Phase transitions of singular values for products of

 random matricesDang-Zheng Liu

School of Mathematical Sciences, University of Science and Technology of China

> Workshop on Random Product Matrices 22-26 August 2016, Bielefeld

Refs: [1] Forrester-L.: Raney distributions and random matrix theory, J. Stat. Phys., 2015; Singular values for products of complex Ginibre matrices with a source: hard edge limit and phase transition, Comm. Math. Phys., 2016
[2] L.: Singular values for products of two coupled random matrices: hard edge phase transition, arXiv:1602.00634v2.

Outline

(1) Products of Gaussian matrices

- Noncentral Wishart
- Correlation kernels
- Hard edge limits
(2) Products of two correlated matrices
- Object and Motivation
- Singular value PDF
- A phase transition

Product of Gaussian random matrices

A Product of independent Ginibre matrices $X=G_{r} \cdots G_{1}\left(G_{0}+A\right)$ where G_{j} is a random $\left(N+\nu_{j}\right) \times\left(N+\nu_{j-1}\right)$ matrix with i.i.d. standard complex Gaussian entries and A is a non-random matrix; $\nu_{r}, \ldots, \nu_{0} \geq 0$ and $\nu_{-1}=0$.
© Goal: Hard edge limits of singular values squared for the product X, i.e. eigenvalues x_{1}, \ldots, x_{N} of $X^{*} X$. Here let a_{1}, \ldots, a_{N} be eigenvalues of $A^{*} A$.
A Singular values for products of independent random matrices, Akemann-Kieburg-Wei /Akemann-Ipsen-Kieburg '13 (eigenvalue PDF), Kuijlaars-Zhang ' 14 (Meijer G-kernels, NEW!), L.-Wang-Zhang '14 (Sine-, Airy- kernels), Alexeev, Bai, Burda-Jarosz-Livan- Nowak-Swiech, Claeys, Forrester, Götze, Kosters, Neuschel, Penson, Stivigny, Strahov, Tikhomirov, Zyczkowski, ...

Noncentral complex Wishart matrices

© $X=G+A$, where G is a random $N \times n$ matrix with iid complex normal entries and A is a deterministic matrix.
© Eigenvalue PDF of $X X^{*}(\alpha=n-N)$

$$
P_{N}(x)=Z^{-1} \operatorname{det}\left[x_{i}^{j-1}\right]_{i, j=1}^{N} \operatorname{det}\left[x_{i}^{\alpha} e^{-x_{i}}{ }_{0} F_{1}\left(\alpha+1 ; a_{i} x_{j}\right]_{i, j=1}^{N},\right.
$$

where a_{1}, \ldots, a_{N} are eigenvalues of $A A^{*}$ and the Bessel function

$$
{ }_{0} F_{1}(z)=\sum_{k=0}^{\infty} \frac{\Gamma(\alpha+1)}{k!\Gamma(\alpha+1+k)} z^{k} .
$$

\bigcirc Closely related to non-intersecting squared Bessel paths starting at zero and ending at N points, see e.g. [Kuijlaars, Martínez-Finkelshtein, Wielonsky, '09,'11]

Correlation kernel

[Desrosiers-Forrester 2008] A double integral for correlation kernel

$$
\begin{aligned}
& K_{N}(x, y)=y^{\alpha} \frac{1}{2 \pi i} \frac{1}{\Gamma^{2}(\alpha+1)} \int_{0}^{\infty} d u \int_{\mathcal{C}} d v u^{\nu_{0}} e^{-u+v} \\
& \quad \times{ }_{0} F_{1}(\alpha+1 ;-u x){ }_{0} F_{1}(\alpha+1 ;-v y) \frac{1}{u-v} \prod_{l=1}^{N} \frac{u+a_{l}}{v+a_{l}}
\end{aligned}
$$

where \mathcal{C} encircles $-a_{1}, \ldots,-a_{N}$ but not u. Suitable for asymptotic analysis at least at the origin!!

