )
(1-W(p)) ) ) (1 —nr,(v(p)) =0

With a change of variable ~ = ~(p), we can re-write the rate:

1 a .
R= [ 0V0) -1 gV 6)| 0
as.
— _ B nRg(w) (7)
R= / W) ey,
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RANDOM MATRIX THEORY (N — o)

mR,(Y(P))  w(p)

—(1-W(p)) - — = (L —nr,(7(p)) =0
7(p) 7(p) ( )
U 1D U HAAR / FOURIER
F(yp, 1) B 27v(p—1)(¢—1)
e — D ’y _
77Rp (7) 1 4,)/ ) e ( ) 1— ’Y(p + q— 2) - g(’77p7 Q)
Flz,2) = (\/1+x(1+\/2)2—\/1+a:(1—\/2)2)2 G(z,x,y) = 2%(x — y)? + 22(x + y — 22y) + 1

ASYMP. RM THEORY: CLOSE-FORM EXPRESSION FOR SHANNON AND n—TRANSFORM



FINDING THE RIGHT SOLUTION

« Having expressions for both "R, (7) and "R, (7), we can replace them into the
Euler-Lagrange and solve for ¥(p) for all values of p € [0,1] .

« Such solution must be discussed carefully. In general, v(p) is equal to the
constant P (total power) for some interval [0, po] and it is equal to the
constant 0 for some interval [p1,1] with po < p1.

* In the range [po, p1|, v(p) = Y(p) where the latter is a monotonically non-
increasing function of p.

 Inordertofind Po and P1 we replace the boundary conditions ¥ = P
and ~ =0 into the Euler-Lagrange equation and solve for p. Hence, we
verify that in the interval [po,pl] the solution is indeed unique and monotonic.
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U: AN IID RANDOM MATRIX

Fix:
- _ _J 1 0=<p<l
P =10, ¢=02, w(p) = { 0  otherwise
Then: P
(P 0<p<0.32
\ 0 0.5 <p<l1
P
where 7(P) is the solution for p € [0.32,0.5] jme q(1 —2p) =0,
1—p - 1+ v(p—q) _f(Wpa%)_O
2y V1+29(p+q) +7%(p — q)? 4ry? |



Y(r) FOR U IID AND HAAR MATRIX

110

100

90| — i.i.d. q=0.2 1

= = = Fourier q=0.1

80

70

60

1p)

50+

40+

30

]
[
[
[
1
[
) |
[
[
.
[}
]
[
"
[}
)
[}
|
1
]
.
]
[}
v

20+ ‘

101

0 0.2 0.4 0.6 0.8
scalar degradation parameter p



CONCLUSIONS

* MIMO (linear Gaussian) channel where:

- Inputs turned on and off at random,
- Outputs sampled at random

* Given:

- input sparsity probability,
- statistics of the MIMO channel
- broadcast approach as coding technique

method for calculating the power allocation across the layers, in order to
maximize the system weighted sum rate for arbitrary non-negative weighting
function .

 Analytical solutions both for iid and Haar distributed MIMO channel
matrices are provided.

« The Haar case accounts also for DFT matrices, with application to sparse

spectrum signals with random sub-Nyquist sampling.
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