

Gravitational waves from Peccei-Quinn symmetry breaking

Christian Döring

Collaborators:

- Jörg Jäckel (Uni Heidelberg)
- Kai Schmitz (MPIK, Heidelberg)

4.5.2018 @Uni Bielefeld
13. Kosmologietage

Content

- Motivation: What is the Strong CP-Problem?
- Solution: The QCD-Axion
- · A Cosmological CV of the Axion
- · Cosmological Phase Transitions (CPT)
- · Gravitational Waves (GW) from CPT's
- · GW's from Peccei-Quinn Symmetry breaking?
- Conclusion

There is a problem in the theory of strong interactions ...

QCD Lagrangian:
$$\mathcal{L}_{QCD} = \underbrace{\frac{1}{4} G_{a,\,\mu\nu} G_a^{\mu\nu}}_{\text{Gluons}} + \underbrace{\sum_{f}^{N_f} \bar{\psi}_f (\gamma_\mu \cdot \mathcal{D}_\mu + m_f) \psi_f}_{\text{Quarks}}$$

There is a problem in the theory of strong interactions ...

QCD Lagrangian:
$$\mathcal{L}_{QCD} = \underbrace{\frac{1}{4} G_{a,\,\mu\nu} G_a^{\mu\nu}}_{\text{Gluons}} + \underbrace{\sum_{f}^{N_f} \bar{\psi}_f (\gamma_\mu \cdot \mathcal{D}_\mu + m_f) \psi_f}_{\text{Quarks}}$$
 CP-Violating term:

There is a problem in the theory of strong interactions ...

QCD Lagrangian:
$$\mathcal{L}_{QCD} = \underbrace{\frac{1}{4}G_{a,\mu\nu}G_{a}^{\mu\nu}}_{\text{Gluons}} + \underbrace{\sum_{f}^{N_{f}}\bar{\psi}_{f}(\gamma_{\mu}\cdot\mathcal{D}_{\mu}+m_{f})\psi_{f}}_{\text{Quarks}}$$

CP-Violating term:

$$\mathcal{L}_{ar{ heta}} = (heta_{ ext{QCD}} + ext{arg det } M_u M_d) \, rac{g_s^2}{32\pi^2} G_{a,\,\mu
u} ilde{G}_a^{\mu
u} = ar{ heta} rac{g_s^2}{32\pi^2} G_{a,\,\mu
u} ilde{G}_a^{\mu
u}$$

QCD vacuum angle Mass term

There is a problem in the theory of strong interactions ...

QCD Lagrangian:
$$\mathcal{L}_{QCD} = \underbrace{\frac{1}{4}G_{a,\mu\nu}G_{a}^{\mu\nu}}_{\text{Gluons}} + \underbrace{\sum_{f}^{N_f}\bar{\psi}_f(\gamma_\mu\cdot\mathcal{D}_\mu + m_f)\psi_f}_{\text{Quarks}}$$
 CP-Violating term:

$$\mathcal{L}_{ar{ heta}} = (heta_{ ext{QCD}} + ext{arg det } M_u M_d) \, rac{g_s^2}{32\pi^2} G_{a,\,\mu
u} ilde{G}_a^{\mu
u} = ar{ heta} rac{g_s^2}{32\pi^2} G_{a,\,\mu
u} ilde{G}_a^{\mu
u}$$

QCD vacuum angle Mass term

There is a problem in the theory of strong interactions ...