Limiting density (Kuijlaars et al, '09, '11)

For fixed $m \geq 0$, suppose $a_{m+1}=\cdots=a_{N}=b N$. Limiting eigenvalue density

$$
\lim _{N \rightarrow \infty} K_{N}(N t, N t)=\rho(t ; b)
$$

with support $\left[L_{1}, L_{2}\right]$.
© Subcritical $0 \leq b<1: L_{1}=0$ and the hard edge singularity

$$
\rho(t ; b) \sim c t^{-\frac{1}{2}}, t \rightarrow 0^{+}
$$

A Critical $b=1: L_{1}=0$ and the hard edge singularity

$$
\rho(t ; b) \sim \frac{\sqrt{3}}{2 \pi} t^{-\frac{1}{3}}, t \rightarrow 0^{+}
$$

© Supcritical $b>1: L_{1}>0$.

Hard edge phase transition

Theorem A

\bigcirc Subcritical $0<b<1$ [Kuijlaars et al, '09, ' $11, m=0$; Forrester-L., ' $16, m \geq 0$]: with $a_{1} / N, \cdots, a_{m} / N$ fixed

$$
\lim _{N \rightarrow \infty} \frac{1}{(1-b) N} K_{N}\left(\frac{\xi}{(1-b) N}, \frac{\eta}{(1-b) N}\right)=K_{\text {Bessel }}(\xi, \eta)
$$

A Critical $b=(1-\tau / \sqrt{N})^{-1}$ [Kuijlaars et al, '09, ' $11, m=0$; Forrester-L., ' $16, m \geq 0$]: with $a_{j}=\sqrt{N} \sigma_{j}, j=1, \ldots, m$

$$
\begin{array}{r}
\lim _{N \rightarrow \infty} \frac{1}{\sqrt{N}} K_{N}\left(\frac{\xi}{\sqrt{N}}, \frac{\eta}{\sqrt{N}}\right)=\eta^{\alpha} \frac{1}{2 \pi i} \frac{1}{\Gamma^{2}(\alpha+1)} \int_{0}^{\infty} d u \int_{i \mathbb{R}} d v \\
u_{0}^{\alpha} F_{1}(;-u \xi)_{0} F_{1}(;-v \eta) \frac{e^{-\tau u-\frac{1}{2} u^{2}+\tau v+\frac{1}{2} v^{2}}}{u-v} \prod_{j=1}^{m} \frac{u+\sigma_{j}}{v+\sigma_{j}}
\end{array}
$$

Hard edge phase transition

Theorem A (continued)

\bigcirc Supercritical $b>1$ [Forrester-L., '16]: with

$$
\begin{aligned}
& a_{j}=\sigma_{j} b /(b-1), j \leq m \text { and } m \geq 1, \\
& \lim _{N \rightarrow \infty} e^{\left(1-\frac{1}{b}\right)(\eta-\xi)}\left(1-\frac{1}{b}\right) K_{N}\left(\left(1-\frac{1}{b}\right) \xi,\left(1-\frac{1}{b}\right) \eta\right)=\frac{1}{2 \pi i} \frac{1}{\Gamma^{2}(\alpha+1)} \\
& \eta^{\alpha} \int_{0}^{\infty} d u \int_{\gamma} d v u^{\alpha}{ }_{0} F_{1}(;-u \xi){ }_{0} F_{1}(;-v \eta) \frac{e^{-u+v}}{u-v} \prod_{j=1}^{m} \frac{u+\sigma_{j}}{v+\sigma_{j}} .
\end{aligned}
$$

A hard-edge outlier phenomenon is observed at zero and the limiting kernel happens to be the shifted mean $m \times m$ LUE kernel . This type of hard-edge phase transition exists at the hard edge, just like the BBP (Baik-Ben Arous-Péché '05) phase transition at the soft edge!

Correlation kernels for the product

Object: Singular values for product of independent Ginibre matrices $X=G_{r} \cdots G_{1}\left(G_{0}+A\right)$.
© Proposition[Forrester-L. '15] With positive eigenvalues a_{1}, \ldots, a_{N} for $A A^{*}$, the joint density reads off

$$
\mathcal{P}_{N}\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{N!} \operatorname{det}\left[K_{N}\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{N}
$$

with correlation kernel $K_{N}(x, y)$ given by

$$
\frac{1}{2 \pi i} \int_{0}^{\infty} d u \int_{\mathcal{C}} d v u^{\nu_{0}} e^{-u+v} \Psi(u ; x) \Phi(v ; y) \frac{1}{u-v} \prod_{l=1}^{N} \frac{u+a_{l}}{v+a_{l}}
$$

where \mathcal{C} encircles $-a_{1}, \ldots,-a_{N}$ but not u.

