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Gaussian Unitary Ensemble, everyone knows it
Let M be an n× n Hermitian matrix, with diagonal entries in i.i.d.
normal distribution N(1, 0), and upper-triangular entries in i.i.d.
complex normal distribution, with real and imaginary parts in
N(0, 1

2 ). Then the random matrix M is in the Gaussian Unitary
Ensemble.
Its eigenvalues are a determinantal process, described by the
correlation functions, which are

Rk(x1, . . . , xk) = det(Kn(xi , xj))ki ,j=1,

where Kn is the correlation kernel

Kn(x , y) =
n−1∑
k=0

1√
2πk!

Hk(x)e−x
2/4Hk(y)e−y

2/4.

It is well known (in [Abramowitz–Stegun])

Hk(x) =
k!

2πi

∮
0
ext−t

2/2t−k−1dt =
1√
2πi

∫ i∞

−i∞
e(s−x)2/2skds.
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Double contour integral formula for GUE
Taking the sum with the help of the “telescoping trick”, we have

Kn(x , y) =
1

(2πi)2

∫ i∞

−i∞
ds

∮
0
dt

e(s−x)2/2

e(t−y)2/2

(s
t

)n 1

s − t
.

The local statistics of the GUE, namely the limiting Airy
distribution and limiting Sine distribution, can be derived by the
saddle point analysis of the double contour integral formula.

Figure: The space between
consecutive eigenvalues is
O(n−2/3). Airy distribution.

Figure: The space between
consecutive eigenvalues is
O(n−1). Sine distribution.



double contour formulas One matrix model Two matrix model 2MM by contour integral Additional formulas

Deformation of contours: Airy

Figure: The deformed contours
for Airy limit.

Figure: The limiting local shape
of the contours.

The integral converges to

KAiry(x , y) =
1

(2πi)2

∫
ds

∫
dt

es
3/3−xs

et3/3−yt
1

s − t
.
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Deformation of contours: Sine
We need to deform the contour to a greater degree, and allow the
vertical contour to cut through the circular one.

Figure: The deformed contours
for Sine limit.

plus

Figure: The contour for the
residue integral (wrt s).

The two intersecting points are the saddle points. It turns out that
the integral on the right is bigger, and gives the Sine kernel.



double contour formulas One matrix model Two matrix model 2MM by contour integral Additional formulas

Other models solved by double contour integrals

1. GUE/Wishart with external source (GUE + diag(a1, . . . , an))
[Brezin–Hikami], [Zinn-Justin], [Tracy–Widom],
[Baki–Peche–Ben Arous], [El Karoui], [Bleher–Kuijlaars]

2. GUE/Wishart minor process (all upper-left corners together)
[Johansson–Nordenstam], [Dieker–Warren]

3. Upper-triangular ensemble (XX ∗, upper-triangular entries of
X are i.i.d. complex normal, diagonal ones are in independent
gamma distribution) and the related Muttalib–Borodin model
[Adler–van Moerbeke–W], [Cheliotis], [Forrester–W], [Zhang]

4. Determinantal particle systems (TASEP, polynuclear growth
model, Schur process, etc) Johansson, Spohn, Borodin,
Farrari, and too many others
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Pros and cons

Pro When a double contour integral formula is obtained, the
computation of asymptotics is a straightforward application of
saddle point analysis.

Con All models are related to special functions which have their
own contour integral representations. If the model is defined
by functions that are not special, or not special enough, then
there is little hope to find a double contour formula.

Pro Thanks to the recent development of models related to the
product random matrices, we have abundant of models
associated to special functions, namely Meijer-G functions.
[all participants here, and many more]
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Proof of Airy and Sine universality for the product of
Ginibre matrices and the Muttalib–Borodin model

Figure: The deformed contours
for Airy limit.

Figure: For Sine limit. (The
residue integral is omitted).

The schematic figures applies for both the two models
[Liu–W–Zhang], [Forrester–W]. The computation of the “hard
edge” limit, which is more interesting, can be done in a technically
easier way by double contour integral formula. [Kuijlaars–Zhang]
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Review of one matrix model
Consider the n-dimensional random Hermitian matrix M with pdf

1

C
exp(−nTrV (M)), V is a potential.

