Global Spectral Distributions and Linear Statistics of Spectra of Product Matrices

Friedrich Götze

Bielefeld University
www.math.uni-bielefeld.de/~goetze

Joint work with: A. Naumov and A. Tikhomirov
Random Product Matrices
New Developments \& Applications,
Bielefeld, August 26, 2016

Topics

- Approaches to Universality of Spectra of Products of Matrices

Topics

- Approaches to Universality of Spectra of Products of Matrices
- The Central Limit Theorem for Linear Singular Value Statistics of Product Matrices

Spectral Universality for Product Matrices

- Let $\mathbf{X}^{(q)}, q=1, \ldots, m$ be m independent random matrices:

$$
\mathbf{X}^{(q)}:=\frac{1}{\sqrt{n}}\left[X_{j k}^{(q)}\right]_{j, k=1}^{n} .
$$

Spectral Universality for Product Matrices

- Let $\mathbf{X}^{(q)}, q=1, \ldots, m$ be m independent random matrices:

$$
\mathbf{X}^{(q)}:=\frac{1}{\sqrt{n}}\left[X_{j k}^{(q)}\right]_{j, k=1}^{n} .
$$

with i.i.d. $X_{j k}^{(q)}$ entries for $1 \leq j, k \leq n$,

- for any $1 \leq j, k \leq n \quad \mathbf{E} X_{j k}^{(q)}=0$ and $\mathbf{E}\left(X_{j k}^{(q)}\right)^{2}=1$;
- $\mathbf{E}\left(X_{j k}^{(q)}\right)^{4}=: \mu_{4}<\infty$.

Spectral Universality for Product Matrices

- Let $\mathbf{X}^{(q)}, q=1, \ldots, m$ be m independent random matrices:

$$
\mathbf{X}^{(q)}:=\frac{1}{\sqrt{n}}\left[X_{j k}^{(q)}\right]_{j, k=1}^{n} .
$$

with i.i.d. $X_{j k}^{(q)}$ entries for $1 \leq j, k \leq n$,

- for any $1 \leq j, k \leq n \quad \mathbf{E} X_{j k}^{(q)}=0$ and $\mathbf{E}\left(X_{j k}^{(q)}\right)^{2}=1$;
- $\mathbf{E}\left(X_{j k}^{(q)}\right)^{4}=: \mu_{4}<\infty$.

Let $\quad \mathbf{W}:=\prod_{q=1}^{m} \mathbf{X}^{(q)}$,

Spectral Universality for Product Matrices

- Let $\mathbf{X}^{(q)}, q=1, \ldots, m$ be m independent random matrices:

$$
\mathbf{X}^{(q)}:=\frac{1}{\sqrt{n}}\left[X_{j k}^{(q)}\right]_{j, k=1}^{n} .
$$

with i.i.d. $X_{j k}^{(q)}$ entries for $1 \leq j, k \leq n$,

- for any $1 \leq j, k \leq n \quad \mathbf{E} X_{j k}^{(q)}=0$ and $\mathbf{E}\left(X_{j k}^{(q)}\right)^{2}=1$;
- $\mathbf{E}\left(X_{j k}^{(q)}\right)^{4}=: \mu_{4}<\infty$.

Let $\quad \mathbf{W}:=\prod_{q=1}^{m} \mathbf{X}^{(q)}$,
$s_{1}^{2}(\mathbf{W}), \ldots, s_{n}^{2}(\mathbf{W}) \quad$ denote the eigenvalues of $\mathbf{W W}^{T}$
with empirical spectral measure

Spectral Universality for Product Matrices

- Let $\mathbf{X}^{(q)}, q=1, \ldots, m$ be m independent random matrices:

$$
\mathbf{X}^{(q)}:=\frac{1}{\sqrt{n}}\left[X_{j k}^{(q)}\right]_{j, k=1}^{n} .
$$

with i.i.d. $X_{j k}^{(q)}$ entries for $1 \leq j, k \leq n$,

- for any $1 \leq j, k \leq n \quad \mathbf{E} X_{j k}^{(q)}=0$ and $\mathbf{E}\left(X_{j k}^{(q)}\right)^{2}=1$;
- $\mathbf{E}\left(X_{j k}^{(q)}\right)^{4}=: \mu_{4}<\infty$.

Let $\quad \mathbf{W}:=\prod_{q=1}^{m} \mathbf{X}^{(q)}$,
$s_{1}^{2}(\mathbf{W}), \ldots, s_{n}^{2}(\mathbf{W}) \quad$ denote the eigenvalues of $\mathbf{W W}^{T}$
with empirical spectral measure

$$
F_{n}^{\mathrm{W}}(x)=\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}\left(s_{k}^{2} \leq x\right)
$$

Spectral Limit Laws for Singular Values of Products

Limit d.f. $G_{m}(x)$ such that in Kolmogorov distance

Spectral Limit Laws for Singular Values of Products

Limit d.f. $G_{m}(x)$ such that in Kolmogorov distance

$$
\lim _{n \rightarrow \infty} \sup _{x \in R}\left|\mathbf{E} F_{n}^{\mathrm{W}}(x)-G_{m}(x)\right|=0,
$$

given by its moments:

Spectral Limit Laws for Singular Values of Products

Limit d.f. $G_{m}(x)$ such that in Kolmogorov distance

$$
\lim _{n \rightarrow \infty} \sup _{x \in R}\left|\mathbf{E} F_{n}^{\mathrm{W}}(x)-G_{m}(x)\right|=0,
$$

given by its moments:

$$
M_{k}=\int_{0}^{\infty} x^{k} d G_{m}(x)=\frac{1}{m k+1}\binom{k}{m k+k},
$$

Fuss-Catalan numbers. (Alexeev-G-Tikhomirov (2010/11)).
$m=1$: Marchenko and Pastur (1967) law for sample covariance matrices.
Alternatively $G_{m}(x)$, confined to $\left[0, K_{m}\right], K_{m}=(m+1)\left(1+\frac{1}{m}\right)^{m}$

Spectral Limit Laws for Singular Values of Products

Limit d.f. $G_{m}(x)$ such that in Kolmogorov distance

$$
\lim _{n \rightarrow \infty} \sup _{x \in R}\left|\mathbf{E} F_{n}^{\mathrm{W}}(x)-G_{m}(x)\right|=0,
$$

given by its moments:

$$
M_{k}=\int_{0}^{\infty} x^{k} d G_{m}(x)=\frac{1}{m k+1}\binom{k}{m k+k},
$$

Fuss-Catalan numbers. (Alexeev-G-Tikhomirov (2010/11)).
$m=1$: Marchenko and Pastur (1967) law for sample covariance matrices.
Alternatively $G_{m}(x)$, confined to $\left[0, K_{m}\right], K_{m}=(m+1)\left(1+\frac{1}{m}\right)^{m}$
is described via its Stieltjes transform:

Spectral Limit Laws for Singular Values of Products

Limit d.f. $G_{m}(x)$ such that in Kolmogorov distance

$$
\lim _{n \rightarrow \infty} \sup _{x \in R}\left|\mathbf{E} F_{n}^{\mathrm{W}}(x)-G_{m}(x)\right|=0
$$

given by its moments:

$$
M_{k}=\int_{0}^{\infty} x^{k} d G_{m}(x)=\frac{1}{m k+1}\binom{k}{m k+k},
$$

Fuss-Catalan numbers. (Alexeev-G-Tikhomirov (2010/11)).
$m=1$: Marchenko and Pastur (1967) law for sample covariance matrices.
Alternatively $G_{m}(x)$, confined to $\left[0, K_{m}\right], K_{m}=(m+1)\left(1+\frac{1}{m}\right)^{m}$ is described via its Stieltjes transform:

$$
s_{m}(z):=\int_{-\infty}^{\infty} \frac{1}{x-z} d G_{m}(x), \quad z=u+i v, \quad v>0
$$