Two auxiliary functions

$$
\begin{aligned}
\Psi(u ; x)=\frac{1}{(2 \pi i)^{r}} & \frac{1}{\Gamma\left(\nu_{0}+1\right)} \int_{\gamma_{1}} d w_{1} \cdots \int_{\gamma_{r}} d w_{r} \prod_{l=1}^{r} w_{l}^{-\nu_{l}-1} e^{w_{l}} \\
& \times e^{x /\left(w_{1} \cdots w_{r}\right)}{ }_{0} F_{1}\left(\nu_{0}+1 ;-u x /\left(w_{1} \cdots w_{r}\right)\right)
\end{aligned}
$$

$$
\Phi(v ; y)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d s y^{-s} \phi(v ; s) \prod_{l=1}^{r} \Gamma\left(\nu_{l}+s\right)
$$

where

$$
\phi(v ; s)=\frac{\Gamma\left(\nu_{0}+s\right)}{\Gamma\left(\nu_{0}+1\right)}{ }_{1} F_{1}\left(\nu_{0}+s ; \nu_{0}+1 ;-v\right) .
$$

Limiting density: $b=0$

For fixed $m \geq 0$, suppose $a_{m+1}=\cdots=a_{N}=b N$. Let $\rho(\lambda ; b)$ be limiting eigenvalue density.
© Limiting eigenvalue density: Fuss-Catalan law

$$
\lim _{N \rightarrow \infty} N^{r} K_{N}\left(N^{r+1} \lambda, N^{r+1} \lambda\right)=\rho(\lambda ; 0)
$$

where its k-th moment is given by the Fuss-Catalan number $\frac{1}{(r+2) k+1}(\underset{k}{(r+2) k+1})$
© Hard edge singularity with exponent $-1+\frac{1}{r+2}=-\frac{r+1}{r+2}$

$$
\frac{1}{\pi} \sin \frac{\pi}{r+2} \lambda^{-1+\frac{1}{r+2}} \quad \text { as } \quad \lambda \rightarrow 0^{+}
$$

see e.g. [Banica-Belinschi-Capitaine-Collins '11]

Limiting density: $b=1$

© [Forrester-L. ' 15]: The limiting eigenvalue density $\rho(\lambda ; 1)$ has k-th moments (Raney numbers)

$$
\frac{2}{(2 r+3) k+2}\binom{(2 r+3) k+2}{k} .
$$

A Hard edge singularity with exponent $-1+\frac{1}{r+3 / 2}=-\frac{2 r+2}{2 r+3}$

$$
\frac{1}{\pi} \sin \frac{2 \pi}{2 r+3} \lambda^{-1+\frac{1}{r+3 / 2}} \quad \text { as } \quad \lambda \rightarrow 0^{+}
$$

see also e.g. [Penson-Zyczkowski '11]
A Compared to the case of $b=0$ with singularity exponent $-1+\frac{1}{r+2}$, both are unlikely to be identical for any integer $r \geq 0$. Different exponents exhibit different scaling limits! This implies new kernels different from the Meijer G-kernel.

Meijer G-kernel

[Kuijlaars-Zhang '14] [Bertola-Gekhtman-Szmigielski '14, $r=1$] Meijer G-kernel =:

$$
\int_{0}^{1} G_{0, r+2}^{1,0}\left({ }_{0,-\nu_{0}, \ldots,-\nu_{r}} \mid u x\right) G_{0, r+2}^{r+1,0}\left(\nu_{\nu_{0}, \ldots, \nu_{r}, 0} \mid u y\right) d u
$$

where the Meijer G-function $G_{p, q}^{m, n}\left(\left.\begin{array}{l}a_{1}, \ldots, a_{p} \\ b_{1}, \ldots, b_{q}\end{array} \right\rvert\, z\right)=$

