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Outline

@ Motivation from an aspect of quantum entanglement and why
number of real eigenvalues of a product?

@ Three questions of measures, and some speculation.
e Nongaussian matrices.

@ Summary, questions.
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Background in brief

@ The number of real roots of a random polynomial of degree N
~ log N. (M. Kac 1943, Edelman, Kostlan 1995)

2 2
Eny = —log(N) 4+ 0.62573... + — + - - -
s Nm
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Background in brief

@ The number of real roots of a random polynomial of degree N
~ log N. (M. Kac 1943, Edelman, Kostlan 1995)

2 2
Eny = —log(N) 4+ 0.62573... + — + - - -
s Nm

@ "“How many eigenvalues of a random matrix are real?”
(Edelman, Kostlan, Shub, 1993).

2N 3 1
En = 7(1—8—N+---)+§
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Background in brief

@ The number of real roots of a random polynomial of degree N
~ log N. (M. Kac 1943, Edelman, Kostlan 1995)

2 2
Eny = —log(N) 4+ 0.62573... + — + - - -
s Nm

@ "“How many eigenvalues of a random matrix are real?”
(Edelman, Kostlan, Shub, 1993).

2N 3 1
En = 7(1—8—N+---)+§

@ Fraction of real eigenvalues in a random matrix: py p.
(Kanzeiper, Akkeman, 2006).
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Quantum Entanglement

Bipartite Hilbert space: H = HY @ HYN

Pure unentangled states

[xaB) = [¥a) ® |¢B)

Entanglement in |¢)ag) = von Neumann entropy of subsystems:

E(|YaB)) = —tra(palog pa) = —tra(ps log ps)
pa = tre|Yag)(Vag|)
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Quantum Entanglement

Bipartite Hilbert space: H = HY @ HYN

Pure unentangled states

[xaB) = [¥a) ® |¢B)

Entanglement in |¢)ag) = von Neumann entropy of subsystems:

E(|YaB)) = —tra(palog pa) = —tra(ps log ps)

pa = tre|Yag)(Vag|)

| A

Mixed separable states
Zq/ ,A)®P(B) 0<g <1land qu'zl

Otherwise it is entangled
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Mixed state entanglement

Entanglement of formation

If pag = >, pi [WAB)(WAB| is one possible pure ensemble
decomposition
Entanglement of formation is defined as

Ef(pag) = minp,-,\u;‘B Zi Pi E(’W,AB»-

2 qubit case (N = 2) is solved via Concurrence by Hill and
Wootters (1998) and Wootters (1999).

2 qudit case (N > 2 ): open problem to evaluate the minimum in
general.
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Optimal entanglement pag: 2-qubit density matrix

Convexity: mixing reduces entanglement

k
C (PAB = pildre) AB|> <ZP: (167%)(7*°1)
i=1
Optimal sets: Robust under mixing

Set {|¢?B), i =1,---  k} optimal if for any probability distribution
Pr-- Pk

k
c(pAB:Zp,-w,**Wﬂ) Zp, (167°)("1)
i=1
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Getting Real

Draw |¢;) from the set of real states a;|00) + a,|01) + a3|10) + a4|11)
with a; e Rand ai + a3+ a5+ a; =1. ae S°.

Conditions for optimality of {|#1), |¢2)} Iff

riry >0, and —detr = rf,—riirn >0, where rj = (¢ilo,®0,|¢;)

C (plor)(¢1| + (1 — p)|d2)(@2]) = pC(|P1)(d1]) + (1 — p) C(|p2)(¢2|)
= plnil + (1 — p)[r2]

v

(Shuddhodhan, Ramkarthik, AL, J. Phys. A, 2011)
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Connection to products

Let ’(/)1> = 300’01> + 301‘01> =+ 310|10> + 311|11>,
and |¢2) = boo|01) + bo1|01) + bio|10) + bi1[11).
The rj = (¢ilo, @ 0,|¢;) implies

;= —2det Ml tr(/\/lll\/IQ)
- tl’(Ml M2) —2det M2

~1
ago ao —bi1 by boo  bo1
M, = M, = = —detb
' < di0 911 )’ 2 ( bio  —boo ) © < bio b1 )

- Determinant = Discriminant

—detr = (tr(MyMs))? — 4det(My My) > 0
—> M; M, have real eigenvalues. Optimal if also det(M;M,) > 0
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A first question of measure:

Let [¢) = 5(/00) + [11)) be a maximally entangled Bell state.