Spectral Limit Laws for Singular Values of Products

Limit d.f. $G_{m}(x)$ such that in Kolmogorov distance

$$
\lim _{n \rightarrow \infty} \sup _{x \in R}\left|\mathbf{E} F_{n}^{\mathrm{W}}(x)-G_{m}(x)\right|=0
$$

given by its moments:

$$
M_{k}=\int_{0}^{\infty} x^{k} d G_{m}(x)=\frac{1}{m k+1}\binom{k}{m k+k},
$$

Fuss-Catalan numbers. (Alexeev-G-Tikhomirov (2010/11)).
$m=1$: Marchenko and Pastur (1967) law for sample covariance matrices.
Alternatively $G_{m}(x)$, confined to $\left[0, K_{m}\right], K_{m}=(m+1)\left(1+\frac{1}{m}\right)^{m}$ is described via its Stieltjes transform:

$$
s_{m}(z):=\int_{-\infty}^{\infty} \frac{1}{x-z} d G_{m}(x), \quad z=u+i v, \quad v>0 .
$$

satisfying (G.-Kösters-Tikhomirov (2014)) (hypergeometric function)

$$
1+z s_{m}(z)+(-1)^{m+1} z^{m} s_{m}^{m+1}(z)=0
$$

Extensions to Singular and Complex Spectral Models

Singular values of sequences of products of m rectangular $p_{l} \times p_{l+1}$ matrices with $\lim _{n \rightarrow \infty} \frac{n}{p_{l}}=y_{l} \in(0,1]$ have a limit df $G_{\mathbf{y}}$ such that

Theorem (G.-Kösters-Tikhomirov (2014))
Let $\mathbf{E} X_{j k}^{(\nu)}=0, \mathbf{E}\left|X_{j k}^{(\nu)}\right|^{2}=1$. Assume Lindeberg: i.e. for any $\tau>0$

$$
L_{n}(\tau):=\max _{\nu=1, \ldots, m} \frac{1}{n^{2}} \sum_{j=1}^{p_{\nu-1}} \sum_{k=1}^{p_{\nu}} \mathbf{E}\left|X_{j k}^{(\nu)}\right|^{2} I_{\left\{\left|X_{j k}^{(\nu)}\right| \geq \tau \sqrt{n}\right\}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Then,

$$
\lim _{n \rightarrow \infty} \sup _{x}\left|F_{n}(x)-G_{y}(x)\right|=0
$$

Elliptical Random Matrix Ensembles

- let $\mathbf{X}_{n}(\omega)=\left\{X_{i j}(\omega)\right\}_{i, j=1}^{n} \quad$ with condition $\mathbf{C 0}$:
a) $\left(X_{j k}, X_{k j}\right)$ mutually independent for $1 \leq j<k \leq n$;
b) for any $j, k=1, \ldots, n$

$$
\mathbf{E} X_{j k}=0 \text { and } \mathbf{E} X_{j k}^{2}=1 ;
$$

c) for any $1 \leq j<k \leq n$

$$
\mathbf{E}\left(X_{j k} X_{k j}\right)=\rho, \quad|\rho| \leq 1 ;
$$

Examples of Elliptical Laws

$$
n=3000, \quad \rho=-0.5
$$

$$
\rho=0.5
$$

Examples: Product Laws for Elliptical Matrices

i.i.d. $m=2 \quad n=3000, \rho=0$

i.i.d. $m=10 \quad n=3000, \rho=0$

Examples: Product Laws for Elliptical Matrices

i.i.d. $m=2 \quad n=3000, \rho=0$

elliptic $m=2, n=3000, \rho=0.5$

i.i.d. $m=10 \quad n=3000, \rho=0$

elliptic $m=10, n=3000, \rho=0.5$

Product Laws for Elliptical non Hermitian Matrices

- Th. (non i.i.d. product case) (G.-Naumov-Tikhomirov, (2013)). Let $\mathbf{X}_{n}^{(q)}, q \geq 2$ be independent $n \times n$ random matrices, Assume C0 and $|\rho|<1$ and condition:

Product Laws for Elliptical non Hermitian Matrices

- Th. (non i.i.d. product case) (G.-Naumov-Tikhomirov, (2013)).

Let $\mathbf{X}_{n}^{(q)}, q \geq 2$ be independent $n \times n$ random matrices, Assume C0 and $|\rho|<1$ and condition:
(L*) $\quad \sup _{q, j, k} \mathbf{E}\left|X_{j k}^{(q)}\right|^{2} I\left(\left|X_{j k}^{(q)}\right| \geq M\right) \rightarrow 0$ as $n \rightarrow \infty$.
Let $\mathbf{V}=n^{-m / 2} \prod_{q=1}^{m} \mathbf{X}_{n}^{(q)}, \quad m \geq 2$ and
μ_{n} - empirical spectral measure of the eigenvalues of \mathbf{V}.

Product Laws for Elliptical non Hermitian Matrices

- Th. (non i.i.d. product case) (G.-Naumov-Tikhomirov, (2013)).

Let $\mathbf{X}_{n}^{(q)}, q \geq 2$ be independent $n \times n$ random matrices, Assume C0 and $|\rho|<1$ and condition:
(L*) $\quad \sup _{q, j, k} \mathbf{E}\left|X_{j k}^{(q)}\right|^{2} I\left(\left|X_{j k}^{(q)}\right| \geq M\right) \rightarrow 0$ as $n \rightarrow \infty$.
Let $\mathbf{V}=n^{-m / 2} \prod_{q=1}^{m} \mathbf{X}_{n}^{(q)}, \quad m \geq 2$ and
μ_{n}-empirical spectral measure of the eigenvalues of \mathbf{V}.
Then $\quad \mathbf{E} \mu_{n} \rightarrow \mu, \quad$ with density:

$$
g(x, y)= \begin{cases}\frac{1}{\pi m\left(x^{2}+y^{2}\right)^{\frac{m-1}{m}}}, & x, y \in\left\{u, v \in \mathbb{R}: u^{2}+v^{2} \leq 1\right\} \\ 0, & \text { elsewhere } .\end{cases}
$$

Product Laws for Elliptical non Hermitian Matrices

- Th. (non i.i.d. product case) (G.-Naumov-Tikhomirov, (2013)).

Let $\mathbf{X}_{n}^{(q)}, q \geq 2$ be independent $n \times n$ random matrices, Assume C0 and $|\rho|<1$ and condition:
(L*) $\quad \sup _{q, j, k} \mathbf{E}\left|X_{j k}^{(q)}\right|^{2} I\left(\left|X_{j k}^{(q)}\right| \geq M\right) \rightarrow 0$ as $n \rightarrow \infty$.
Let $\mathbf{V}=n^{-m / 2} \prod_{q=1}^{m} \mathbf{X}_{n}^{(q)}, \quad m \geq 2$ and
μ_{n} - empirical spectral measure of the eigenvalues of \mathbf{V}.
Then $\quad \mathbf{E} \mu_{n} \rightarrow \mu, \quad$ with density:

$$
g(x, y)= \begin{cases}\frac{1}{\pi m\left(x^{2}+y^{2}\right)^{\frac{m-1}{m}}}, & x, y \in\left\{u, v \in \mathbb{R}: u^{2}+v^{2} \leq 1\right\} \\ 0, & \text { elsewhere }\end{cases}
$$

which is independent of $|\rho|<1$! Extension of (G.-Tikhomirov (2010))

Product Laws for Elliptical non Hermitian Matrices

- Th. (non i.i.d. product case) (G.-Naumov-Tikhomirov, (2013)).

