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Dyson’s 3 fold way

Dyson (1961) identified Hermitian matrices X with real, complex
and real quaternion entries as models for chaotic quantum
mechanical systems with time reversal symmetry T2 = 1 (think of
as complex conjugation K), no time reversal symmetry, and time
reversal symmetry T2 = —1 (even dimensional, odd number of
spin 1/2 particles, T = ZynK).

The least familiar is the latter. Note that this constrains the
2N x 2N matrix X to have the property X = Z2NXZ2_[\]i- This
implies X can be viewed as an N x N matrix with elements
consisting of 2 x 2 blocks of the form

which is the 2 x 2 matrix representation of a real quaternion.



Diagonalisation

X real symmetric X = RLR”, where R is real orthogonal.
X complex Hermitian X = ULU', where U is complex unitary.

X real quaternion Hermitian X = ULUY, where U is symplectic
unitary equivalent. Eigenvalues are doubly degenerate.

Note that the matrix of eigenvectors have real, complex and real
quaternion elements respectively.

The diagonalisation formulae can be deduced by making use of
Householder transformations, for example:
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Factorisation of the volume form
For X real symmetric (8 = 1), complex Hermitian (5 = 2) or real
quaternion Hermitian (8 = 4), the diagonalisation formulae imply
the factorisations of the volume forms

N
(@X)=J] -l Jdn(u'du).
1<j<k<N =1

Impose a PDF g(X) on the matrices X with the property that
q(X) = g(UXU) where U is from the subset of unitary matrices
which diagonalises X. Then g(X) is a function of the eigenvalues
only, and the probability q(X)(dX) factorises into eigenvalue and
eigenvector parts:

N
g [ =1 T @M (UTdu)

1<j<k<N =1



The Gaussian case
Consider e.g. the real case, and suppose

q(X) — 1 1 e—TrX2/2 — ﬁ 1 e—xj/Q l_N[ ie—xﬁ(
N/2 ~N(N-1)/4 /
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The Gaussian case has the distinguishing feature among the
invariant ensembles as deriving from independently distributed
elements.

The shifted mean Gaussian case is also special. The PDF is no
longer unitary invariant, being proportional to e~ (X_x(o))z/z, and
so there is need to compute an integral over the invariant measure
for the eigenvectors. In the complex case, one has the
|zykson-Zuber/ Harish-Chandra integral

—a:b;
—Tr AUBUT (qyf det[e™ %] j=1,..n
e U'dU) x
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where {a;}, {b;} are the eigenvalues of the Hermitian matrices A,
B.




Circular ensembles |

Matrices in the Gaussian ensembles can be written
1
H=>(X"+X) (8=1)
1
H=(X'+X)  (5=2)

H:EXD+X) (B =4)

5
where XP = Z,yX7Z5,, X real (8 = 1) etc.

In the cases B =1 and 5 = 4, Dyson used the operations of T and
D to define ensembles of unitary matrices, beginning with elements

of U € U(N):

S;=U’u, S, = UPu
These ensembles, referred to as COE and CSE, permit the
diagonalisations

S; = RLR', S, = VLVP.



Circular ensembles I

For Dyson's circular ensembles, the invariant measure factorises in
an analogous way to the Hermitian ensembles,

N
w(ds)y= T e —e®)° T] o, (vdv),

1<j<k<N =1
where V denotes the matrix of eigenvectors.

Associated with the circular ensembles are ensembles of Hermitian
matrices defined by the Cayley transformation
In —
U
Iy+U

The matrices H has PDF proportional to

~B(N-1)/2-1
(det(]IN - H2)) .

This is sometimes referred to as the Cauchy ensemble.



Classical groups |

In the case 8 = 2, Dyson's circular ensemble is denoted CUE, and
coincides with matrices from the classical group U(N) with Haar
measure. But the COE and CSE are distinct from matrices from
the classical groups O(N) and Sp(2N) with Haar measure. Instead
the COE is the symmetric space U(N)/O(N), while the CSE is the
symmetric space U(2N)/Sp(2N).

For the decomposition of the invariant measure, there are in fact 4
distinct cases associated with O(N): O%(2n + 1) and O%(2n).
Note that in all cases, if e/ is an eigenvalue, then so is e 1?0

Perhaps surprisingly, the eigenvalue PDF for all the classical groups
has Dyson exponent § = 2.



Classical groups Il

Introduce the eigenvalue PDF supported on (—1,1) proportional to

n

[Ta+x)t=x) T O« —x)%

=1 1<j<k<n

referred to as the Jacobi unitary ensemble with parameters
(n,a,b).

