On the number of real eigenvalues in a product of random matrices

Arul Lakshminarayan

Department of Physics
Indian Institute of Technology Madras Chennai, India.

Outline

- Motivation from an aspect of quantum entanglement and why number of real eigenvalues of a product?
- Three questions of measures, and some speculation.
- Nongaussian matrices.
- Summary, questions.

Background in brief

- The number of real roots of a random polynomial of degree N $\sim \log N$. (M. Kac 1943, Edelman, Kostlan 1995)

$$
E_{N}=\frac{2}{\pi} \log (N)+0.62573 \ldots+\frac{2}{N \pi}+\cdots
$$

- "How many eigenvalues of a random matrix are real?" (Edelman, Kostlan, Shub, 1993).

- Fraction of real eigenvalues in a random matrix: $p_{k, n}$. (Kanzeiper, Akkeman, 2006).

Background in brief

- The number of real roots of a random polynomial of degree N $\sim \log N$. (M. Kac 1943, Edelman, Kostlan 1995)

$$
E_{N}=\frac{2}{\pi} \log (N)+0.62573 \ldots+\frac{2}{N \pi}+\cdots
$$

- "How many eigenvalues of a random matrix are real?" (Edelman, Kostlan, Shub, 1993).

$$
E_{N}=\sqrt{\frac{2 N}{\pi}}\left(1-\frac{3}{8 N}+\cdots\right)+\frac{1}{2}
$$

- Fraction of real eigenvalues in a random matrix: $p_{k, n}$. (Kanzeiper, Akkeman, 2006)

Background in brief

- The number of real roots of a random polynomial of degree N $\sim \log N$. (M. Kac 1943, Edelman, Kostlan 1995)

$$
E_{N}=\frac{2}{\pi} \log (N)+0.62573 \ldots+\frac{2}{N \pi}+\cdots
$$

- "How many eigenvalues of a random matrix are real?" (Edelman, Kostlan, Shub, 1993).

$$
E_{N}=\sqrt{\frac{2 N}{\pi}}\left(1-\frac{3}{8 N}+\cdots\right)+\frac{1}{2}
$$

- Fraction of real eigenvalues in a random matrix: $p_{k, n}$. (Kanzeiper, Akkeman, 2006).

Quantum Entanglement

Bipartite Hilbert space: $\mathcal{H}=\mathcal{H}_{A}^{N} \otimes \mathcal{H}_{B}^{N}$

Pure unentangled states

$$
\left|\chi_{A B}\right\rangle=\left|\psi_{A}\right\rangle \otimes\left|\phi_{B}\right\rangle
$$

Entanglement in $\left|\psi_{A B}\right\rangle=$ von Neumann entropy of subsystems:

$$
\begin{gathered}
E\left(\left|\psi_{A B}\right\rangle\right)=-\operatorname{tr}_{A}\left(\rho_{A} \log \rho_{A}\right)=-\operatorname{tr}_{B}\left(\rho_{B} \log \rho_{B}\right) \\
\left.\rho_{A}=\operatorname{tr}_{B}\left|\psi_{A B}\right\rangle\left\langle\psi_{A B}\right|\right)
\end{gathered}
$$

Mixed separable states

Quantum Entanglement

Bipartite Hilbert space: $\mathcal{H}=\mathcal{H}_{A}^{N} \otimes \mathcal{H}_{B}^{N}$

Pure unentangled states

$$
\left|\chi_{A B}\right\rangle=\left|\psi_{A}\right\rangle \otimes\left|\phi_{B}\right\rangle
$$

Entanglement in $\left|\psi_{A B}\right\rangle=$ von Neumann entropy of subsystems:

$$
\begin{gathered}
E\left(\left|\psi_{A B}\right\rangle\right)=-\operatorname{tr}_{A}\left(\rho_{A} \log \rho_{A}\right)=-\operatorname{tr}_{B}\left(\rho_{B} \log \rho_{B}\right) \\
\left.\rho_{A}=\operatorname{tr}_{B}\left|\psi_{A B}\right\rangle\left\langle\psi_{A B}\right|\right)
\end{gathered}
$$