The distribution of eigenvalues is a determinantal process. To
express the kernels, we consider orthogonal polynomials with
weight e−nV (x):∫

pj(x)pk(x)e−nV (x)dx = δjkhk , pk(x) = xk + · · · .

and then we have two equivalent kernels:

K alg
n (x , y) =

1

hn−1

pn(x)pn−1(y)− pn−1(x)pn(y)

x − y
e−nV (y),

Kn(x , y) =
1

hn−1

pn(x)pn−1(y)− pn−1(x)pn(y)

x − y
e−

n
2
V (x)e−

n
2
V (y).



double contour formulas One matrix model Two matrix model 2MM by contour integral Additional formulas

Cases to be considered
We are interested in a particular potential function
V = x4/4− px2, especially if p = 1 or very close to 1, or more
precisely, p− 1 = O(n−2/3). The density of eigenvalues is shown in
the figure (from [Claeys–Kuijlaars]).

Note that at x = 0, the density vanishes like a square function, in
contrast with the vanishing of density two edges that hase the
square root behaviour. We say that x = 0 is an (interior) singular
point of the potential V (x) = x4/4− x2.
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Solution to 1MM

We need to compute the limit of Kn(x , y), which is reduced to the
asymptotics of pn(x) and pn−1(x). They trick is that they satisfy
the following Riemann–Hilbert problem for

Y (z) =( 1
hn
pn(z) 1

hn
Cpn(z)

−2πihn−1pn−1(z) −2πihn−1Cpn−1(z)

)
where

Cpn(z) =
1

2πi

∫
R

pn(s)e−nV (s)

s − z
ds,

Cpn−1(z) =
1

2πi

∫
R

pn(s)e−nV (s)

s − z
ds,

such that

1. Y+(x) =
Y−(x)

(
1 e−nV (x)

0 1

)
for x ∈ R.

2. Y (z) = (1 +
O(z−1)

(
zn 0
0 z−n

)
as z →∞.
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• The asymptotics of Y is obtained by the Deift–Zhou nonlinear
steepest-descent method [Bleher–Its], [DKMVZ].

• Around the singular point 0,

Kn(n−1/3x , n−1/3y) ∼ KPII(x , y)

=
Φ1(x ;σ)Φ2(y ;σ)− Φ2(x ;σ)Φ(y ;σ)

π(x − y)
,

where σ is propotional to n2/3(p − 1), and (ψ(1) and ψ(2) are
defined in next slide)

Φ1(x ;σ) = ψ
(1)
1 (x ;σ) + ψ

(2)
1 (x ;σ),

Φ2(x ;σ) = ψ
(1)
2 (x ;σ) + ψ

(2)
2 (x ;σ).
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2x2 Riemann–Hilbert problem associated to the
Hastings–McLeod solution to Painlevé II

Let Ψ be a 2x2 matrix valued function, such that
1. Ψ is analytic on C\ the four

rays and continuous up to
the boundary.

2. Ψ+ = Ψ−Aj on each ray,
where the jump matrix Aj is
given in the figure.

3. Ψ(ζ) = Ψ(ζ;σ) =

(I +O(ζ−1)e−i(
4
3
ζ3+σζ)σ3 as

ζ →∞, where σ3 = ( 1 0
0 −1 ).

(
1 0
1 1

)(
1 0
−1 1

)

(
1 1
0 1

) (
1 −1
0 1

)

Now denote the Ψ(ζ;σ) in the left and right sectors by
(ψ(1)(ζ;σ), ψ(2)(ζ;σ)), where ψ(1) and ψ(2) are 2-vectors. (Yes, Ψ
in these two sectors are identical.)
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Review of two matrix model

• In the general form, the two matrix model has two n × n
random Hermitian matrices M1,M2 with pdf

1

C
exp[−nTr(V (M1) + W (M2)− τM1M2)],

where V ,W are potentials and τ is the interaction factor.