Let $\mathbf{X}_{n}^{(q)}, q \geq 2$ be independent $n \times n$ random matrices, Assume C0 and $|\rho|<1$ and condition:
(L*) $\quad \sup _{q, j, k} \mathbf{E}\left|X_{j k}^{(q)}\right|^{2} I\left(\left|X_{j k}^{(q)}\right| \geq M\right) \rightarrow 0$ as $n \rightarrow \infty$.
Let $\mathbf{V}=n^{-m / 2} \prod_{q=1}^{m} \mathbf{X}_{n}^{(q)}, \quad m \geq 2$ and
μ_{n} - empirical spectral measure of the eigenvalues of \mathbf{V}.
Then $\quad \mathbf{E} \mu_{n} \rightarrow \mu, \quad$ with density:

$$
g(x, y)= \begin{cases}\frac{1}{\pi m\left(x^{2}+y^{2}\right)^{\frac{m-1}{m}}}, & x, y \in\left\{u, v \in \mathbb{R}: u^{2}+v^{2} \leq 1\right\} \\ 0, & \text { elsewhere }\end{cases}
$$

which is independent of $|\rho|<1$! Extension of (G.-Tikhomirov (2010))
Gaussian case: Akemann, Burda $(2010,2012)$.

Complex Spectra via Girko's Hermitization

Singular values versus spectral values with emp. df. μ_{n} :

$$
|\operatorname{det}(\mathbf{A})|=\prod_{i=1}^{n}\left|\lambda_{i}(\mathbf{A})\right|=\prod_{i=1}^{n} s_{i}(\mathbf{A})
$$

Complex Spectra via Girko's Hermitization

Singular values versus spectral values with emp. df. μ_{n} :

$$
|\operatorname{det}(\mathbf{A})|=\prod_{i=1}^{n}\left|\lambda_{i}(\mathbf{A})\right|=\prod_{i=1}^{n} s_{i}(A)
$$

$\nu_{n}(\cdot, z)$: empirical measure of singular values of $\left(n^{-1 / 2} \mathbf{X}_{n}-z \mathbf{I}\right)$.

Complex Spectra via Girko's Hermitization

Singular values versus spectral values with emp. df. μ_{n} :

$$
|\operatorname{det}(\mathbf{A})|=\prod_{i=1}^{n}\left|\lambda_{i}(\mathbf{A})\right|=\prod_{i=1}^{n} s_{i}(A)
$$

$\nu_{n}(\cdot, z)$: empirical measure of singular values of $\left(n^{-1 / 2} \mathbf{X}_{n}-z \mathbf{I}\right)$.

$$
\begin{aligned}
& U_{\mu_{n}}(z)=-\int_{\mathbf{C}} \log |z-w| \mu_{n}(d w)=-\frac{1}{n} \log \left|\operatorname{det}\left(\frac{1}{\sqrt{n}} \mathbf{X}_{n}-z \mathbf{I}\right)\right| \\
& =-\frac{1}{2 n} \log \operatorname{det}\left(\frac{1}{\sqrt{n}} \mathbf{X}_{n}-z \mathbf{I}\right)^{*}\left(\frac{1}{\sqrt{n}} \mathbf{X}_{n}-z \mathbf{l}\right)=-\int_{0}^{\infty} \log x \nu_{n}(d x)
\end{aligned}
$$

Singular values versus spectral values with emp. df. μ_{n} :

$$
|\operatorname{det}(\mathbf{A})|=\prod_{i=1}^{n}\left|\lambda_{i}(\mathbf{A})\right|=\prod_{i=1}^{n} s_{i}(A)
$$

$\nu_{n}(\cdot, z)$: empirical measure of singular values of $\left(n^{-1 / 2} \mathbf{X}_{n}-z \mathbf{I}\right)$.

$$
\begin{aligned}
& U_{\mu_{n}}(z)=-\int_{\mathbf{C}} \log |z-w| \mu_{n}(d w)=-\frac{1}{n} \log \left|\operatorname{det}\left(\frac{1}{\sqrt{n}} \mathbf{X}_{n}-z \mathbf{l}\right)\right| \\
& =-\frac{1}{2 n} \log \operatorname{det}\left(\frac{1}{\sqrt{n}} \mathbf{X}_{n}-z \mathbf{l}\right)^{*}\left(\frac{1}{\sqrt{n}} \mathbf{X}_{n}-z \mathbf{l}\right)=-\int_{0}^{\infty} \log x \nu_{n}(d x)
\end{aligned}
$$

Complex spectra of smooth functions \mathbb{F} of m independent matrices \mathbf{X}_{n} :
$\mathbb{F}\left(\mathbf{X}_{n}\right): \quad \nu_{\mathbb{F}(\mathbf{X})} \quad$ for matrices $\mathbf{X}_{n}=\left(\mathbf{X}_{n}^{(1)}, \ldots, \mathbf{Y}_{n}^{(m)}\right)$
$\mathbb{F}\left(\mathbf{Y}_{n}\right): \quad \nu_{\mathbb{F}(\mathbf{Y})} \quad$ for i.i.d. Gaussian matrices $\mathbf{Y}_{n}=\left(\mathbf{Y}_{n}^{(1)}, \ldots, \mathbf{Y}_{n}^{(m)}\right)$

Universality of Complex Spectra

Lemma (Bordenave-Chafai (2009))

Weak convergence of $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$ to some limit $\nu_{\mathbb{F}}$: condition (C1): Log-potential of shifted singular distr. $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$

Universality of Complex Spectra

Lemma (Bordenave-Chafai (2009))

Weak convergence of $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$ to some limit $\nu_{\mathbb{F}}$: condition (C1): Log-potential of shifted singular distr. $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$

$$
U_{\mathrm{x}}(z)=-\int_{\mathbb{C}} \log |z-\zeta| \nu_{\mathbb{F}(\mathbf{X})}(d \zeta)=
$$

Universality of Complex Spectra

Lemma (Bordenave-Chafai (2009))

Weak convergence of $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$ to some limit $\nu_{\mathbb{F}}$:
condition (C1): Log-potential of shifted singular distr. $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$

$$
U_{\mathbf{X}}(z)=-\int_{\mathbb{C}} \log |z-\zeta| \nu_{\mathbb{F}(\mathbf{X})}(d \zeta)=-\log \operatorname{det}|\mathbb{F}(\mathbf{X})-z| \mid .
$$

converge to the log. potential of $\nu_{\mathbb{F}}-z \mathbf{l}$ such that:

Universality of Complex Spectra

Lemma (Bordenave-Chafai (2009))

Weak convergence of $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$ to some limit $\nu_{\mathbb{F}}$:
condition (C1): Log-potential of shifted singular distr. $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$

$$
U_{\mathbf{X}}(z)=-\int_{\mathbb{C}} \log |z-\zeta| \nu_{\mathbb{F}(\mathbf{X})}(d \zeta)=-\log \operatorname{det}|\mathbb{F}(\mathbf{X})-z| \mid .
$$

converge to the log. potential of $\nu_{\mathbb{F}}-z \mathbf{z}$ such that:

- log is uniformly integrable,

Universality of Complex Spectra

Lemma (Bordenave-Chafai (2009))

Weak convergence of $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$ to some limit $\nu_{\mathbb{F}}$:
condition (C1): Log-potential of shifted singular distr. $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$

$$
U_{\mathbf{X}}(z)=-\int_{\mathbb{C}} \log |z-\zeta| \nu_{\mathbb{F}(\mathbf{X})}(d \zeta)=-\log \operatorname{det}|\mathbb{F}(\mathbf{X})-z| \mid .
$$

converge to the log. potential of $\nu_{\mathbb{F}}-z \mathbf{z}$ such that:

- log is uniformly integrable, i.e.
$\lim _{t \rightarrow \infty} \lim \sup _{n \rightarrow \infty} \operatorname{Pr}\left\{\left|\int_{0}^{\infty} \log (x) \nu_{\nu_{\mathrm{F}}(\mathbf{X})-z 1}(d x)\right|>t\right\}=0$.