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{\prod_{j=1}^{m} \Gamma\left(b_{j}+s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}-s\right)}{\prod_{j=m+1}^{q} \Gamma\left(1-b_{j}-s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}+s\right)} z^{-s} d s
$$

A hard-edge phase transition

Theorem B [Forrester-L. '16]
\bigcirc Subcritical regime: $0<b<1$ and with $a_{1} / N, \cdots, a_{m} / N$ fixed

$$
\lim _{N \rightarrow \infty} \frac{1}{(1-b) N} K_{N}\left(\frac{\xi}{(1-b) N}, \frac{\eta}{(1-b) N}\right)=\text { Meijer G-kernel. }
$$

- Critical regime: $b=1 . a_{j}=\sqrt{N} \sigma_{j}, j=1, \ldots, m$ and $a_{k}=$ $N(1-\tau / \sqrt{N})^{-1}, k=m+1, \ldots, N$

$$
\lim _{N \rightarrow \infty} \frac{1}{\sqrt{N}} K_{N}\left(\frac{\xi}{\sqrt{N}}, \frac{\eta}{\sqrt{N}}\right)=K^{\text {crit }}(\xi, \eta)
$$

A hard-edge phase transition (cotinued)

Deformed critical kernel:

$$
\begin{aligned}
K^{\mathrm{crit}}(\xi, \eta)= & \frac{1}{2 \pi i} \int_{0}^{\infty} d u \int_{-c-i \infty}^{-c+i \infty} d v\left(\frac{u}{v}\right)^{\nu_{0}} \frac{e^{-\tau u-\frac{1}{2} u^{2}+\tau v+\frac{1}{2} v^{2}}}{u-v} \prod_{j=1}^{m} \frac{u+\sigma_{j}}{v+\sigma_{j}} \\
& G_{0, r+2}^{1,0}\left({ }_{0,-\nu_{0}, \ldots,-\nu_{r}} \mid u \xi\right) G_{0, r+2}^{r+1,0}\left(\nu_{\nu_{0}, \ldots, \nu_{r}, 0} \mid v \eta\right)
\end{aligned}
$$

where $0<c<\min \left\{\sigma_{1}, \ldots, \sigma_{m}\right\}$.
\bigcirc Supercritical regime: $b>1$. When $r>0$, scaling limits?

Two correlated matrices

Cf. both Strahov's talk or Akemann's talk: The product of two coupled matrices and a new interpolating hard-edge scaling limit
\bigcirc Object: Given two matrices X_{1} of size $L \times M$ and X_{2} of size $M \times N$ with $L, M \geq N$, the joint PDF (chiral two-matrix model, unsolvable!) defined as

$$
\exp \left\{-\alpha \operatorname{Tr}\left(X_{1} X_{1}^{*}+X_{2}^{*} X_{2}\right)+\operatorname{Tr}\left(\Omega X_{1} X_{2}+\left(\Omega X_{1} X_{2}\right)^{*}\right)\right\}
$$

and the squared singular values of $Y_{2}=X_{1} X_{2}$, where $\alpha>0$ and Ω is a non-random $N \times L$ coupling matrix such that $\Omega \Omega^{*}<\alpha^{2}$.
© Goal: Singular value PDF as a bi-orthogonal ensemble, a double contour integral for correlation kernel, and a phase transition at the origin in four different regimes.

Motivation: complex eigenvalues

A A, B : independent $N \times M$ matrices with iid standard complex Gaussian entries, Osborn 2004 investigated an analogue of the Dirac operator in the context of QCD with chemical potential $\mu \in[0,1]$

$$
D=\left(\begin{array}{cc}
0 & i A+\mu B \\
i A^{*}+\mu B^{*} & 0
\end{array}\right)
$$

Complex eigenvalues of D reduce to those of the product $Y=(i A+\mu B)\left(i A^{*}+\mu B^{*}\right)$.
\bigcirc An interpolation model: $\mu=0$, Wishart distribution; $\mu=1$, the product of two independent Gaussian matrices.