• We are interested in the case V (x) = x2/2 and
W (y) = y4/2 + (α/2)y2, and are interested in the distribution
of the eigenvalues of M1. The distribution of eigenvalues of
M2 is much easier, and we are going to explain it below.

• Then the eigenvalues of M1 are a determinantal process, with
the correlation kernel

Kn(x , y) =
(0,w0,n(y),w1,n(y),w2,n(y))Y−1

+ (y)Y+(x)(1, 0, 0, 0)T

2πi(x − y)
,

where Y is defined by a RHP in next slide.
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4× 4 Riemann–Hilbert problem

Consider the following Riemann–
Hilbert problem

1. Y+(x) = Y−(x)×(
1 w0,n(x) w1,n(x) w2,n(x)
0 1 0 0
0 0 1 0
0 0 0 1

)
, for

x ∈ R, where the exact
formulas of wi ,n(x) are
omitted.

2. As z →∞,
Y (z) = (1 +O(z−1))×
diag(zn, z−n/3, z−n/3, z−n/3).

The RHP seems not too bad,
while how hard it is depends on
the value of τ and α in the fol-
lowing phase diagram (Duits,
Geudens, Kuijlaars, Mo, Del-
vaux, Zhang . . . , figure from
[Duits]):

1390 DUITS and GEUDENS

!

˛

! Dp˛C 2

! D
q
! 1
˛

a
b

1

!1!2

p
2

Case I

Case IV

Case III

Case II

Figure 2. The phase diagram in the ˛! -plane: the critical curves ! D
p
˛C 2 and ! D

p
!1=˛

separate the four cases. The cases are distinguished by the fact whether 0 is in the support of the
measures "1, #2 !"2, and "3, or not.

Case II: ˇ1 > 0, ˇ2 > 0, and ˇ3 D 0. In Case II there is a gap in the support
of "1, but there is no gap in the support of "3, which is again the full real line. The
constraint is active along an interval along the imaginary axis.

Case III: ˇ1 > 0, ˇ2 D 0, and ˇ3 > 0. In Case III there is a gap in the supports
of "1 and "3, but the constraint on the imaginary axis is not active.

Case IV: ˇ1 D 0, ˇ2 > 0, and ˇ3 > 0. In this case the measure "1 is still sup-
ported on one interval. However there is a gap .!ˇ3; ˇ3/ in the support of "3. As in
Case I, the constraint #2 is active along an interval Œ!iˇ2; iˇ2$ on the imaginary axis.

In Figure 2, we plotted a phase diagram that shows which values of .˛; !/ corre-
spond to the different cases. The different cases are separated by the curves given by
the equations

! D
p
˛C 2; !2" ˛ <1; and ! D

r
! 1
˛
; !1< ˛ < 0:

On these curves two of the numbers ˇ1; ˇ2; and ˇ3 are equal to zero. For example, on
the curve between Case III and Case IV, we have ˇ1 D ˇ2 D 0, while ˇ3 > 0. Finally,
note the multicritical point .˛; !/D .!1; 1/ in the phase diagram, where ˇ1 D ˇ2 D
ˇ3 D 0. All four cases come together at this point in the ˛! -plane. This point has our
main interest.

As long as we consider points .˛; !/ that are not on the curves, the local correla-
tions are governed by the sine kernel in the bulk of the spectrum and by the Airy kernel
at the edge of the spectrum. Critical phenomena occur at the curves that separate the
different cases.



double contour formulas One matrix model Two matrix model 2MM by contour integral Additional formulas

2MM with quadratic potential

Consider the 2MM with pdf
C−1 exp[−nTr(M2

1/2 + W (M2)− τM1M2)], that is, the potential
V is quadratic. Then let

W̃ (x) = W (x)− τ2

2
x2, and M̃1 = M1 − τM2.