Universality of Complex Spectra

Lemma (Bordenave-Chafai (2009))

Weak convergence of $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$ to some limit $\nu_{\mathbb{F}}$:
condition (C1): Log-potential of shifted singular distr. $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$

$$
U_{\mathbf{X}}(z)=-\int_{\mathbb{C}} \log |z-\zeta| \nu_{\mathbb{F}(\mathbf{X})}(d \zeta)=-\log \operatorname{det}|\mathbb{F}(\mathbf{X})-z| \mid .
$$

converge to the log. potential of $\nu_{\mathbb{F}}-z \mathbf{l}$ such that:

- log is uniformly integrable, i.e.
$\lim _{t \rightarrow \infty} \lim \sup _{n \rightarrow \infty} \operatorname{Pr}\left\{\left|\int_{0}^{\infty} \log (x) \nu_{\nu_{\mathrm{F}}(\mathbf{X})-z \mathbf{l}}(d x)\right|>t\right\}=0$.
- for all $z \in \mathbb{C}$.
$\lim _{n \rightarrow \infty} U_{\mathbf{X}}(z)=\lim _{n \rightarrow \infty} U_{\mathbf{Y}}(z)=U_{\mathbb{F}}(z) \quad$ in probability

Universality of Complex Spectra

Lemma (Bordenave-Chafai (2009))

Weak convergence of $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$ to some limit $\nu_{\mathbb{F}}$:
condition (C1): Log-potential of shifted singular distr. $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$

$$
U_{\mathbf{X}}(z)=-\int_{\mathbb{C}} \log |z-\zeta| \nu_{\mathbb{F}(\mathbf{X})}(d \zeta)=-\log \operatorname{det}|\mathbb{F}(\mathbf{X})-z| \mid .
$$

converge to the log. potential of $\nu_{\mathbb{F}}-z \mathbf{l}$ such that:

- log is uniformly integrable, i.e.
$\lim _{t \rightarrow \infty} \lim \sup _{n \rightarrow \infty} \operatorname{Pr}\left\{\left|\int_{0}^{\infty} \log (x) \nu_{\nu_{\mathrm{F}}(\mathbf{X})-z \mathbf{l}}(d x)\right|>t\right\}=0$.
- for all $z \in \mathbb{C}$.
$\lim _{n \rightarrow \infty} U_{\mathbf{X}}(z)=\lim _{n \rightarrow \infty} U_{\mathbf{Y}}(z)=U_{\mathbb{F}}(z) \quad$ in probability
with \log potential determining distribution

Universality of Complex Spectra

Lemma (Bordenave-Chafai (2009))

Weak convergence of $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$ to some limit $\nu_{\mathbb{F}}$:
condition (C1): Log-potential of shifted singular distr. $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$

$$
U_{\mathbf{X}}(z)=-\int_{\mathbb{C}} \log |z-\zeta| \nu_{\mathbb{F}}(\mathbf{X})(d \zeta)=-\log \operatorname{det}|\mathbb{F}(\mathbf{X})-z| \mid .
$$

converge to the log. potential of $\nu_{\mathbb{F}}-z \mathbf{l}$ such that:

- log is uniformly integrable, i.e.
$\lim _{t \rightarrow \infty} \lim \sup _{n \rightarrow \infty} \operatorname{Pr}\left\{\left|\int_{0}^{\infty} \log (x) \nu_{\nu_{\mathrm{F}}(\mathbf{X})-z \mathbf{l}}(d x)\right|>t\right\}=0$.
- for all $z \in \mathbb{C}$.
$\lim _{n \rightarrow \infty} U_{\mathbf{X}}(z)=\lim _{n \rightarrow \infty} U_{\mathbf{Y}}(z)=U_{\mathbb{F}}(z) \quad$ in probability
with \log potential determining distribution
G.-Tikhomirov (2007), Tao and Vu (2010), methods: Rudelson (2006):

Universality of Complex Spectra

Lemma (Bordenave-Chafai (2009))
Weak convergence of $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$ to some limit $\nu_{\mathbb{F}}$:
condition (C1): Log-potential of shifted singular distr. $\nu_{\mathbb{F}(\mathbf{X})}$ and $\nu_{\mathbb{F}(\mathbf{Y})}$

$$
U_{\mathbf{X}}(z)=-\int_{\mathbb{C}} \log |z-\zeta| \nu_{\mathbb{F}}(\mathbf{X})(d \zeta)=-\log \operatorname{det}|\mathbb{F}(\mathbf{X})-z| \mid .
$$

converge to the log. potential of $\nu_{\mathbb{F}}-z \mathbf{z}$ such that:

- log is uniformly integrable, i.e.
$\lim _{t \rightarrow \infty} \lim \sup _{n \rightarrow \infty} \operatorname{Pr}\left\{\left|\int_{0}^{\infty} \log (x) \nu_{\nu_{\mathrm{F}}(\mathbf{X})-z 1}(d x)\right|>t\right\}=0$.
- for all $z \in \mathbb{C}$.
$\lim _{n \rightarrow \infty} U_{\mathbf{X}}(z)=\lim _{n \rightarrow \infty} U_{\mathrm{Y}}(z)=U_{\mathbb{F}}(z) \quad$ in probability
with \log potential determining distribution
G.-Tikhomirov (2007), Tao and Vu (2010), methods: Rudelson (2006):
$\left(C_{0}\right)$ yields unif. log-integr. for $\quad m=1$ and $\quad \mathbb{F}(\mathbf{X})=\mathbf{X}^{(1)}$. (Circular law)

Universality of \mathbb{F}

Theorem (G.-Kösters-Tikhomirov (2014), RMTA)

Assume that

Theorem (G.-Kösters-Tikhomirov (2014), RMTA)
Assume that

- X, Y satisfy moment conditions (CO)
(normalizing + uniform integrable 2nd moments)

Theorem (G.-Kösters-Tikhomirov (2014), RMTA)
Assume that

- X, Y satisfy moment conditions (CO)
(normalizing + uniform integrable 2nd moments)
- $\mathbb{F}_{\mathbf{X}}, \mathbb{F}_{\mathbf{Y}}$ satisfy condition (C1)
(uniform log integrability of shifted singular values of \mathbb{F})

Theorem (G.-Kösters-Tikhomirov (2014), RMTA)
Assume that

- X, Y satisfy moment conditions (CO)
(normalizing + uniform integrable 2nd moments)
- $\mathbb{F}_{\mathbf{X}}, \mathbb{F}_{\mathbf{Y}}$ satisfy condition (C1)
(uniform log integrability of shifted singular values of \mathbb{F})
- $\mathbb{F}_{\mathbf{X}}, \mathbb{F}_{\mathbf{Y}}$ satisfy condition (G) (Smoothnesss of $\left.\mathbb{F}\right)$.