Motivation: singular values

© Set $X_{1}=(A-i \sqrt{\mu} B) / \sqrt{2}, \quad X_{2}=\left(A^{*}-i \sqrt{\mu} B^{*}\right) / \sqrt{2}$, then X_{1} and X_{2} have a joint PDF as defined above

$$
\exp \left\{-\alpha \operatorname{Tr}\left(X_{1} X_{1}^{*}+X_{2}^{*} X_{2}\right)+\operatorname{Tr}\left(\Omega X_{1} X_{2}+\left(\Omega X_{1} X_{2}\right)^{*}\right)\right\}
$$

but with $L=N, \alpha=(1+\mu) /(2 \mu)$ and $\Omega=(1-\mu) /(2 \mu) I_{N}$; [Akemann-Strahov ' 15 a] turned to singular values of $X_{1} X_{2}$.
\bigcirc Our Object: Given two matrices X_{1} of size $L \times M$ and X_{2} of size $M \times N$ with $L, M \geq N$, the joint PDF is proportional to

$$
\exp \left\{-\alpha \operatorname{Tr}\left(X_{1} X_{1}^{*}+X_{2}^{*} X_{2}\right)+\operatorname{Tr}\left(\Omega X_{1} X_{2}+\left(\Omega X_{1} X_{2}\right)^{*}\right)\right\}
$$

where $\alpha>0$ and Ω is a non-random $N \times L$ coupling matrix such that $\Omega \Omega^{*}<\alpha^{2}$.
© An interpolating ensemble between squared Wishart matrix ($\mu=0$) and the product of two independent matrices $(\mu=1)$.

Coupled multiplication with a Ginibre matrix

$G:(\kappa+N) \times(\nu+N), X:(\nu+N) \times N, \Omega: N \times(\kappa+N)$, the joint PDF of G and X proportional to

$$
\exp \left\{-\alpha \operatorname{Tr}\left(G G^{*}\right)+\operatorname{Tr}\left(\Omega G X+(\Omega G X)^{*}\right)\right\} h(X) d G d X
$$

where $h(U X V)=h(X)$ for any $U \in U(\nu+N)$ and $V \in U(N)$.

Theorem (Singular value PDF, L. '16)

Let $\delta_{1}, \ldots, \delta_{N}, \sqrt{t_{1}}, \ldots, \sqrt{t_{N}}$ be singular values of Ω and X, suppose $h(X)=\frac{1}{\Delta(t)} \operatorname{det}\left[f_{k}\left(t_{j}\right)\right]_{j, k=1}^{N}$, then the singular values of $G X$

$$
\left.\left.\mathcal{P}_{N}\left(x_{1}, \ldots, x_{N}\right)=Z_{N}^{-1} \operatorname{det}\left[\xi_{i}\left(x_{j}\right)\right)\right]_{i, j=1}^{N} \operatorname{det}\left[\eta_{i}\left(x_{j}\right)\right)\right]_{i, j=1}^{N},
$$

where $\xi_{i}(z)={ }_{0} F_{1}\left(\kappa+1 ; \delta_{i}^{2} z\right)$ and $\eta_{i}(z)=\int_{0}^{\infty} t^{\kappa} e^{-\alpha t}\left(\frac{z}{t}\right)^{\nu} f_{i}\left(\frac{z}{t}\right) \frac{d t}{t}$.

Transformations of bi-orthogonal ensembles

Cf. both Kuijlaars's and Wang's talks
A Multiplication with a Ginibre matrix transforms a polynomial ensemble to a polynomial ensemble [Kuijlaars-Stivigny '14, Kuijlaars' 15]:

$$
\left.Z_{N}^{-1} \operatorname{det}\left[x_{j}^{i-1}\right]_{i, j=1}^{N} \operatorname{det}\left[\eta_{i}\left(x_{j}\right)\right)\right]_{i, j=1}^{N}
$$

A Multiplication with a truncated unitary matrix also preserves the structure of a polynomial ensemble [Kieburg-Kuijlaars-Stivigny 15], so does addition of a GUE matrix [Claeys-Kuijlaars-Wang 15].
\bigcirc Coupled multiplication with a Ginibre matrix transforms a bi-invariant polynomial ensemble to a bi-orthogonal ensemble in Borodin's sense.