Then the joint pdf for M̃1 and M2 is

1

C
exp

[
−nTr(M̃2

1/2 + W̃ (M2))
]
,

and then M̃1 and M2 are independent. We can think M1 as
M̃1 + τM2. So the two matrix model with one quadratic potential
is equivalent to the sum of a GUE matrix (i.e. a random matrix in
1MM with quadratic potential) and a random matrix in a 1MM
[Duits].
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Correlation functions for GUE + (fixed) external source

Let H be a GUE and A a fixed Hermitian matrix with eigenvalues
a1, . . . , an, then the correlation kernel of the eigenvalues of A+H is

1

(2πi)2

∫ i∞

−i∞
ds

∮
dt

e
n
2

(s−x)2

e
n
2

(t−y)2

n∏
k=1

(
s − ak
t − ak

)
1

s − t
,

where Γ encloses a1, . . . , an.
Here we can allow a1, . . . , an to be random, and need to integrate
over the distribution of a1, . . . , an. How if they are eigenvalues of a
matrix model too?
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Correlation function for GUE + 1MM

Theorem
[Claeys–Kuijlaars–W] Let M be a random matrix in 1MM, with
random eigenvalues a1, . . . , an, then the correlation kernel of the
eigenvalues of M + H is

Kn,2MM(x , y)

=
1

(2πi)2

∫ i∞

−i∞
ds

∮
dt

e
n
2

(s−x)2

e
n
2

(t−y)2 E

[
n∏

k=1

(
s − ak
t − ak

)]
1

s − t

=
1

2πi

∫ i∞

−i∞
ds

∫
R
dt

e
n
2

(s−x)2

e
n
2

(t−y)2

e−nV (t)

hn−1
(pn(s)pn−1(t)− pn−1(s)pn(t))

1

s − t︸ ︷︷ ︸
K alg
n (s,t)

=
1

2πi

∫ i∞

−i∞
ds

∫
R
dt

e
n
2

[(s−x)2+V (s)]

e
n
2

[(t−y)2+V (t)]
Kn(s, t).
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Result in figure
Suppose the distribution of eigenvalues in for M is given in the
upper-left Figure, then as τ becomes larger, the distribution of
eigenvalues of M + τH evolves, shown in figures clockwise, into
subcritical, critical), and then supercritical phases.

Below we consider M +
√
rH, whose kernel is given by

K r
n,2MM(x , y) =

1

2πi

∫ i∞

−i∞
ds

∫
R
dt

e
n
2

[(s−x)2/r+V (s)]

e
n
2

[(t−y)2/r+V (t)]
Kn(s, t).
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Derivation: subcritical
Suppose the critical value for r is rcr ∈ (0,∞). Then for
r ∈ (0, tcr) there are cr , c

′
r depending on r in the way that as r

runs from 0 to rcr, then cr , c
′
r → 0. such that for any ξ, η ∈ R, if

x = ctn
−1/3ξ, y = ctn

−1/3η, we have that the the functions
(s − x)2/r + V (s) and (t − y)2/r + V (t) have the saddle point
approximation

(s−x)2/r+V (s) ∼ c ′rn
−2/3(u−ξ)2, (t−y)2/r+V (t) ∼ c ′rn

−2/3(v−η)2,

where u = n1/3s, v = n1/3t. Thus we have

K r
n,2MM(x , y) ∼ 1

2πi

∫ i∞

−i∞
du

∫
R
dv

e
n1/3c′r

2
[(u−ξ)2]

e
n1/3c′r

2
[(v−η)2]

Kn(n−1/3u, n−1/3v)

∼ 1

2πi

∫ i∞

−i∞
du

∫
R
dv

e
n1/3c′r

2
[(u−ξ)2]

e
n1/3c′r

2
[(v−η)2]

KPII(u, v)

∼ KPII(ξ, η).
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Derivation: critical

When r = rcr, both cr and c ′r become 0, and the argument in last
slide breaks down. However, we can still assume that as
r = rcr + n−1/3τ , x = n−2/3ξ, y = n−2/3η, and have that

(s−x)2/r+V (s) ∼ n−1(bu2+ξu), (t−y)2/r+V (t) ∼ n−1(bv2−ηv)2,

where u = n1/3s, v = n1/3t and b depends on τ . So we have

K r
n,2MM(x , y) ∼ 1

2πi

∫ i∞

−i∞
du

∫
R
dv

ebu
2−ξu

ebv2−ηv KPII(u, v).