Theorem (G.-Kösters-Tikhomirov (2014), RMTA)

Assume that

- X, Y satisfy moment conditions (CO)
(normalizing + uniform integrable 2nd moments)
- $\mathbb{F}_{\mathbf{X}}, \mathbb{F}_{\mathbf{Y}}$ satisfy condition (C1)
(uniform log integrability of shifted singular values of \mathbb{F})
- $\mathbb{F}_{\mathbf{X}}, \mathbb{F}_{\mathbf{Y}}$ satisfy condition (G) (Smoothnesss of \mathbb{F}).

Then $\mathbb{F}_{\mathbf{X}}$ and $\mathbb{F}_{\mathbf{Y}}$ have the same (complex) limit distribution of eigenvalues.

Universality of \mathbb{F}

Theorem (G.-Kösters-Tikhomirov (2014), RMTA)
Assume that

- X, Y satisfy moment conditions (CO)
(normalizing + uniform integrable 2nd moments)
- $\mathbb{F}_{\mathbf{X}}, \mathbb{F}_{\mathbf{Y}}$ satisfy condition (C1)
(uniform log integrability of shifted singular values of \mathbb{F})
- $\mathbb{F}_{\mathbf{X}}, \mathbb{F}_{\mathbf{Y}}$ satisfy condition (G) (Smoothnesss of \mathbb{F}).

Then $\mathbb{F}_{\mathbf{X}}$ and $\mathbb{F}_{\mathbf{Y}}$ have the same (complex) limit distribution of eigenvalues.
Universality of the singular values distribution of shifts holds.

Universality of \mathbb{F}

Theorem (G.-Kösters-Tikhomirov (2014), RMTA)

Assume that

- X, Y satisfy moment conditions (CO)
(normalizing + uniform integrable 2nd moments)
- $\mathbb{F}_{\mathbf{X}}, \mathbb{F}_{\mathbf{Y}}$ satisfy condition (C1)
(uniform log integrability of shifted singular values of \mathbb{F})
- $\mathbb{F}_{\mathbf{X}}, \mathbb{F}_{\mathbf{Y}}$ satisfy condition (G) (Smoothnesss of \mathbb{F}).

Then $\mathbb{F}_{\mathbf{X}}$ and $\mathbb{F}_{\mathbf{Y}}$ have the same (complex) limit distribution of eigenvalues.
Universality of the singular values distribution of shifts holds.
Hence universality of (complex) eigenvalue distribution follows. Laws determined by asymptotic freeness and free calculus of S-transforms for product type functions \mathbb{F} of $X_{j}, X_{j}^{*}, X_{j}^{-1}$ etc.

Example: Singular Values of Products of Spherical Matrices

 $m \geq 1, \mathbf{X}^{(\nu)}=\frac{1}{\sqrt{n}}\left(X_{j k}^{(q)}\right)$ independent, independent entries.
Example: Singular Values of Products of Spherical Matrices

$m \geq 1, \mathbf{X}^{(\nu)}=\frac{1}{\sqrt{n}}\left(X_{j k}^{(q)}\right)$ independent, independent entries.
Product function
$\mathbb{F}=\prod_{q=1}^{m} \mathbf{X}^{(2 q-1)}\left(\mathbf{X}^{(2 q)}\right)^{-1} \quad$ and $\quad \mathbf{W}=\mathbb{F F} F^{*}$.
$\mathcal{G}_{n}(x)$: empirical distribution function of \mathbf{W}.
Theorem (G.-Kösters-Tikhomirov (2014))
Assume that $X_{j k}^{(q)}$, for $q=1, \ldots, 2 m$ and $j, k=1, \ldots, n$ satisfy uniform $2 n d$ order moment conditions. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathcal{G}_{n}(x) & =G_{m}(x) \quad \text { in probability, } \quad \text { where, } \\
p_{m}(x)=G_{m}^{\prime}(x) & \left.=\frac{1}{\pi} \frac{\sin \frac{\pi m}{m+1}}{x^{\frac{m}{m+1}}\left(x^{\frac{2}{m+1}}-2 x^{\frac{1}{m+1}}\right.} \cos \frac{\pi m}{m+1}+1\right)
\end{aligned} .
$$

Forrester (2014), free multiplicative Levy processes Biane (1998)

Linear Statistics of Singular Values of Product Matrices

- Let $\mathbf{X}^{(q)}, q=1, \ldots, m$ be m independent random matrices:

$$
\mathbf{X}^{(q)}:=\frac{1}{\sqrt{n}}\left[X_{j k}^{(q)}\right]_{j, k=1}^{n} .
$$

with i.i.d. $X_{j k}^{(q)}$ entries for $1 \leq j, k \leq n$,

- for any $1 \leq j, k \leq n \quad \mathbf{E} X_{j k}^{(q)}=0$ and $\mathbf{E}\left(X_{j k}^{(q)}\right)^{2}=1$;
- $\mathbf{E}\left(X_{j k}^{(q)}\right)^{4}=: \mu_{4}<\infty$.

Let $\quad \mathbf{W}:=\prod_{q=1}^{m} \mathbf{X}^{(q)}$,
$s_{1}^{2}(\mathbf{W}), \ldots, s_{n}^{2}(\mathbf{W}) \quad$ denote the eigenvalues of $\mathbf{W W}^{T}$
with empirical spectral measure

Linear Statistics of Singular Values of Product Matrices

- Let $\mathbf{X}^{(q)}, q=1, \ldots, m$ be m independent random matrices:

$$
\mathbf{X}^{(q)}:=\frac{1}{\sqrt{n}}\left[X_{j k}^{(q)}\right]_{j, k=1}^{n} .
$$

with i.i.d. $X_{j k}^{(q)}$ entries for $1 \leq j, k \leq n$,

- for any $1 \leq j, k \leq n \quad \mathbf{E} X_{j k}^{(q)}=0$ and $\mathbf{E}\left(X_{j k}^{(q)}\right)^{2}=1$;
- $\mathbf{E}\left(X_{j k}^{(q)}\right)^{4}=: \mu_{4}<\infty$.

Let $\quad \mathbf{W}:=\prod_{q=1}^{m} \mathbf{X}^{(q)}$,
$s_{1}^{2}(\mathbf{W}), \ldots, s_{n}^{2}(\mathbf{W}) \quad$ denote the eigenvalues of $\mathbf{W W}^{T}$
with empirical spectral measure

$$
F_{n}^{\mathrm{W}}(x)=\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}\left(s_{k}^{2} \leq x\right)
$$

CLT for Singular Values of Products

Limit d.f. $G_{m}(x)$ such that

CLT for Singular Values of Products

Limit d.f. $G_{m}(x)$ such that

$$
\lim _{n \rightarrow \infty} \sup _{x \in R}\left|\mathbf{E} F_{n}^{\mathrm{W}}(x)-G_{m}(x)\right|=0
$$

Recall $G_{m}(x)$, is confined to $\left[0, K_{m}\right], K_{m}=(m+1)\left(1+\frac{1}{m}\right)^{m}$ and described via its Stieltjes transform:

$$
s_{m}(z):=\int_{-\infty}^{\infty} \frac{1}{x-z} d G_{m}(x), \quad z=u+i v, \quad v>0
$$

CLT for Singular Values of Products

Limit d.f. $G_{m}(x)$ such that

$$
\lim _{n \rightarrow \infty} \sup _{x \in R}\left|\mathbf{E} F_{n}^{\mathrm{W}}(x)-G_{m}(x)\right|=0
$$

Recall $G_{m}(x)$, is confined to $\left[0, K_{m}\right], K_{m}=(m+1)\left(1+\frac{1}{m}\right)^{m}$ and described via its Stieltjes transform:

$$
s_{m}(z):=\int_{-\infty}^{\infty} \frac{1}{x-z} d G_{m}(x), \quad z=u+i v, \quad v>0
$$

satisfying (hypergeometric function)

$$
1+z s_{m}(z)+(-1)^{m+1} z^{m} s_{m}^{m+1}(z)=0
$$

CLT for linear statistics: Wigner and Marcenko-Pastur: Jonsson (82),
Bai-Silverstein (10), Sinai-Soshnikov(98), Anderson-Zeitouni(06), Lytova-Pastur (09), Zheng (12)

CLT for Linear Statistics of Eigenvalues of $\mathbf{W W}^{\top}$ for $m=2$

Consider functions $f: \mathbf{R} \rightarrow \mathbf{R}$ with $\quad \int_{-\infty}^{\infty}\left(1+|t|^{5}\right)|\widehat{f}(t)| d t<\infty$.