Mixed separable states

$$
\rho_{A B}=\sum_{i} q_{i} \rho_{i}^{(A)} \otimes \rho_{i}^{(B)}, \quad 0 \leq q_{i} \leq 1 \text { and } \sum_{i} q_{i}=1
$$

Otherwise it is entangled

Mixed state entanglement

Entanglement of formation

If $\rho_{A B}=\sum_{i} p_{i}\left|\Psi_{i}^{A B}\right\rangle\left\langle\Psi_{i}^{A B}\right|$ is one possible pure ensemble decomposition
Entanglement of formation is defined as
$E_{f}\left(\rho_{A B}\right)=\min _{p_{i}, \psi_{i}^{A B}} \sum_{i} p_{i} E\left(\left|\Psi_{i}^{A B}\right\rangle\right)$.
2 qubit case $(N=2)$ is solved via Concurrence by Hill and Wootters (1998) and Wootters (1999).
2 qudit case ($N>2$): open problem to evaluate the minimum in general.

Optimal entanglement $\rho_{A B}$: 2-qubit density matrix

Convexity: mixing reduces entanglement

$$
C\left(\rho_{A B}=\sum_{i=1}^{k} p_{i}\left|\phi_{i}^{A B}\right\rangle\left\langle\phi_{i}^{A B}\right|\right) \leq \sum_{i=1}^{k} p_{i} C\left(\left|\phi_{i}^{A B}\right\rangle\left\langle\phi_{i}^{A B}\right|\right)
$$

Optimal sets: Robust under mixing

Set $\left\{\left|\phi_{i}^{A B}\right\rangle, i=1, \cdots, k\right\}$ optimal if for any probability distribution $p_{1} \cdots p_{k}$

$$
C\left(\rho_{A B}=\sum_{i=1}^{k} p_{i}\left|\phi_{i}^{A B}\right\rangle\left\langle\phi_{i}^{A B}\right|\right)=\sum_{i=1}^{k} p_{i} C\left(\left|\phi_{i}^{A B}\right\rangle\left\langle\phi_{i}^{A B}\right|\right)
$$

Getting Real

Draw $\left|\phi_{i}\right\rangle$ from the set of real states $a_{1}|00\rangle+a_{2}|01\rangle+a_{3}|10\rangle+a_{4}|11\rangle$ with $a_{i} \in \mathbb{R}$ and $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}=1 . \mathbf{a} \in S^{3}$.

Conditions for optimality of $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$ Iff

$$
\begin{aligned}
& r_{11} r_{22} \geq 0, \text { and }-\operatorname{det} r=r_{12}^{2}-r_{11} r_{22} \geq 0, \text { where } r_{i j}=\left\langle\phi_{i}\right| \sigma_{y} \otimes \sigma_{y}\left|\phi_{j}\right\rangle . \\
& \begin{aligned}
C\left(p\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|+(1-p)\left|\phi_{2}\right\rangle\left\langle\phi_{2}\right|\right) & =p C\left(\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|\right)+(1-p) C\left(\left|\phi_{2}\right\rangle\left\langle\phi_{2}\right|\right) \\
& =p\left|r_{11}\right|+(1-p)\left|r_{22}\right|
\end{aligned}
\end{aligned}
$$

(Shuddhodhan, Ramkarthik, AL, J. Phys. A, 2011)

Connection to products

Let $\left|\phi_{1}\right\rangle=a_{00}|01\rangle+a_{01}|01\rangle+a_{10}|10\rangle+a_{11}|11\rangle$,
and $\left|\phi_{2}\right\rangle=b_{00}|01\rangle+b_{01}|01\rangle+b_{10}|10\rangle+b_{11}|11\rangle$.
The $r_{i j}=\left\langle\phi_{i}\right| \sigma_{y} \otimes \sigma_{y}\left|\phi_{j}\right\rangle$ implies

$$
r=\left(\begin{array}{ll}
-2 \operatorname{det} M_{1} & \operatorname{tr}\left(M_{1} M_{2}\right) \\
\operatorname{tr}\left(M_{1} M_{2}\right) & -2 \operatorname{det} M_{2}
\end{array}\right)
$$

$$
M_{1}=\left(\begin{array}{cc}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right), M_{2}=\left(\begin{array}{cc}
-b_{11} & b_{01} \\
b_{10} & -b_{00}
\end{array}\right)=-\operatorname{det} b\left(\begin{array}{ll}
b_{00} & b_{01} \\
b_{10} & b_{11}
\end{array}\right)^{-1}
$$