The problem is that the integral may not be well defined, even if
we consider it formally. The reason is that the sign of b depends
on the sign of τ , and can be either positive or negative, while as
v → ±∞, KPII(u, v) does not vanish. (The correct form can be
written down with the help of longer formulas, and we omit them.)
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Result in formula

• Here we note that the PII singularity is quite robust. If M has
the PII singularity, then M +

√
rH has too, if r < rcr.

• The critical kernel, the most interesting one, has the kernel
[Claeys–Kuijlaars–Liechty–W] (formally)

K r
n,2MM(x , y) =

1

2πi

∫ i∞

−i∞
du

∫
R
dv

eau
3+bu2+ξu

eav3+bv2+ηv
KPII(u, v).

• If the potential is symmetric, then parameter a vanishes, as
we discussed in previous slide. But our method allows us to
consider asymmetric potentials, and generally there is a cubic
term in the exponents.

• We can also deal with higher singularities, or singularities at
the edge.

• The equivalence to the previous result by 4× 4 RHP is
obtained [Liechty-W].
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Tacnode Riemann–Hilbert problem
Let M be a 4× 4 matrix-valued function, and suppose it satisfies
the following Riemann–Hilbert problem:

J0 =




0 0 1 1
−1 1 0 0
−1 0 0 0
0 0 0 1




∆0

J1 =




1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1




∆1

J2 =




1 1 0 0
0 1 0 0
0 0 1 0
0 −1 −1 1




∆2

J3 =




1 −1 0 0
0 0 1 0
0 0 1 0
0 1 0 0




∆3

J4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 1




∆4

J5 =




1 0 0 0
1 1 0 0
1 0 1 −1
0 0 0 1




∆5

Figure: Jump conditions.
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1. M is analytic in each of the sectors ∆j , continuous up to the
boundaries, and M(z) = O(1) as z → 0.

2. On the boundaries of the sectors ∆j , M = M(j) satisfies the
jump conditions

M(j)(z) = M(j−1)(z)Jj , for j = 0, . . . , 5, M(−1) ≡ M(5),

for the jump matrices J0, . . . , J5 with constant entries
specified in the figure in last page.

3. As z →∞, M(z) satisfies the asymptotics

M(z) =
(
1 +O(z−1)

)
(v1(z), v2(z), v3(z), v4(z)) ,

where v1, v2, v3, and v4 are defined as

v1(z) =
1
√

2
e−θ1(z)+τz

(
(−z)

− 1
4 , 0,−i(−z)

1
4 , 0

)T
,

v2(z) =
1
√

2
e−θ2(z)−τz

(
0, z
− 1

4 , 0, iz
1
4

)T
,

v3(z) =
1
√

2
eθ1(z)+τz

(
−i(−z)

− 1
4 , 0, (−z)

1
4 , 0

)T
,

v4(z) =
1
√

2
eθ2(z)−τz

(
0, iz
− 1

4 , 0, z
1
4

)T
,

where

θ1(z) =
2

3
r1(−z)

3
2 + 2s1(−z)

1
2 ,

z ∈ C \ [0,∞),

θ2(z) =
2

3
r2z

3
2 + 2s2z

1
2 ,

z ∈ C \ (−∞, 0],
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Integral representation
Then define the 4-vectors

n(k)(z) = n(k)(z ; r1, r2, s1, s2, τ) = QΓ(k)(f (k), g (k)), k = 0, . . . , 5,

where

QΓ(f , g)(z) :=

M



∫
Γ1

e
2izζ
C f1(ζ)G1(ζ)dζ +

∫
Γ2

e
2izζ
C g1(ζ)G1(ζ)dζ +

∫
Γ3

e
2izζ
C (f1(ζ) + g1(ζ))G1(ζ)dζ∫

Γ1
e

2izζ
C f2(ζ)G2(ζ)dζ +

∫
Γ2

e
2izζ
C g2(ζ)G2(ζ)dζ +

∫
Γ3

e
2izζ
C (f2(ζ) + g2(ζ))G2(ζ)dζ∫

Γ1
e

2izζ
C f1(ζ)G3(ζ)dζ +

∫
Γ2

e
2izζ
C g1(ζ)G3(ζ)dζ +

∫
Γ3

e
2izζ
C (f1(ζ) + g1(ζ))G3(ζ)dζ∫

Γ1
e

2izζ
C f2(ζ)G4(ζ)dζ +

∫
Γ2

e
2izζ
C g2(ζ)G4(ζ)dζ +

∫
Γ3

e
2izζ
C (f2(ζ) + g2(ζ))G4(ζ)dζ


,

and

M = e
−τz

(
r2
1−r2

2
r2
1

+r2
2

)