QCD Lagrangian:
$$\mathcal{L}_{QCD} = \underbrace{\frac{1}{4}G_{a,\mu\nu}G_{a}^{\mu\nu}}_{\text{Gluons}} + \underbrace{\sum_{f}^{N_f}\bar{\psi}_f(\gamma_\mu\cdot\mathcal{D}_\mu + m_f)\psi_f}_{\text{Quarks}}$$
 CP-Violating term:

$$\mathcal{L}_{ar{ heta}} = (heta_{ ext{QCD}} + ext{arg det } M_u M_d) \, rac{g_s^2}{32\pi^2} \, G_{ ext{a},\,\mu
u} \, ilde{G}_{ ext{a}}^{\mu
u} = ar{ heta} rac{g_s^2}{32\pi^2} \, G_{ ext{a},\,\mu
u} \, ilde{G}_{ ext{a}}^{\mu
u}$$

QCD vacuum angle Mass term

Electric dipole moment of Neutron:

$$|d_n| < 10^{-26} \, e \mathrm{cm}$$
 $|ar{ heta}| < 10^{-9}$

There is a problem in the theory of strong interactions ...

QCD Lagrangian:
$$\mathcal{L}_{QCD} = \underbrace{\frac{1}{4}G_{a,\,\mu\nu}G_{a}^{\mu\nu}}_{\text{Gluons}} + \underbrace{\sum_{f}^{N_{f}}\bar{\psi}_{f}(\gamma_{\mu}\cdot\mathcal{D}_{\mu}+m_{f})\psi_{f}}_{\text{Quarks}}$$
 CP-Violating term:

$$\mathcal{L}_{ar{ heta}} = (heta_{ ext{QCD}} + ext{arg det } M_u M_d) \, rac{g_s^2}{32\pi^2} \, G_{a,\,\mu
u} \, ilde{G}_a^{\mu
u} = ar{ heta} rac{g_s^2}{32\pi^2} \, G_{a,\,\mu
u} \, ilde{G}_a^{\mu
u}$$

QCD vacuum angle Mass term

Electric dipole moment of Neutron:

$$|d_n| < 10^{-26}\, e$$
cm $|ar{ heta}| < 10^{-9}$

The strong CP Problem states: Why is the phase so small?

Idea: Interpret the phase as a dynamical (pseudo)scalar field rather then a fixed constant

$$\mathcal{L}_a := rac{1}{2} \partial_{\mu} a(x) \partial^{\mu} a(x) - rac{g_s^2}{32\pi^2} rac{a(x)}{f_a} \mathcal{G}_{a,\,\mu
u} ilde{\mathcal{G}}_a^{\mu
u}$$
 $\mathcal{L}_ heta o \mathcal{L}_ heta + \mathcal{L}_a - V(a)$ Related scale

Such that $\langle \theta - a(x)/f_a \rangle = 0$ after QCD-phase transition

Idea: Interpret the phase as a dynamical (pseudo)scalar field rather then a fixed constant

$$\mathcal{L}_a := rac{1}{2} \partial_{\mu} a(x) \partial^{\mu} a(x) - rac{g_s^2}{32\pi^2} rac{a(x)}{f_a} \mathcal{G}_{a,\,\mu
u} ilde{\mathcal{G}}_a^{\mu
u}$$
 Related scale

Such that $\langle \theta - a(x)/f_a \rangle = 0$ after QCD-phase transition

Idea: Interpret the phase as a dynamical (pseudo)scalar field rather then a fixed constant

$$\mathcal{L}_a := rac{1}{2} \partial_{\mu} a(x) \partial^{\mu} a(x) - rac{g_s^2}{32\pi^2} rac{a(x)}{f_a} \mathcal{G}_{a,\,\mu
u} ilde{\mathcal{G}}_a^{\mu
u}$$
 Related scale

Such that $\langle \theta - a(x)/f_a \rangle = 0$ after QCD-phase transition

Hence CP symmetry gets restored, thanks to the axion!

Idea: Interpret the phase as a dynamical (pseudo)scalar field rather then a fixed constant

$$\mathcal{L}_a := rac{1}{2} \partial_\mu a(x) \partial^\mu a(x) - rac{g_s^2}{32\pi^2} rac{a(x)}{f_a} \mathcal{G}_{a,\,\mu
u} ilde{\mathcal{G}}_a^{\mu
u}$$
 Related scale

Such that $\langle \theta - a(x)/f_a \rangle = 0$ after QCD-phase transition

Hence CP symmetry gets restored, thanks to the axion!