M, = —1/\/2
If [¢1) = a1]00) + a5|01) + a3]10) + a4|11) (a € S®) and

a a
Ml — 1 2
d3y da

{lp1), |¢2)} is optimal Iff det(M;) > 0 and M; has real eigenvalues.
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Equivalent question in RMT

What is the probability, p,,, that M = i d has real

eigenvalues given that a, b, c, d are i.i.d. Gaussian numbers
with zero mean?
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Equivalent question in RMT

What is the probability, p,,, that M = i 3 has real
eigenvalues given that a, b, ¢, d are i.i.d. Gaussian numbers
with zero mean?

det M > 0 condition can be implemented as py > — %

Also (a1, as, as, a4) = (a, b, ¢, d)/r is uniformly distributed (Haar) on
S3, where r = /a2 + b2 4 c2 + d2. If M has real eigenvalues, so
does M/r.
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Equivalent question in RMT

What is the probability, p,,, that M = i 3 has real
eigenvalues given that a, b, ¢, d are i.i.d. Gaussian numbers
with zero mean?

det M > 0 condition can be implemented as py > — %

Also (a1, as, as, a4) = (a, b, ¢, d)/r is uniformly distributed (Haar) on
S3, where r = /a2 + b2 4 c2 + d2. If M has real eigenvalues, so
does M/r.

Answer to the equivalent question: py, = 1/v/2.

General answer known for probability of all eigenvalues of n x n real:
Pnn = 27 "=V/4 (Edelman 1994)
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Equivalent question in RMT

What is the probability, p,,, that M = i 3 has real
eigenvalues given that a, b, ¢, d are i.i.d. Gaussian numbers
with zero mean?

det M > 0 condition can be implemented as py > — %

Also (a1, as, as, a4) = (a, b, ¢, d)/r is uniformly distributed (Haar) on
S3, where r = /a2 + b2 4 c2 + d2. If M has real eigenvalues, so
does M/r.

Answer to the equivalent question: py, = 1/v/2.

General answer known for probability of all eigenvalues of n x n real:
Pnn = 27 "=V/4 (Edelman 1994)

Answer to the first question of measure: % — 2 ~ 20% of

(real) states are co-optimal with the maximally entangled state.
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A second question of measure

Given an arbitrary, but fixed, state |¢,) what is the measure
of states |¢;) such that {|¢1), |¢>)} is optimal?
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A second question of measure

Given an arbitrary, but fixed, state |¢,) what is the measure
of states |¢;) such that {|¢1), |¢>)} is optimal?

Schmidt decomposition: The arbitary state can be taken as

|$2) = cos 6]00) + sin #|11) with 0 < 0 < w/4. C(|p2)) = sin 26.
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A second question of measure

Given an arbitrary, but fixed, state |¢,) what is the measure
of states |¢;) such that {|¢1), |¢>)} is optimal?

Schmidt decomposition: The arbitary state can be taken as

|$2) = cos 6]00) + sin #|11) with 0 < 0 < w/4. C(|p2)) = sin 26.
|p1) = a1]00) + a»|01) + a3|10) + a4|11) (@ € S*) such that
{l¢1),[¢2)} is optimal iff

[ cosf 0 ay a
M_< 0 sin9><ag ;:74>7

is such that det(M) > 0 and M has real eigenvalues.
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A second question of measure

Given an arbitrary, but fixed, state |¢,) what is the measure
of states |¢;) such that {|¢1), |¢>)} is optimal?

Schmidt decomposition: The arbitary state can be taken as

|$2) = cos 6]00) + sin #|11) with 0 < 0 < w/4. C(|p2)) = sin 26.
|p1) = a1]00) + a»|01) + a3|10) + a4|11) (@ € S*) such that
{l¢1),[¢2)} is optimal iff

[ cosf 0 ay a
M_< 0 sin9><ag ;:74>7
is such that det(M) > 0 and M has real eigenvalues.
Equivalent RMT:

cosf 0 a b
M = ( 0 sind ) < c d )
(a, b,c,d)iid. N(0,1).
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The measure f of states co-optimal with |¢,)

|2) = cos 6]00) + sin 0]11)
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The measure f of states co-optimal with |¢,)

|2) = cos 6]00) + sin 0]11)

£ smng
7o on smgb+5

()R T(k+ 3

5 3
_ 2
— 5 k
2 27r — k! F(§ + %)

) (sin 20)k+2.