- Determinant $=$ Discriminant

$-\operatorname{det} r=\left(\operatorname{tr}\left(M_{1} M_{2}\right)\right)^{2}-4 \operatorname{det}\left(M_{1} M_{2}\right) \geq 0$
$\Longrightarrow M_{1} M_{2}$ have real eigenvalues. Optimal if also $\operatorname{det}\left(M_{1} M_{2}\right) \geq 0$

A first question of measure:

Let $\left|\phi_{2}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ be a maximally entangled Bell state.
$M_{2}=-\mathbb{I} / \sqrt{2}$
If $\left|\phi_{1}\right\rangle=a_{1}|00\rangle+a_{2}|01\rangle+a_{3}|10\rangle+a_{4}|11\rangle\left(\mathbf{a} \in S^{3}\right)$ and

$$
M_{1}=\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)
$$

$\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$ is optimal Iff $\operatorname{det}\left(M_{1}\right) \geq 0$ and M_{1} has real eigenvalues.

Equivalent question in RMT

What is the probability, $p_{2,2}$, that $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has real eigenvalues given that a, b, c, d are i.i.d. Gaussian numbers with zero mean?

Also $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(a, b, c, d) / r$ is uniformly distributed (Haar) on

 S^{3}, where $r=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$. If M has real eigenvalues, so does M / r.Answer to the equivalent question: $p_{2,2}=1 / \sqrt{2}$. General answer known for probability of all eigenvalues of $n \times n$ real: $p_{n, n}=2^{-n(n-1) / 4}$ (Edelman 1994) Answer to the first question of measure: $\frac{1}{\sqrt{2}}-\frac{1}{2} \approx 20 \%$ of (real) states are co-optimal with the maximally entangled state.

Equivalent question in RMT

What is the probability, $p_{2,2}$, that $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has real eigenvalues given that a, b, c, d are i.i.d. Gaussian numbers with zero mean?
$\operatorname{det} M>0$ condition can be implemented as $p_{2,2}-\frac{1}{2}$.
Also $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(a, b, c, d) / r$ is uniformly distributed (Haar) on S^{3}, where $r=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$. If M has real eigenvalues, so does M / r.
Answer to the equivalent question:
General answer known for probability of all eigenvalues of $n \times n$ real: $p_{n, n}=2^{-n(n-1) / 4}$ (Edelman 1994)
Answer to the first question of measure:
(real) states are co-optimal with the maximally entangled state.

Equivalent question in RMT

What is the probability, $p_{2,2}$, that $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has real eigenvalues given that a, b, c, d are i.i.d. Gaussian numbers with zero mean?
$\operatorname{det} M>0$ condition can be implemented as $p_{2,2}-\frac{1}{2}$.
Also $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(a, b, c, d) / r$ is uniformly distributed (Haar) on S^{3}, where $r=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$. If M has real eigenvalues, so does M / r.
Answer to the equivalent question: $p_{2,2}=1 / \sqrt{2}$.
General answer known for probability of all eigenvalues of $n \times n$ real: $p_{n, n}=2^{-n(n-1) / 4}$ (Ede/man 1994)
Answer to the first question of measure:
(real) states are co-optimal with the maximally entangled state.

Equivalent question in RMT

What is the probability, $p_{2,2}$, that $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has real eigenvalues given that a, b, c, d are i.i.d. Gaussian numbers with zero mean? $\operatorname{det} M>0$ condition can be implemented as $p_{2,2}-\frac{1}{2}$. Also $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(a, b, c, d) / r$ is uniformly distributed (Haar) on S^{3}, where $r=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$. If M has real eigenvalues, so does M / r.
Answer to the equivalent question: $p_{2,2}=1 / \sqrt{2}$.
General answer known for probability of all eigenvalues of $n \times n$ real: $p_{n, n}=2^{-n(n-1) / 4}$ (Ede/man 1994)
Answer to the first question of measure: $\frac{1}{\sqrt{2}}-\frac{1}{2} \approx 20 \%$ of (real) states are co-optimal with the maximally entangled state.