CLT for Linear Statistics of Eigenvalues of $\mathbf{W W}^{\top}$ for $m=2$

Consider functions $f: \mathbf{R} \rightarrow \mathbf{R}$ with $\quad \int_{-\infty}^{\infty}\left(1+|t|^{5}\right)|\widehat{f}(t)| d t<\infty$.
Let $\quad S_{\mathrm{W}}[f]:=\sum_{k=1}^{n} f\left(s_{k}^{2}\right)$ and $m=2$. Then
Theorem (G.-Naumov-Tikhomirov (2015, Bernoulli))

$$
S_{\mathrm{w}}[f]-\mathbf{E} S_{\mathrm{w}}[f] \quad \Rightarrow \quad N\left(0, \sigma_{f}^{2}\right), \quad \text { with }
$$

CLT for Linear Statistics of Eigenvalues of $\mathbf{W W}^{\top}$ for $m=2$

Consider functions $f: \mathbf{R} \rightarrow \mathbf{R}$ with $\quad \int_{-\infty}^{\infty}\left(1+|t|^{5}\right)|\widehat{f}(t)| d t<\infty$.
Let $\quad S_{\mathrm{W}}[f]:=\sum_{k=1}^{n} f\left(s_{k}^{2}\right)$ and $m=2$. Then
Theorem (G.-Naumov-Tikhomirov (2015, Bernoulli))

$$
\begin{aligned}
& S_{\mathbf{W}}[f]-\mathbf{E} S_{\mathbf{W}}[f] \Rightarrow N\left(0, \sigma_{f}^{2}\right), \quad \text { with } \\
& \begin{aligned}
& \sigma_{f}^{2}=\frac{\kappa_{4}}{2}\left[\int_{-a}^{a} f\left(\lambda^{2}\right)\left[p(\lambda)+\lambda p^{\prime}(\lambda)\right] d \lambda\right]^{2} \\
&+\frac{1}{2 \pi^{2}} \int_{-a}^{a} \int_{-a}^{a} \frac{\left(f\left(\lambda^{2}\right)-f\left(\mu^{2}\right)\right)^{2}}{(\lambda-\mu)^{2}} \\
& \quad \times \frac{\left[p(\lambda)-p^{\prime}(\lambda)(\lambda-\mu)\right]}{3 p(\mu)} \frac{\left[4 p_{1}(\mu)^{4}+11 p_{1}(\mu)^{2}+4\right]}{4 p_{1}^{2}(\mu)+3} d \lambda d \mu,
\end{aligned}
\end{aligned}
$$

where $\kappa_{4}:=m_{4}-3, \quad p_{1}(\lambda):=\pi p(\lambda), \quad p(\lambda):=|\lambda| P_{2}\left(\lambda^{2}\right)$ is the symmetrized Fuss-Catalan density, and $a:=\sqrt{K_{2}}$.

The Gaussian Case and Stein-Tikhomirov

Assume W to be Gaussian. Use "linarisation" (Burda-Nowak-Swiech-al (2011)) of $s_{1}^{2}(\mathbf{W}), \ldots, s_{n}^{2}(\mathbf{W})$ constructing a $2 n \times 2 n$ hermitian block matrix \mathbf{Y} with eigenvalues $\lambda_{j}(\mathbf{Y})$:

$$
\pm s_{1}(\mathbf{W}), \ldots, \pm s_{n}(\mathbf{W})
$$

The Gaussian Case and Stein-Tikhomirov

Assume W to be Gaussian. Use "linarisation" (Burda-Nowak-Swiech-al (2011)) of $s_{1}^{2}(\mathbf{W}), \ldots, s_{n}^{2}(\mathbf{W})$ constructing a $2 n \times 2 n$ hermitian block matrix \mathbf{Y} with eigenvalues $\lambda_{j}(\mathbf{Y})$:

$$
\pm s_{1}(\mathbf{W}), \ldots, \pm s_{n}(\mathbf{W})
$$

For an even function f let

$$
S_{n}:=\sum_{j=1}^{2 n}\left(f\left(\lambda_{j}(\mathbf{Y})\right)-\mathbf{E} f\left(\lambda_{j}(\mathbf{Y})\right) \quad \text { and } \quad Z_{n}(x):=\mathbf{E} \exp \left\{i x S_{n}\right\}\right.
$$

The Gaussian Case and Stein-Tikhomirov

Assume W to be Gaussian. Use "linarisation" (Burda-Nowak-Swiech-al (2011)) of $s_{1}^{2}(\mathbf{W}), \ldots, s_{n}^{2}(\mathbf{W})$ constructing a $2 n \times 2 n$ hermitian block matrix \mathbf{Y} with eigenvalues $\lambda_{j}(\mathbf{Y})$:

$$
\pm s_{1}(\mathbf{W}), \ldots, \pm s_{n}(\mathbf{W})
$$

For an even function f let

$$
S_{n}:=\sum_{j=1}^{2 n}\left(f\left(\lambda_{j}(\mathbf{Y})\right)-\mathbf{E} f\left(\lambda_{j}(\mathbf{Y})\right) \quad \text { and } \quad Z_{n}(x):=\mathbf{E} \exp \left\{i x S_{n}\right\}\right.
$$

Show: $\quad \lim _{n} Z_{n}(x)=Z(x):=\exp \left\{-\frac{1}{2} \sigma_{f}^{2} x^{2}\right\}$.

The Gaussian Case and Stein-Tikhomirov

Assume W to be Gaussian. Use "linarisation" (Burda-Nowak-Swiech-al (2011)) of $s_{1}^{2}(\mathbf{W}), \ldots, s_{n}^{2}(\mathbf{W})$ constructing a $2 n \times 2 n$ hermitian block matrix \mathbf{Y} with eigenvalues $\lambda_{j}(\mathbf{Y})$:

$$
\pm s_{1}(\mathbf{W}), \ldots, \pm s_{n}(\mathbf{W})
$$

For an even function f let

$$
S_{n}:=\sum_{j=1}^{2 n}\left(f\left(\lambda_{j}(\mathbf{Y})\right)-\mathbf{E} f\left(\lambda_{j}(\mathbf{Y})\right) \quad \text { and } \quad Z_{n}(x):=\mathbf{E} \exp \left\{i x S_{n}\right\}\right.
$$