Decreases monotonically from 1/2 at §# = 0 to 1/v/2 —1/2 at

0 =m/4

The fraction of states co-optimal with the maximally entangled state
is the smallest and corresponds to the probability of a single random
matrix having real eigenvalues.
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A third question of measure

What is the measure, f, of optimal pairs {|¢1), |¢2)}7?
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A third question of measure

What is the measure, f, of optimal pairs {|¢1), [¢2)}?
Equivalent RMT: What is the probability, p{) that the
product of two 2 x 2 matrices have real eigenvalues?
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A third question of measure

What is the measure, f, of optimal pairs {|¢1), |¢2)}7?

Equivalent RMT: What is the probability, p{) that the
product of two 2 x 2 matrices have real eigenvalues?

Integrate out over #. The appropriate invariant measure follows from
the induced measure of singular values of random matrices and is
known for n x m matrices. (Zyczkowski, Sommers 2001). For 2 x 2:

u(0) = 2 cos 260
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A third question of measure

What is the measure, f, of optimal pairs {|¢1), |¢2)}7?

Equivalent RMT: What is the probability, p{) that the
product of two 2 x 2 matrices have real eigenvalues?

Integrate out over #. The appropriate invariant measure follows from
the induced measure of singular values of random matrices and is
known for n x m matrices. (Zyczkowski, Sommers 2001). For 2 x 2:

u(0) = 2 cos 260

1
2

NI

w/4
f = / fo u(6)d6
0

Probability of real eigenvalues of a product of 2 gaussian matrices:
2 _T
p2,2 4
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The probability that a product of two matrices

have real eigenvalues

1
The fraction % ~3 ~ 0.285 of pairs of 2-qubit states are optimal.
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The probability that a product of two matrices

have real eigenvalues

1
The fraction % ~3 ~ 0.285 of pairs of 2-qubit states are optimal.

1

V2

@_T

< ps = i 0.78539816339744830962 - - -

P22 = = 0.70710678118654752440 - - -

Two are more real than one
Speculative general feature?

cos# 0 a b
M_( 0 sin9><c d)
(a, b, c, d) identically distr. then Prob that M has real eigenvalues is
maximum when ¢ = 0 and minimum when 6 = 7 /4.
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More matrices: Numerical results

p,(,ﬁ) = Prob. that all eigenvalues of A; --- Ak are real.

A;: n x n random real matrix.
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Expected number of real eigenvalues

£

In(n-E,®)

Arul Lakshminarayan (IIT Madras)
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EP) ~ 0 - exp(-70K)

Products random matrices
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The probability that k eigenvalues of a product of K random 8
dimensional matrices are real, based on 100,000 realizations. The
k = 0 case is barely seen in this scale.

AL: ( J. Phys. A: Math. Theor. vol. 46 (2013)).
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04 B 04 B
K=1 K=2

02 B 02 B

or g or g

-0.2 - B -0.2 - B

-04 - 0.4 F J

-1 1 1 1

04 B 04 4
K=5 K=10

02 B 02 B

0Fr B 0 — J

0.2 | B 0.2 B

04 F o e 0.4 E

I I I I | I
1 0.5 0 05 1 1 0.5 0 05 1

The eigenvalues of K products of 10 dimensional random matrices,

after they have been divided by the corresponding Frobenius norms.

The real and imaginary parts are plotted for 1000 realizations of such
products.
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Analytical results for n > 2, K > 2

P. J. FORRESTER, “Probability of all eigenvalues real for
products of standard Gaussian matrices” arXiv1309.7736, J.
Phys. A. 2014

Evaluates pﬁ in terms of determinants whose entries are Meijer-G

functions.
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Analytical results for n > 2, K > 2

P. J. FORRESTER, “Probability of all eigenvalues real for
products of standard Gaussian matrices” arXiv1309.7736, J.
Phys. A. 2014

Evaluates pﬁ in terms of determinants whose entries are Meijer-G

functions.