A second question of measure

Given an arbitrary, but fixed, state $\left|\phi_{2}\right\rangle$ what is the measure of states $\left|\phi_{1}\right\rangle$ such that $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$ is optimal? Schmidt decomposition: $\left|\phi_{2}\right\rangle=\cos \theta|00\rangle+\sin \theta|11\rangle$ with $0 \leq \theta \leq \pi / 4 . C\left(\left|\phi_{2}\right\rangle\right)=\sin 2 \theta$. is optimal iff
is such that $\operatorname{det}(M) \geq 0$ and M has real eigenvalues. Equivalent RMT

A second question of measure

Given an arbitrary, but fixed, state $\left|\phi_{2}\right\rangle$ what is the measure of states $\left|\phi_{1}\right\rangle$ such that $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$ is optimal?
Schmidt decomposition: The arbitary state can be taken as $\left|\phi_{2}\right\rangle=\cos \theta|00\rangle+\sin \theta|11\rangle$ with $0 \leq \theta \leq \pi / 4 . C\left(\left|\phi_{2}\right\rangle\right)=\sin 2 \theta$.
is such that $\operatorname{det}(M) \geq 0$ and M has real eigenvalues. Equivalent RMT:

A second question of measure

Given an arbitrary, but fixed, state $\left|\phi_{2}\right\rangle$ what is the measure of states $\left|\phi_{1}\right\rangle$ such that $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$ is optimal?
Schmidt decomposition: The arbitary state can be taken as $\left|\phi_{2}\right\rangle=\cos \theta|00\rangle+\sin \theta|11\rangle$ with $0 \leq \theta \leq \pi / 4 . \quad C\left(\left|\phi_{2}\right\rangle\right)=\sin 2 \theta$.
$\left|\phi_{1}\right\rangle=a_{1}|00\rangle+a_{2}|01\rangle+a_{3}|10\rangle+a_{4}|11\rangle\left(\mathbf{a} \in S^{3}\right)$ such that $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$ is optimal iff

$$
M=\left(\begin{array}{cc}
\cos \theta & 0 \\
0 & \sin \theta
\end{array}\right)\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)
$$

is such that $\operatorname{det}(M) \geq 0$ and M has real eigenvalues.

A second question of measure

Given an arbitrary, but fixed, state $\left|\phi_{2}\right\rangle$ what is the measure of states $\left|\phi_{1}\right\rangle$ such that $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$ is optimal?
Schmidt decomposition: The arbitary state can be taken as $\left|\phi_{2}\right\rangle=\cos \theta|00\rangle+\sin \theta|11\rangle$ with $0 \leq \theta \leq \pi / 4 . \quad C\left(\left|\phi_{2}\right\rangle\right)=\sin 2 \theta$.
$\left|\phi_{1}\right\rangle=a_{1}|00\rangle+a_{2}|01\rangle+a_{3}|10\rangle+a_{4}|11\rangle\left(\mathbf{a} \in S^{3}\right)$ such that $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$ is optimal iff

$$
M=\left(\begin{array}{cc}
\cos \theta & 0 \\
0 & \sin \theta
\end{array}\right)\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)
$$

is such that $\operatorname{det}(M) \geq 0$ and M has real eigenvalues.
Equivalent RMT:

$$
M=\left(\begin{array}{cc}
\cos \theta & 0 \\
0 & \sin \theta
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

(a, b, c, d) i.i.d. $\quad N(0,1)$.

The measure f_{θ} of states co-optimal with $\left|\phi_{2}\right\rangle$

$$
\left|\phi_{2}\right\rangle=\cos \theta|00\rangle+\sin \theta|11\rangle
$$

Decreases monotonically from $1 / 2$ at $\theta=0$ to $1 / \sqrt{ } 2-1 / 2$ at

$\theta=\pi / 4$.
The fraction of states co-optimal with the maximally entangled state is the smallest and corresponds to the probability of a single random matrix having real eigenvalues.