Show: $\quad \lim _{n} Z_{n}(x)=Z(x):=\exp \left\{-\frac{1}{2} \sigma_{f}^{2} x^{2}\right\}$.
If converging subsequences $\left\{Z_{n_{1}}\right\}$ and $\left\{Z_{n_{l}}^{\prime}\right\}$ satisfy

$$
\lim _{n_{l} \rightarrow \infty} Z_{n_{l}}(x)=Z(x), \quad \lim _{n_{l} \rightarrow \infty} Z_{n_{l}}^{\prime}(x)=-x Z(x) \sigma_{f}^{2}
$$

we are done via

The Gaussian Case and Stein-Tikhomirov

Assume W to be Gaussian. Use "linarisation" (Burda-Nowak-Swiech-al (2011)) of $s_{1}^{2}(\mathbf{W}), \ldots, s_{n}^{2}(\mathbf{W})$ constructing a $2 n \times 2 n$ hermitian block matrix \mathbf{Y} with eigenvalues $\lambda_{j}(\mathbf{Y})$:

$$
\pm s_{1}(\mathbf{W}), \ldots, \pm s_{n}(\mathbf{W})
$$

For an even function f let

$$
S_{n}:=\sum_{j=1}^{2 n}\left(f\left(\lambda_{j}(\mathbf{Y})\right)-\mathbf{E} f\left(\lambda_{j}(\mathbf{Y})\right) \quad \text { and } \quad Z_{n}(x):=\mathbf{E} \exp \left\{i x S_{n}\right\} .\right.
$$

Show: $\quad \lim _{n} Z_{n}(x)=Z(x):=\exp \left\{-\frac{1}{2} \sigma_{f}^{2} x^{2}\right\}$.
If converging subsequences $\left\{Z_{n_{l}}\right\}$ and $\left\{Z_{n_{l}}^{\prime}\right\}$ satisfy

$$
\lim _{n_{l} \rightarrow \infty} Z_{n_{l}}(x)=Z(x), \quad \lim _{n_{l} \rightarrow \infty} Z_{n_{l}}^{\prime}(x)=-x Z(x) \sigma_{f}^{2}
$$

we are done via (Tikhomirov (1980))

$$
Z(x)=1-\sigma_{f}^{2} \int_{\text {Spectral Limits for Products }}^{x} y Z(y) d y
$$

Integral Equations

Represent $\quad f(\lambda)=\int_{-\infty}^{\infty} \widehat{f}(t) e^{i t \lambda} ; \quad$ expand factor S_{n} in $Z_{n}^{\prime}(x)$ as

$$
\begin{aligned}
Z_{n}^{\prime}(x)=i \mathbf{E} S_{n} e^{i \times S_{n}} & =\frac{i}{2} \int_{-\infty}^{\infty} \widehat{f}(t) \mathbf{E}\left(\operatorname{Tr} e^{i t Y}-\mathbf{E} \operatorname{Tr} e^{i t Y}\right) e^{i x S_{n}} d t, \\
& =: i \int_{-\infty}^{\infty} \widehat{f}(t) Y_{n}(x, t) d t
\end{aligned}
$$

Integral Equations

Represent $\quad f(\lambda)=\int_{-\infty}^{\infty} \widehat{f}(t) e^{i t \lambda} ; \quad$ expand factor S_{n} in $Z_{n}^{\prime}(x)$ as

$$
\begin{aligned}
Z_{n}^{\prime}(x)=i \mathbf{E} S_{n} e^{i \times S_{n}} & =\frac{i}{2} \int_{-\infty}^{\infty} \widehat{f}(t) \mathbf{E}\left(\operatorname{Tr} e^{i \mathrm{Y} Y}-\mathbf{E} \operatorname{Tr} e^{i t \mathbf{Y}}\right) e^{i x S_{n}} d t \\
& =: i \int_{-\infty}^{\infty} \widehat{f}(t) Y_{n}(x, t) d t
\end{aligned}
$$

Let $p(x)$ denote spectral density of \mathbf{Y}. Since $e^{i \boldsymbol{Y} \mathbf{Y}}=\mathbf{I}+i \int_{0}^{t} \mathbf{Y} e^{i s \mathbf{Y}} d s$ and for a standard Gaussian random variable ξ (Stein)

$$
\mathbf{E} \xi f(\xi)=\mathbf{E} \xi^{2} \mathbf{E} f^{\prime}(\xi)
$$

calculations leads to: sub-limiting equation for $Y(x, t):=\lim _{n} Y_{n}(x, t)$

$$
\begin{aligned}
& Y(x, t)+3 \int_{0}^{t} Y(x, s) \hat{p}^{2}(s-t) d s \\
& =-x Z(x) \int_{0}^{t}\left[2 \hat{p}(s) \widehat{f^{\prime} p}(t-s)+\widehat{f^{\prime} p}(s)\right] d s,
\end{aligned}
$$

Fourier-Laplace Transforms and Volterra-Equations

A Fourier-Laplace transform of this Volterra equation with

$$
\tilde{p}(z):=i^{-1} \int \exp \{-i z t\} \hat{p}(-t) d t=\int \frac{1}{x-z} p(x) d x=s(z)
$$

Fourier-Laplace Transforms and Volterra-Equations

A Fourier-Laplace transform of this Volterra equation with

$$
\tilde{p}(z):=i^{-1} \int \exp \{-i z t\} \hat{p}(-t) d t=\int \frac{1}{x-z} p(x) d x=s(z)
$$

yields an equation for the Stieltjes transform $s(z)$ of p

Fourier-Laplace Transforms and Volterra-Equations

A Fourier-Laplace transform of this Volterra equation with

$$
\tilde{p}(z):=i^{-1} \int \exp \{-i z t\} \hat{p}(-t) d t=\int \frac{1}{x-z} p(x) d x=s(z)
$$

yields an equation for the Stieltjes transform $s(z)$ of p and the Fourier-Laplace transforms $F(x, z)$ of $Y(x, t)$ and $R(z)$ of $\widehat{f^{\prime} p(t) \text { : } \text { : } 0 \text {. }}$

Fourier-Laplace Transforms and Volterra-Equations

A Fourier-Laplace transform of this Volterra equation with

$$
\tilde{p}(z):=i^{-1} \int \exp \{-i z t\} \hat{p}(-t) d t=\int \frac{1}{x-z} p(x) d x=s(z)
$$

yields an equation for the Stieltjes transform $s(z)$ of p and the

$$
F(x, z)=i x Z(x) R(z) \frac{1 / z-2 s(z)}{1-3 s^{2}(z)}
$$

Fourier-Laplace Transforms and Volterra-Equations

A Fourier-Laplace transform of this Volterra equation with

$$
\tilde{p}(z):=i^{-1} \int \exp \{-i z t\} \hat{p}(-t) d t=\int \frac{1}{x-z} p(x) d x=s(z)
$$

yields an equation for the Stieltjes transform $s(z)$ of p and the

$$
F(x, z)=i x Z(x) R(z) \frac{1 / z-2 s(z)}{1-3 s^{2}(z)}
$$

Since $1+z s(z)=z s(z)^{3}$, Fourier inversion of $K(z:)=\frac{1 / z-2 s(z)}{1-3 s^{2}(z)}=\frac{s^{3}(z)-3 s(z)}{1-3 s^{2}(z)}$ can be determined as

Fourier-Laplace Transforms and Volterra-Equations

A Fourier-Laplace transform of this Volterra equation with

$$
\tilde{p}(z):=i^{-1} \int \exp \{-i z t\} \hat{p}(-t) d t=\int \frac{1}{x-z} p(x) d x=s(z)
$$

yields an equation for the Stieltjes transform $s(z)$ of p and the Fourier-Laplace transforms $F(x, z)$ of $Y(x, t)$ and $R(z)$ of $\widehat{f^{\prime} p(t) \text { : } \text { : } \text {. }}$

$$
F(x, z)=i x Z(x) R(z) \frac{1 / z-2 s(z)}{1-3 s^{2}(z)}
$$

Since $1+z s(z)=z s(z)^{3}$, Fourier inversion of $K(z:)=\frac{1 / z-2 s(z)}{1-3 s^{2}(z)}=\frac{s^{3}(z)-3 s(z)}{1-3 s^{2}(z)}$ can be determined as

$$
\frac{1}{\pi} \int_{-a}^{a} \frac{e^{i t \mu}}{3 p_{1}(\mu)} \frac{4 p_{1}(\mu)^{4}+11 p_{1}(\mu)^{2}+4}{4 p_{1}(\mu)^{2}+3} d \mu
$$

using contour integration with $p_{1}(\mu):=\pi p(\lambda)$, and evaluating $\Im K, \Re K$ in terms of $\Im s, \Re s$.