1 0 0 0
0 1 0 0

i
r1

(
τ

r2
1−r2

2
r2
1

+r2
2

+ τ − s2
1 + u

C

)
i
r1

√
r2q

γ
√

r1C
−i
r1

0

−i
r2

γ
√

r1q√
r2C

i
r2

(
τ

r2
1−r2

2
r2
1

+r2
2

− τ + s2
2 −

u
C

)
0 −i

r2

 ,
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such that (C is defined below)

a =
4

3

(
r2
1 − r2

2

r2
1 + r2

2

)
, b =

8τ

C2(r2
1 + r2

2 )
, c =

1

C

[
4τ2(r2

1 − r2
2 )

(r2
1 + r2

2 )2
− 2

(
s1

r1
−

s2

r2

)]
,

γ1 = exp

(
−

8r4
1 τ

3

3(r2
1 + r2

2 )3
+

4r1s1τ

r2
1 + r2

2

)
, γ2 = exp

(
−

8r4
2 τ

3

3(r2
1 + r2

2 )3
+

4r2s2τ

r2
1 + r2

2

)
,

and then the function

G(ζ) = exp
(
iaζ3 + bζ2 + icζ

)
,

and the related functions

G1(ζ) =

√
2

π

γ1

C
√
r1

G(ζ), G2(ζ) =

√
2

π

γ2

C
√

r2
G(ζ), G3(ζ) =

2i

C
ζG1(ζ), G4(ζ) =

2i

C
ζG2(ζ).

The entries of M are expressed in

C = (r−2
1 + r−2

2 )1/3
, γ = exp

(
8

3

r2
1 − r2

2

(r2
1 + r2

2 )2
τ

3 − 4
r1s1 − r2s2

r2
1 + r2

2

τ

)
,

and q and u are functions of

σ :=
2

C

(
s1

r1
+

s2

r2
−

2τ2

r2
1 + r2

2

)
.
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Furthermore, q = q(σ) satisfies the Painlevé II equation with
Hastings–McLeod initial condition (Ai is the Airy function)

q′′(σ) = σq + 2q3, q(σ) ∼ Ai(σ) as σ → +∞,

q′ = q′(σ) is the
derivative with re-
spect to σ, and u is
the PII Hamiltonian

u(σ) := q′(σ)2−q(σ)2−q(σ)4.

At last, we can spec-

ify the contours Γ
(k)
j

and functions f (k)

and g (k) in the inte-
grands as in the fig-
ure.

ψ(2)

0

ψ(2)

n(0)

ψ(1) + ψ(2)

ψ(2)

ψ(1)

n(1)

ψ(1) + ψ(2)

ψ(2)

−ψ(1)

n(2)

ψ(1) ψ(1)

0

n(3)

ψ(1) + ψ(2)

ψ(2)

ψ(1)

n(4)

ψ(1) + ψ(2)

−ψ(2)

ψ(1)

n(5)
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Theorem

[Liechty-W] The 4x4 RHP M can be expressed by n(k), the
integrals involving entries of Ψ.

M(0) =
(
n(5) − n(0), n(0), n(1),−n(2)

)
,

M(1) =
(
−n(3), n(0), n(1),−n(2)

)
,

M(2) =
(
−n(3),−n(4), n(1) + n(2),−n(2)

)
,

M(3) =
(
−n(3),−n(2) − n(3),−n(5), n(4)

)
,

M(4) =
(
−n(3), n(0),−n(5), n(4)

)
,

M(5) =
(
n(1), n(0),−n(5), n(4) + n(5)

)
.
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