The measure f_{θ} of states co-optimal with $\left|\phi_{2}\right\rangle$

$$
\left|\phi_{2}\right\rangle=\cos \theta|00\rangle+\sin \theta|11\rangle
$$

$$
\begin{aligned}
& f_{\theta}=\frac{1}{2}-\frac{1}{2 \pi} \int_{0}^{\pi} \sqrt{\frac{\sin \phi}{\sin \phi+\beta}} d \phi \\
& =\frac{1}{2}-\frac{1}{2 \pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \frac{\Gamma\left(k+\frac{1}{2}\right) \Gamma\left(\frac{k}{2}+\frac{3}{4}\right)}{\Gamma\left(\frac{k}{2}+\frac{5}{4}\right)}(\sin 2 \theta)^{k+\frac{1}{2}} .
\end{aligned}
$$

Decreases monotonically from $1 / 2$ at $\theta=0$ to $1 / \sqrt{2}-1 / 2$ at $\theta=\pi / 4$.
The fraction of states co-optimal with the maximally entangled state is the smallest and corresponds to the probability of a single random matrix having real eigenvalues.

A third question of measure

What is the measure, f , of optimal pairs $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$?
Equivalent RMT: What is the probability, $p_{2,2}^{(2)}$ that the product of two 2×2 matrices have real eigenvalues?
Integrate out over θ. The appropriate invariant measure follows from the induced measure of singular values of random matrices and is known for $n \times m$ matrices. (Zyczkowski, Sommers 2001). For 2×2 :

$$
\mu(\theta)=2 \cos 2 \theta
$$

Probability of real eigenvalues of a product of 2 gaussian matrices:

A third question of measure

What is the measure, f , of optimal pairs $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$? Equivalent RMT: What is the probability, $p_{2,2}^{(2)}$ that the product of two 2×2 matrices have real eigenvalues?
Integrate out over θ. The appropriate invariant measure follows from the induced measure of singular values of random matrices and is known for $n \times m$ matrices. (Zyczkowski, Sommers 2001). For 2×2 :

$$
\mu(\theta)=2 \cos 2 \theta
$$

A third question of measure

What is the measure, f , of optimal pairs $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$? Equivalent RMT: What is the probability, $p_{2,2}^{(2)}$ that the product of two 2×2 matrices have real eigenvalues? Integrate out over θ. The appropriate invariant measure follows from the induced measure of singular values of random matrices and is known for $n \times m$ matrices. (Zyczkowski, Sommers 2001). For 2×2 :

$$
\mu(\theta)=2 \cos 2 \theta
$$

A third question of measure

What is the measure, f , of optimal pairs $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$?
Equivalent RMT: What is the probability, $p_{2,2}^{(2)}$ that the product of two 2×2 matrices have real eigenvalues?
Integrate out over θ. The appropriate invariant measure follows from the induced measure of singular values of random matrices and is known for $n \times m$ matrices. (Zyczkowski, Sommers 2001). For 2×2 :

$$
\begin{gathered}
\mu(\theta)=2 \cos 2 \theta \\
f=\int_{0}^{\pi / 4} f_{\theta} \mu(\theta) d \theta=\frac{\pi}{4}-\frac{1}{2}
\end{gathered}
$$

Probability of real eigenvalues of a product of 2 gaussian matrices:

$$
p_{2,2}^{(2)}=\frac{\pi}{4}
$$

The probability that a product of two matrices have real eigenvalues

The fraction $\frac{\pi}{4}-\frac{1}{2} \approx 0.285$ of pairs of 2 -qubit states are optimal.