New Ingredients	Math. form.
Global chrial symmetry	$U_{PQ}(1)$
Complex scalar field	$\phi := \rho e^{ia(x)/f_a}$
Exotic vector	\tilde{Q},Q
like quarks	Ψ, Ψ

Idea: Interpret the phase as a dynamical (pseudo)scalar field rather then a fixed constant

$$\mathcal{L}_a := rac{1}{2} \partial_{\mu} a(x) \partial^{\mu} a(x) - rac{g_s^2}{32\pi^2} rac{a(x)}{f_a} \mathcal{G}_{a,\,\mu
u} ilde{\mathcal{G}}_a^{\mu
u}$$
 Related scale

Such that $\langle \theta - a(x)/f_a \rangle = 0$ after QCD-phase transition

Hence CP symmetry gets restored, thanks to the axion!

KSVZ Model

New Ingredients	Math. form.
Global chrial symmetry	$U_{PQ}(1)$
Complex scalar field	$\phi := \rho e^{ia(x)/f_a}$
Exotic vector	$ ilde{Q}, Q$
like quarks	Ψ, Ψ

Axion=Nambu-Goldstone boson

Cosmological Phase Transitions

· CPT= change in vacuum expectation value (vev)

· vev=Minimum of the (eff. free energy) potential

2. order

1. order

· Breaking of Symmetry

Symmetry of Groundstate = Symmetry of Lagrangian

Symmetry of Groundstate == Symmetry of Lagrangian

Cosmological Phase Transitions

· CPT= change in vacuum expectation value (vev)

· vev=Minimum of the (eff. free energy) potential

2. order

1. order

Breaking of Summature
 Important consequence: Particles
 Symmetry of Groupled to the field get mass
 Symmetry of Lagrangian

Groundstate ≠ Lagrangian

Gravitational Waves from 1st order CPT's

Gravitational Waves from 1st order

CPT'S

Phase Trans.

Latent heat α

nucleation rate $^{\beta}$

Strength $\frac{\langle \phi \rangle}{T_c} \geq 1$

Bubble Growth

Wall velocity v_W

Latent heat fraction κ

PT-Energy $\rightarrow T_{kin}(Bubble)$

Abundance $\Omega_{\rm GW}(f) = \Omega_{\rm BC}(f) + \Omega_{\rm SW}(f) + \Omega_{\rm MHD}(f)$ Bubble Collison Sound Wave Magnetic Fields

GW Frequence

Question:

1) What do we need for 1st order PQ symmetry breaking?

Question:

1) What do we need for 1st order PQ symmetry breaking?

$$V_{
m loop} \sim rac{1}{64\pi^2} \sum_{
m \{particles\}} m_p(\phi)^4 (-1)^{B/F} n_p \left[\ln rac{m_p(\phi)^2}{\mu^2} - c_i
ight]$$

Question:

Question:

1) What do we need for 1st order PQ symmetry breaking?

$$V_{
m loop} \sim rac{1}{64\pi^2} \sum_{
m \{particles\}} m_p(\phi)^4 (-1)^{B/F} n_p \left[\ln rac{m_p(\phi)^2}{\mu^2} - c_i
ight]$$

Question:

1) What do we need for 1st order PQ symmetry breaking?

Question:

1) What do we need for 1st order PQ symmetry breaking?

$$V_T^{(1)}(\phi) = \frac{T^4}{2\pi^2} \left[\sum_p (-1)^{B/F} n_p J^B / F_T(m) \right]$$

Question:

Question:

1) What do we need for 1st order PQ symmetry breaking?

$$V_T^{(1)}(\phi) = \frac{T^4}{2\pi^2} \left[\sum_p (-1)^{B/F} n_p J^B / F_T(m) \right]$$

Question:

1) What do we need for 1st order PQ symmetry breaking?