In terms of the variable y; = cosf);, the eigenvalue PDF for the
eigenvalues in (0, 7) for matrices from O(N) is given by

(N/2,-1/2,-1/2) for matrices in O (N), N even,
(n,a,b) = (N —1)/2,1/2,—1/2) for matrices in O (N), N odd,
((N—-1)/2,-1/2,1/2) for matrices in O~ (N), N odd,
(N/2-1,1/2,1/2) for matrices in O~ (N), N even.

Sp(2N) has the same eigenvalue PDF as O~ (2N).



Classical groups Il

Applying the Cayley transformation to matrices from R € O*(N)
gives

In — R

Iy +R

where the matrix A is Hermitian with pure imaginary entries only.
Thus /A is an anti-symmetric real matrix.

iA =

This can be used to show that the eigenvalue factor in the
Jacobian for the matrices A is proportional to

(N—1)/2

IT  OF=X)% Neven; H A2 11 (A2-)))?, Nodd

1<j<k<N/2 1<j<k<(N—1)/2

Applying the Cayley transformation to matrices from S € Sp(2N)
leads to the ensemble of Hermitian real quaternion matrices with
pure imaginary elements, and shows the eigenvalue PDF is
proportional to that for (2N + 1) x (2N + 1) real anti-symmetric
matrices.



Products of random matrices |

Products of random matrices have already been seen in the
construction of the COE and CSE.

Let X be of size n x N, with n > N. The block matrix

0, X
X" Oy

then has n — N zero eigenvalues, and nonzero eigenvalues given by
+ the square root of the eigenvalues of XX.

The positive square roots of the eigenvalues of XX are equal to
the singular values of X. Recall the singular value decomposition

X = U; DU}

where D = diag (01,...,0n)



Products of random matrices |l

Consideration of the singular value decomposition gives a
factorisation of the volume form, with the portion dependent on
the singular values as proportional to

N
HJJ’-Ba H \Ui—ajglﬁ, a=n—N+1-1/p.
=1 1<j<k<N

An important result (due to Wishart) is that the volume form for
the matrix product B = XX is proportional to (det B)%*~1(dB).

Changing variables to the eigenvalues and eigenvectors in the latter
gives the eigenvalue PDF as proportional to

N

B(n—N+1-2/8)/2
1E% S | YRSV
j=1 1<j<k<N

This is equivalent to the singular value PDF with o2 = A2.



Products of random matrices ll|

Let A be positive definite, and consider the matrix product
C = AY/2BAY/2, where B has distribution proportional to
e~ T'B(det B)"~N(dB).

Since (dC) = (det A)N(dB), C has distribution proportional to
e PAT'C(det A)~"(det C)"~N(dC).

Changing variables to the eigenvalues and eigenvectors of C, our
task is to compute the matrix integral

/ e—Tr A-lucut (UTdU),

where A=! = diag (7%, ..., ay") and C = diag(c1,. .., cn). This
we recognise as the Harish-Chandra/ ltzykson—Zuber integral.
Simplest case when the eigenvalues of A form a polynomial
ensemble.



Eigenvalue PDFs from recurrences |

Non-zero eigenvalues of AY/2XTXAL/2 are the same as those for
XAXT (recall X is n x N).

Observe X(MAMN) (XN = XIN-)AN-1)(XIN-1)T 4 5, g3
The RHS is a rank 1 perturbation.

Denote the non-zero eigenvalues of X(N"DAN=1)(X(N-1))f py
yi>y2>->YnN-1

Denote the non-zero eigenvalues of XM (X(N)T by
AL > Ao > o> Ay

Must have that x1 > y1 > x0 > yo > --- > yy_1 > xy > 0, with
{xj} determined by the secular equation

N-1
qo0 gj
0=1-ay~ —
aN/\ asz_;)\—yj

where go < M(n—N+1),1] and g; 4 ri,1j.



Eigenvalue PDFs from recurrences |l

It is possible to change variables from the residues {qj}jN:o to the
zeros of the secular equation. This gives the conditional PDF for
{Aj} as proportional to

H}\n N —>\ i/ bn H —(n—N+2)+1 eV Hl <k<N()‘ >‘k)
I=1 l_[1§/</<<N 15— vx)

Denote this conditional PDF by q({\/}); {s}). Then the PDF
pn({A}Y.,} must satisfy

v(IMH ) = /R (O Y s (V51 dy

Note that for bN = 1 the solution must be proportional to
N _
HJ 1 )‘Jn ngj<k<N()‘k —Aj )2-