2 _ 57 () _ 3162553253713

Conjectures: p§3 330 P77 247
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Analytical results for n > 2, K > 2

P. J. FORRESTER, “Probability of all eigenvalues real for
products of standard Gaussian matrices” arXiv1309.7736, J.
Phys. A. 2014

Evaluates pﬁ in terms of determinants whose entries are Meijer-G

functions.

Coni (2 om @) 316255325377
onjectures: p;3 = 3—2, L Pr7 = a7

Proves: pf,ff,) — las K — oo.

Also SANTOSH KUMAR “Exact evaluations of some Meijer

G-functions and probability of all eigenvalues real for the

product of two Gaussian matrices” J. Phys. A. 2015
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General nonatomic distributions

i.i.d. (but not necessarily gaussian), symmetric zero mean
and continuous

Under rather general conditions for n = 2, the probability of real
eigenvalues > 5/8 and seems to be < 7/8.

49
@ Uniform on [—1,1]: - = 0.680556.
@ Gaussian: 1/\/5 =0.707---.

11
© Laplace exp(—|x]): T 0.733---.

1

3
—: — = 0.75.
m(1+x?) 4

Q@ Cauchy:
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Probability of real eigenvalues

Symmetric Beta distribution: |x|*©(1 — |x|)

v Probability

—4095/4096 0.874959

—7/8 0.849868

-1/2 0.759836
0 49/72 =0.680556

1 0.63709

3/2 0.632888

2 0.631023

3 0.62928

4 0.628361

200 0.625078

400 0.625039

1
v=-1/2: @(41—71'—2“’] 2)

3653 In2
" 5760 ' 240
8905
112
45332489

© 72144072
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Products follow the same ordering

* +—t—t o
—4—Cauchy
——Laplace
—e—Gaussian
—*—Uniform
——Gamma (y=10) | |

£33 08/ 4

0.65 0 I I I I I I I I I n
10 20 30 40 5 60 70 80 9 100

06 | I I I
5 10 15 K 20 25 30 35

Comparison of probability that all eigenvalues are real for a product of K
random matrices with different symmetric distributions and the
dimensionality n = 2 (main) and 8 (inset). The plot is based on 10°
independent realizations.
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So do Hadamard products ...

0.85

08 A X ¢A¢¢¢=‘A#%¢¢$

0.75¢ Gaussian Distribution:
o~ ——Beta (u=0, v=-0.5) Slope =~ -0.6487
Lo —a—Cauchy -2 Intercept = -2.004
o —+— Laplace v
—e—Gaussian o 3 i
07 ——Uniform 3
—o—Beta (=0, v=3) 2 4
g
]
0.65 4
6
0 1 2 3 4 5
log(K)
0.6 | I I I I I I
5 10 15 20 25 30 35 40

Comparison of probability that all eigenvalues are real for Hadamard
products of K 2 x 2 random matrices for some symmetric distributions
based on 10° realizations. The inset shows the power law approach of the
probability of all real eigenvalues to the asymptotic value which is less
than unity, for the Gaussian case.
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Summary and questions

@ A question about measure of Concurrence-optimal states led
to the question about the fraction of product of two 2 x 2
matrices that have real eigenvalues.
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Summary and questions

@ A question about measure of Concurrence-optimal states led
to the question about the fraction of product of two 2 x 2
matrices that have real eigenvalues.

o fraction of real eigenvalues increases from 1/\@ for k =1 to
7/4 for K = 2 and with further products tends to 1.

@ For a triple of optimal states of 2 qubits, the fraction is not
more than the probability that {AB, AC, BC} all have real
eigenvalues for triples {A, B, C}. How much is this?
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Summary and questions

@ A question about measure of Concurrence-optimal states led
to the question about the fraction of product of two 2 x 2
matrices that have real eigenvalues.

o fraction of real eigenvalues increases from 1/\@ for k =1 to
7 /4 for K = 2 and with further products tends to 1.

@ For a triple of optimal states of 2 qubits, the fraction is not
more than the probability that {AB, AC, BC} all have real
eigenvalues for triples {A, B, C}. How much is this?

@ What is the probability p,SK) that k < n eigenvalues are real in a

product of K random matrices? Find EX = Y o kpk n), does it
approach n exponentially?

@ Universality: eigenvalues tends to become real with more terms
in the products for nongaussian matrices. Hierarchy at K =1
seems to be maintained. Hadamard products also increase
number of real eigenvalues but not to full fraction.
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