Correlation kernel

$$
\begin{gathered}
I_{\nu}(z)=\sum_{k=0}^{\infty} \frac{1}{k!\Gamma(\nu+1+k)}\left(\frac{z}{2}\right)^{2 k+\nu} \\
K_{\nu}(z)=\frac{1}{2}\left(\frac{z}{2}\right)^{\nu} \int_{0}^{\infty} t^{-\nu-1} e^{-t-\frac{z^{2}}{4}} d t, \quad|\arg (z)|<\frac{\pi}{2},
\end{gathered}
$$

Theorem (Double integral for correlation kernel, L. ' 16)

$$
\begin{aligned}
& K_{N}(x, y)=\frac{2 \alpha^{2}}{(2 \pi i)^{2}} \int_{\mathcal{C}_{\text {out }}} d u \int_{\mathcal{C}_{\text {in }}} d v K_{-\kappa}(2 \alpha \sqrt{(1-u) x}) \times \\
& I_{\kappa}(2 \alpha \sqrt{(1-v) y}) \frac{1}{u-v}\left(\frac{1-u}{1-v}\right)^{\kappa / 2}\left(\frac{u}{v}\right)^{-\nu-N} \prod_{l=1}^{N} \frac{u-\left(1-\delta_{l}^{2} / \alpha^{2}\right)}{v-\left(1-\delta_{l}^{2} / \alpha^{2}\right)},
\end{aligned}
$$

where $\mathcal{C}_{\text {in }}$ encircles $1-\delta_{1}^{2} / \alpha^{2}, \ldots, 1-\delta_{N}^{2} / \alpha^{2}$ on the LHS of $\mathcal{C}_{\text {out }}$.

Remarks

© When $\kappa=0(L=N)$ and all δ_{j} are equal, singular value PDF has been obtained by [Akemann-Strahov '15a] for two coupled Gaussian matrices.
\bigcirc In this case a "double contour integral" for correlation kernel has also been given by [Akemann-Strahov '15a], different from ours.

Limiting kernel (i)

For a given nonnegative integer m, suppose that
$\delta_{m+1}=\cdots=\delta_{N}=\delta$ and $\alpha=(1+\mu) /(2 \mu), \delta=(1-\mu) /(2 \mu), 0<\mu \leq 1$.
As μN changes from 0 to ∞ at different scales, by tuning the scale of $1-\delta_{1}^{2} / \alpha^{2}, \ldots, 1-\delta_{m}^{2} / \alpha^{2}$, the following hard edge phase transition holds true in four different regimes.
Theorem C [Hard edge phase transition, L. '16]
(i) [Meijer G-kernel] When $\mu N \rightarrow \infty$,

$$
\begin{gathered}
\frac{\mu}{N} K_{N}\left(\frac{\mu N}{N^{2}} \xi, \frac{\mu}{N} \eta\right) \longrightarrow K_{\mathrm{I}}(\xi, \eta):= \\
=\left(\frac{\xi}{\eta}\right)^{\kappa / 2} \int_{0}^{1} d w G_{0,3}^{1,0}(\overline{-,-\nu,-\kappa} \mid \eta w) G_{0,3}^{2,0}(\overline{-, \kappa, 0} \mid \xi w)
\end{gathered}
$$

Limiting kernels (ii) \& (iii)

(ii) [Critical kernel] When $\mu N \rightarrow \tau / 4$ with $\tau>0$ and

$$
1-\delta_{l}^{2} / \alpha^{2} \rightarrow \pi_{l} \in(0,1) \text { for } l=1, \ldots, m(\text { noting } \alpha \sim N)
$$

$$
\alpha^{-2} K_{N}\left(\alpha^{-2} \xi, \alpha^{-2} \eta\right) \rightarrow K_{\mathrm{II}}(\xi, \eta):=
$$

$$
\begin{aligned}
& \frac{2}{(2 \pi i)^{2}} \int_{\mathcal{C}_{\text {out }}} d u \int_{\mathcal{C}_{\text {in }}} d v K_{-\kappa}(2 \sqrt{(1-u) \xi}) I_{\kappa}(2 \sqrt{(1-v) \eta}) \\
& \quad \times e^{-\frac{\tau}{u}+\frac{\tau}{v}} \frac{1}{u-v}\left(\frac{1-u}{1-v}\right)^{\kappa / 2}\left(\frac{u}{v}\right)^{-\nu-m} \prod_{l=1}^{m} \frac{u-\pi_{l}}{v-\pi_{l}}
\end{aligned}
$$