Two are more real than one

 Speculative general feature?
The probability that a product of two matrices have real eigenvalues

The fraction $\frac{\pi}{4}-\frac{1}{2} \approx 0.285$ of pairs of 2 -qubit states are optimal.

$$
\begin{aligned}
& p_{2,2}=\frac{1}{\sqrt{2}}=0.70710678118654752440 \cdots \\
& <p_{2,2}^{(2)}=\frac{\pi}{4}=0.78539816339744830962 \cdots
\end{aligned}
$$

Two are more real than one

Speculative general feature?

$$
M=\left(\begin{array}{cc}
\cos \theta & 0 \\
0 & \sin \theta
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

(a, b, c, d) identically distr. then Prob that M has real eigenvalues is maximum when $\theta=0$ and minimum when $\theta=\pi / 4$.

More matrices: Numerical results

$p_{n, n}^{(K)}=$ Prob. that all eigenvalues of $A_{1} \cdots A_{K}$ are real. $A_{i}: n \times n$ random real matrix.

Expected number of real eigenvalues

$$
E_{n}^{(K)} \sim n-\exp \left(-\gamma_{n} K\right)
$$

The probability that k eigenvalues of a product of K random 8 dimensional matrices are real, based on 100,000 realizations. The $k=0$ case is barely seen in this scale.

AL: (J. Phys. A: Math. Theor. vol. 46 (2013)).

The eigenvalues of K products of 10 dimensional random matrices, after they have been divided by the corresponding Frobenius norms.
The real and imaginary parts are plotted for 1000 realizations of such products.

Analytical results for $n>2, K>2$

P. J. Forrester, "Probability of all eigenvalues real for products of standard Gaussian matrices" arXiv1309.7736, J. Phys. A. 2014
Evaluates $p_{n, n}^{(2)}$ in terms of determinants whose entries are Meijer-G functions.

Proves: $p_{n, n}^{(K)}$
Also Santosh Kumar "Exact evaluations of some Meijer G-functions and probability of all eigenvalues real for the product of two Gaussian matrices" J. Phys. A. 2015

Analytical results for $n>2, K>2$

P. J. Forrester, "Probability of all eigenvalues real for products of standard Gaussian matrices" arXiv1309.7736, J. Phys. A. 2014
Evaluates $p_{n, n}^{(2)}$ in terms of determinants whose entries are Meijer-G functions.
Conjectures: $p_{3,3}^{(2)}=\frac{5 \pi}{32}, \cdots, p_{7,7}^{(2)}=\frac{31625532537 \pi^{3}}{2^{47}}$
Proves: $p_{n, n}^{(K)}$
Also Santosh Kumar "Exact evaluations of some Meijer G-functions and probability of all eigenvalues real for the product of two Gaussian matrices" J. Phys. A. 2015

Analytical results for $n>2, K>2$

P. J. Forrester, "Probability of all eigenvalues real for products of standard Gaussian matrices" arXiv1309.7736, J. Phys. A. 2014
Evaluates $p_{n, n}^{(2)}$ in terms of determinants whose entries are Meijer-G functions.

Conjectures: $p_{3,3}^{(2)}=\frac{5 \pi}{32}, \cdots, p_{7,7}^{(2)}=\frac{31625532537 \pi^{3}}{2^{47}}$
Proves: $p_{n, n}^{(K)} \longrightarrow 1$ as $K \longrightarrow \infty$.
Also Santosh Kumar "Exact evaluations of some Meijer G-functions and probability of all eigenvalues real for the product of two Gaussian matrices" J. Phys. A. 2015

General nonatomic distributions

i.i.d. (but not necessarily gaussian), symmetric zero mean and continuous
Under rather general conditions for $n=2$, the probability of real eigenvalues $\geq 5 / 8$ and seems to be $\leq \mathbf{7 / 8}$.
(1) Uniform on $[-1,1]: \frac{49}{72}=0.680556$.
(2) Gaussian: $1 / \sqrt{2}=0.707 \cdots$.
(3) Laplace $\exp (-|x|): \frac{11}{15}=0.733 \cdots$.
(4) Cauchy: $\frac{1}{\pi\left(1+x^{2}\right)}: \frac{3}{4}=0.75$.