Question:

Ingredients:

· Complex scalar field with the axion

Inaredients:

with the axion

Ingredients:

· Complex scalar field with the axion

- · Complex scalar field with the axion
- · Additional Quark(s) (Color anomaly)

- · Complex scalar field with the axion
- · Additional Quark(s) (Color anomaly)
- · At least one further scalar field (Higgs)

Ingredients:

- · Complex scalar field with the axion
- · Additional Quark(s) (Color anomaly)
- · At least one further scalar field (Higgs)
 - 2) Which terms in the "SMASH-Model" must be removed for 1st order PQ?

→ SMASH

- · Complex scalar field with the axion
- · Additional Quark(s) (Color anomaly)
- · At least one further scalar field (Higgs)
 - 2) Which terms in the "SMASH-Model" must be removed for 1st order PQ?

$$\mathcal{L} \subset -y \tilde{Q} \phi Q + \{ ext{optional} \}$$

- · Complex scalar field with the axion
- · Additional Quark(s) (Color anomaly)
- · At least one further scalar field (Higgs)
 - 2) Which terms in the "SMASH-Model" must be removed for 1st order PQ?

$$\mathcal{L} \subset -y\tilde{Q}\phi Q + \{\mathsf{optional}\}$$

$$V(\phi,H) := \frac{\lambda_\phi}{4} \left(|\phi|^2 - v_\phi^2 \right)^2 + \frac{\lambda_H}{4} \left(H^\dagger H - v_H^2 \right)^2 + \frac{\lambda_{H\phi}}{4} \left(|\phi|^2 - v_\phi^2 \right) \left(H^\dagger H - v_H^2 \right)$$

Ingredients:

- · Complex scalar field with the axion
- · Additional Quark(s) (Color anomaly)
- · At least one further scalar field (Higgs)
 - 2) Which terms in the "SMASH-Model" must be removed for 1st order PQ?

$$\mathcal{L} \subset -y \tilde{Q} \phi Q + \{\mathsf{optional}\}$$

$$V(\phi,H) := \frac{\lambda_{\phi}}{4} \left(\left| \phi \right|^2 - v_{\phi}^2 \right)^2 + \frac{\lambda_{H}}{4} \left(H^{\dagger}H - v_{H}^2 \right)^2 + \frac{\lambda_{H\phi}}{4} \left(\left| \phi \right|^2 - v_{\phi}^2 \right) \left(H^{\dagger}H - v_{H}^2 \right)$$

Task:

Scan parameter space for allowed regions. Detectability?

Possible Extension:

Correlate GW Signals from different events in cos. History of the axion

Conclusion/Outlook

- QCD-Axion interesting solution to the strong CP Problem
- Gravitational Waves provide a test for CPT models in the future
- Investigating the first order Peccei—
 Quinn symmetry breaking after inflation is an interesting field to study
- Correlating different sources of GW's from cosmological history of the Axion

References

- Peccei Quinn ´77 PRL. 38 (25) doi:10.1103/PhysRevLett.38.1440
- Yvonne Y.Y. Wong, RWTH Aachen
- ArXiv: 0803.1593v5 E.Vicari, H. Panagopoulus
- D.Sticlet Phase Transition in the early universe
- ArXiv: 1701.01554 Mikko Lainen
- Public Domain, https://commons.wikimedia.org/w/index.php? curid=10372273
- KVSZ Modell J.Kim, Phys. Lett. 43 (1979) 103; M.A.Shifman,
 A.I.Vainshtein, V.I.Zakharov, Nucl. Phys. B166 (1980) 493
- arXiv:1602.03901 Jörg Jäckel et al. PRD94 (2016) no.10, 103519
- SMASH arXiv:1610.01639 JCAP 1708 (2017) no.08, 001 G.
 Ballesteros et al.

Backup 1

GW's from symmetry breaking

GW's from axion radiating strings

GW's from Domain Walls

Backup 2

Astronomy: Roen Kelly, after C. Moore, R. Cole, and C. Berry (Institute of Astronomy, Univ. of Cambridge