(iii) [Perturbed Bessel, cf. Desrosiers-Forrester '06] When $\mu N \rightarrow 0$ and $1-\delta_{l}^{2} / \alpha^{2}=4 \mu N \pi_{l}$,

$$
\begin{aligned}
& e^{\frac{\alpha}{N}(\sqrt{\xi}-\sqrt{\eta})} \frac{1}{4 N^{2}} K_{N}\left(\frac{1}{4 N^{2}} \xi, \frac{1}{4 N^{2}} \eta\right) \rightarrow K_{\mathrm{III}}(\xi, \eta):=\frac{2}{(2 \pi i)^{2}} \\
&\left.\times \frac{1}{4(\xi \eta)^{\frac{1}{4}}} \int_{\mathcal{C}_{\text {out }}} d u \int_{\mathcal{C}_{\text {in }}} d v e^{\sqrt{\xi} u-\sqrt{\eta} v-\frac{1}{u}+\frac{1}{v}} \frac{1}{u-v}\left(\frac{u}{v}\right)^{-\nu-m} \prod_{l=1}^{m} \frac{u-v^{2}}{v-\theta_{l}}\right)
\end{aligned}
$$

Limiting kernel (iv)

(iv) [Finite coupled product kernel] When $\mu N \rightarrow 0$ and
$1-\delta_{l}^{2} / \alpha^{2} \rightarrow \pi_{l} \in(0,1)$ for $l=1, \ldots, m \geq 1$ (noting $\mu=o(1 / N)$),

$$
4 \mu^{2} K_{N}\left(4 \mu^{2} \xi, 4 \mu^{2} \eta\right) \rightarrow K_{\mathrm{IV}}(\xi, \eta):=
$$

$$
\begin{aligned}
& \frac{2}{(2 \pi i)^{2}} \int_{\mathcal{C}_{\text {out }}} d u \int_{\mathcal{C}_{\text {in }}} d v K_{-\kappa}(2 \sqrt{(1-u) \xi}) I_{\kappa}(2 \sqrt{(1-v) \eta}) \\
& \quad \times \frac{1}{u-v}\left(\frac{1-u}{1-v}\right)^{\kappa / 2}\left(\frac{u}{v}\right)^{-\nu-m} \prod_{l=1}^{m} \frac{u-\pi_{l}}{v-\pi_{l}}
\end{aligned}
$$

This is just the same kernel for the coupled product but with $N=m, \alpha=1$ and $1-\delta_{l}^{2} / \alpha^{2}=\pi_{l}(l=1, \ldots, m)$.

A transition

Theorem (L. 2016)

(i)

$$
\lim _{\tau \rightarrow \infty} \frac{1}{\tau} K_{\mathrm{II}}\left(\frac{x}{\tau}, \frac{y}{\tau}\right)=K_{\mathrm{I}}(x, y)
$$

(ii) Given $q \leq m$, suppose that $\pi_{l}=\tau \hat{\pi}_{l}$ for $l=1, \ldots, q$ and $\pi_{q+1}, \ldots, \pi_{m}$ are fixed, then

$$
\lim _{\tau \rightarrow 0} e^{\frac{2}{\tau}(\sqrt{x}-\sqrt{y})} \frac{1}{\tau^{2}} K_{\mathrm{II}}\left(\frac{x}{\tau^{2}}, \frac{y}{\tau^{2}}\right)=\left.K_{\mathrm{III}}(x, y)\right|_{m \mapsto q, \nu \mapsto \nu+m-q, \pi \mapsto \hat{\pi}} .
$$

(iii)

$$
\lim _{\tau \rightarrow 0} K_{\mathrm{II}}(x, y)=K_{\mathrm{IV}}(x, y)
$$

Remarks

When $\kappa=0(L=N)$ and all δ_{j} are equal, compare relevant results of Akemann-Strahov as follows.
(1) For fixed μ, Part (i) was previously obtained by [Akemann-Strahov 2015a].
(2) Let $\mu=g N^{-\chi}$. In [Akemann-Strahov 2015b], Akemann and Strahov have proved the case $\chi=0$ which is a special case of Part (i), the critical case $\chi=1$ corresponding to Part (ii) and the case $\chi \geq 2$ which is part of Part (iii). Although their three double integrals are different from ours, these (critical kernels) are believed to be the same.