Probability of real eigenvalues

Symmetric Beta distribution: $|x|^{\nu} \Theta(1-|x|)$

ν	Probability	
$-4095 / 4096$	0.874959	
$-7 / 8$	0.849868	
$-1 / 2$	0.759836	$\nu=-1 / 2: \frac{1}{48}(41-\pi-2 \ln 2)$
0	$49 / 72=0.680556$	
1	0.63709	
$3 / 2$	0.632888	$\nu=1: \frac{3653}{5760}+\frac{\ln 2}{240}$
2	0.631023	
3	0.62928	$\nu=2: \frac{8905}{14112}$
4	0.628361	
200	0.625078	$\nu=4: \frac{45332489}{72144072}$
400	0.625039	

Products follow the same ordering

Comparison of probability that all eigenvalues are real for a product of K random matrices with different symmetric distributions and the dimensionality $n=2$ (main) and 8 (inset). The plot is based on 10^{5} independent realizations.

So do Hadamard products ...

Comparison of probability that all eigenvalues are real for Hadamard products of $K 2 \times 2$ random matrices for some symmetric distributions based on 10^{5} realizations. The inset shows the power law approach of the probability of all real eigenvalues to the asymptotic value which is less than unity, for the Gaussian case.

Summary and questions

- A question about measure of Concurrence-optimal states led to the question about the fraction of product of two 2×2 matrices that have real eigenvalues.
- For a triple of optimal states of 2 qubits, the fraction is not more than the probability that $\{A B, A C, B C\}$ all have real eigenvalues for triples $\{A, B, C\}$. How much is this?
 product of K random matrices? Find $E_{n}^{K}=\sum_{k=0}^{n} k p_{k, n}^{(K)}$, does it approach n exponentially?
- Universality: eigenvalues tends to become real with more terms in the products for nongaussian matrices. Hierarchy at $K=1$ seems to be maintained. Hadamard products also increase number of real eigenvalues but not to full fraction

Summary and questions

- A question about measure of Concurrence-optimal states led to the question about the fraction of product of two 2×2 matrices that have real eigenvalues.
- fraction of real eigenvalues increases from $1 / \sqrt{2}$ for $k=1$ to $\pi / 4$ for $K=2$ and with further products tends to 1 .
- For a triple of optimal states of 2 qubits, the fraction is not more than the probability that $\{A B, A C, B C\}$ all have real eigenvalues for triples $\{A, B, C\}$. How much is this?
product of K random matrices? Find $E_{n}^{K}=\sum_{k=0}^{n} k p_{k, n}^{(K)}$, does it
approach n exponentially?
- Universality: eigenvalues tends to become real with more terms
in the products for nongaussian matrices. Hierarchy at $K=1$ seems to be maintained. Hadamard products also increase number of real eigenvalues but not to full fraction

Summary and questions

- A question about measure of Concurrence-optimal states led to the question about the fraction of product of two 2×2 matrices that have real eigenvalues.
- fraction of real eigenvalues increases from $1 / \sqrt{2}$ for $k=1$ to $\pi / 4$ for $K=2$ and with further products tends to 1 .
- For a triple of optimal states of 2 qubits, the fraction is not more than the probability that $\{A B, A C, B C\}$ all have real eigenvalues for triples $\{A, B, C\}$. How much is this?
- What is the probability $p_{k, n}^{(K)}$ that $k<n$ eigenvalues are real in a product of K random matrices? Find $E_{n}^{K}=\sum_{k=0}^{n} k p_{k, n}^{(K)}$, does it approach n exponentially?
- Universality: eigenvalues tends to become real with more terms in the products for nongaussian matrices. Hierarchy at $K=1$ seems to be maintained. Hadamard products also increase number of real eigenvalues but not to full fraction.

Vielen Danke

Based on the collaborations in
Optimality: K. V. Shuddhodhan, TIFR Math. Mumbai; K. Ramkarthik, VJNIT, Nagpur.(J. Phys. A: Math. Theor. 44, 345301 (2011))

Nongaussian matrices: Sajna Hameed, Michigan; Kavita Jain, JNCSAR Bangalore. (J. Phys. A : Math. Theor. 48, 385204 (2015)) and
AL: (J. Phys. A: Math. Theor. vol. 46 (2013)).