Critical kernel $K_{\text {II }}$

Define

$$
\begin{align*}
K_{\mathrm{II}}^{(0)}(\xi, \eta)= & \frac{2}{(2 \pi i)^{2}} \int_{\mathcal{C}_{\text {out }}} d u \int_{\mathcal{C}_{\text {in }}} d v K_{-\kappa}(2 \sqrt{(1-u) \xi}) I_{\kappa}(2 \sqrt{(1-v) \eta}) \\
& \times e^{-\frac{\tau}{u}+\frac{\tau}{v}} \frac{1}{u-v}\left(\frac{1-u}{1-v}\right)^{\kappa / 2}\left(\frac{u}{v}\right)^{-\nu-m} \tag{1}\\
& K_{\mathrm{II}}(\xi, \eta)=K_{\mathrm{II}}^{(0)}(\xi, \eta)+\sum_{k=1}^{m} \tilde{\Lambda}_{\mathrm{II}}^{(k)}(\xi) \Lambda_{\mathrm{II}}^{(k)}(\eta) \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\tilde{\Lambda}_{\mathrm{II}}^{(k)}(x)=\frac{1}{\pi i} \int_{\mathcal{C}_{0}} d u K_{-\kappa}(2 \sqrt{(1-u) \xi}) e^{-\frac{\tau}{u}}(1-u)^{\kappa / 2} u^{-\nu-m} \prod_{l=1}^{k-1}\left(u-\pi_{l}\right) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\Lambda_{\mathrm{II}}^{(k)}(x)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{\pi}} d v I_{\kappa}(2 \sqrt{(1-v) \xi}) e^{\frac{\tau}{v}}(1-v)^{-\kappa / 2} v^{\nu+m} \prod_{l=1}^{k} \frac{1}{v-\pi_{l}} \tag{4}
\end{equation*}
$$

Integrable form

$$
\begin{align*}
& f(x)=\int_{0}^{\infty} d t t^{-\left(\frac{\alpha}{2}-\kappa\right)-3} e^{-x t-\frac{1}{t}} J_{\alpha}(\sqrt{4 \tau / t}) \tag{5}\\
& g(x)= \frac{1}{2 \pi i} \int_{\mathcal{C}_{0}} d s s^{\left(\frac{\alpha}{2}-\kappa\right)-3} e^{x s+\frac{1}{s}} J_{\alpha}(\sqrt{4 \tau / s}) . \tag{6}\\
& K_{\mathrm{II}}^{(0)}(\xi, \eta) \circ \frac{1}{\eta-\xi}\left(\xi \eta f^{\prime \prime \prime}(\xi) g^{\prime \prime \prime}(\eta)+f^{\prime \prime}(\xi)\left(g(\eta)-(\alpha-2 \kappa-\tau-1) g^{\prime}(\eta)\right.\right. \\
& \quad+g^{\prime \prime}(\eta)\left(f(\xi)+(\alpha-2 \kappa-\tau+1) f^{\prime}(\xi)\right) \\
&\left.\quad-\left(\xi+\eta+\alpha \kappa-\kappa^{2}\right) f^{\prime \prime}(\xi) g^{\prime \prime}(\eta)-f^{\prime}(\xi) g^{\prime}(\eta)\right),
\end{align*}
$$

and $f(x), g(x)$ are solutions of the fourth order ODEs
$x^{2} f^{(4)}-(\alpha-2 \kappa-1) x f^{\prime \prime \prime}-\left(2 x+\alpha \kappa-\kappa^{2}\right) f^{\prime \prime}+(\alpha-2 \kappa-\tau+1) f^{\prime}+f=0$
$x^{2} g^{(4)}+(\alpha-2 \kappa+1) x g^{\prime \prime \prime}-\left(2 x+\alpha \kappa-\kappa^{2}\right) g^{\prime \prime}-(\alpha-2 \kappa-\tau-1) g^{\prime}+g=0$.

Thank you!