Stein-Tikhomirov Equation

Then we finally arrive at

Stein-Tikhomirov Equation

Then we finally arrive at

$$
\begin{aligned}
Y(x, t)=- & \frac{x Z(x)}{\pi^{2}} \int_{0}^{t} \int_{-a}^{a} e^{i s \lambda} f^{\prime}(\lambda) p(\lambda) d \lambda \\
& \times \int_{-a}^{a} \frac{e^{i(t-s) \mu}}{3 p(\mu)} \frac{4 p_{1}(\mu)^{4}+11 p_{1}(\mu)^{2}+4}{4 p_{1}(\mu)^{2}+3} d v .
\end{aligned}
$$

which leads to

Stein-Tikhomirov Equation

Then we finally arrive at

$$
\begin{aligned}
Y(x, t)=- & \frac{x Z(x)}{\pi^{2}} \int_{0}^{t} \int_{-a}^{a} e^{i s \lambda} f^{\prime}(\lambda) p(\lambda) d \lambda \\
& \times \int_{-a}^{a} \frac{e^{i(t-s) \mu}}{3 p(\mu)} \frac{4 p_{1}(\mu)^{4}+11 p_{1}(\mu)^{2}+4}{4 p_{1}(\mu)^{2}+3} d v .
\end{aligned}
$$

which leads to

$$
\begin{aligned}
& Z^{\prime}(x)=-\frac{x Z(x)}{2 \pi^{2}} \int_{-a}^{a} \int_{-a}^{a} \frac{(f(\lambda)-f(\mu))^{2}}{(\lambda-\mu)^{2}} \\
& \times \frac{\left[p(\lambda)-p^{\prime}(\lambda)(\lambda-\mu)\right]}{3 p(\mu)} \frac{\left[4 p_{1}(\mu)^{4}+11 p_{1}(\mu)^{2}+4\right]}{4 p_{1}(\mu)^{2}+3} d \lambda d \mu .
\end{aligned}
$$

Stein-Tikhomirov Equation

Then we finally arrive at

$$
\begin{aligned}
Y(x, t)=- & \frac{x Z(x)}{\pi^{2}} \int_{0}^{t} \int_{-a}^{a} e^{i s \lambda} f^{\prime}(\lambda) p(\lambda) d \lambda \\
& \times \int_{-a}^{a} \frac{e^{i(t-s) \mu}}{3 p(\mu)} \frac{4 p_{1}(\mu)^{4}+11 p_{1}(\mu)^{2}+4}{4 p_{1}(\mu)^{2}+3} d v .
\end{aligned}
$$

which leads to

$$
\begin{aligned}
& Z^{\prime}(x)=-\frac{x Z(x)}{2 \pi^{2}} \int_{-a}^{a} \int_{-a}^{a} \frac{(f(\lambda)-f(\mu))^{2}}{(\lambda-\mu)^{2}} \\
& \times \frac{\left[p(\lambda)-p^{\prime}(\lambda)(\lambda-\mu)\right]}{3 p(\mu)} \frac{\left[4 p_{1}(\mu)^{4}+11 p_{1}(\mu)^{2}+4\right]}{4 p_{1}(\mu)^{2}+3} d \lambda d \mu .
\end{aligned}
$$

Furthermore needed: Gaussian approximations as well as concentration of measure for Lipschitz functions.

Thank you!

Multiplicative Free Convolution on \mathbf{R}_{+}

$$
\begin{aligned}
1+M_{\mu}(z) & :=G_{\mu}\left(z^{-1}\right) / z, \quad\left(=1+\sum_{k=1}^{\infty} m_{k} z^{k}, \quad \text { formally }\right) \\
S_{\mu}(z) & :=z^{-1} R_{\mu}^{(-1)}(z)=\frac{z+1}{z} M_{\mu}^{(-1)}(z),
\end{aligned}
$$

Multiplicative Free Convolution on \mathbf{R}_{+}

$$
\begin{aligned}
1+M_{\mu}(z) & :=G_{\mu}\left(z^{-1}\right) / z, \quad\left(=1+\sum_{k=1}^{\infty} m_{k} z^{k}, \quad \text { formally }\right) \\
S_{\mu}(z) & :=z^{-1} R_{\mu}^{(-1)}(z)=\frac{z+1}{z} M_{\mu}^{(-1)}(z)
\end{aligned}
$$

μ_{1}, μ_{2} : distribution on $\mathbf{R}_{+}: \quad S_{\mu_{1} \boxtimes \mu_{2}}=S_{\mu_{1}} S_{\mu_{2}}$.

Lemma

$A_{n} \in \mathcal{M}(n \times n), n \in \mathbb{N}$ Gaussian complex random matrices, independent entries. Then

$$
\mathbf{A}_{n}:=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{X}_{n} \\
\mathbf{X}_{n}{ }^{*} & \mathbf{0}
\end{array}\right] \quad \text { and } \quad \mathbf{B}_{n}:=\mathbf{J}(\alpha)=\left[\begin{array}{cc}
\mathbf{0} & -\alpha \mathbf{1} \\
-\bar{\alpha} \mathbf{l} & \mathbf{0}
\end{array}\right],
$$

are asymptotically free, where $\alpha=u+i v, u, v \in \mathbf{R}$.

R-Transform of $J(\alpha)$

$2 n \times 2 n$ block-matrix

$$
\mathbf{J}(\alpha)=\left(\begin{array}{lc}
\mathbf{0} & -\alpha \mathbf{l} \\
-\bar{\alpha} \mathbf{l} & \mathbf{0}
\end{array}\right),
$$

R-Transform of $J(\alpha)$

$2 n \times 2 n$ block-matrix

$$
\mathbf{J}(\alpha)=\left(\begin{array}{lc}
\mathbf{0} & -\alpha \mathbf{l} \\
-\bar{\alpha} \mathbf{l} & \mathbf{0}
\end{array}\right),
$$

spectral distribution $\mu(\cdot)=\frac{1}{2} \delta_{|\alpha|}+\frac{1}{2} \delta_{-|\alpha|}$,

R-Transform of $J(\alpha)$

$2 n \times 2 n$ block-matrix

$$
\mathbf{J}(\alpha)=\left(\begin{array}{lc}
\mathbf{0} & -\alpha \mathbf{l} \\
-\bar{\alpha} \mathbf{l} & \mathbf{0}
\end{array}\right)
$$

spectral distribution $\mu(\cdot)=\frac{1}{2} \delta_{|\alpha|}+\frac{1}{2} \delta_{-|\alpha|}$,

$$
M(z)=\frac{|\alpha|^{2} z^{2}}{1-|\alpha|^{2} z^{2}}
$$

R-Transform of $J(\alpha)$

$2 n \times 2 n$ block-matrix

$$
\mathbf{J}(\alpha)=\left(\begin{array}{lc}
\mathbf{0} & -\alpha \mathbf{l} \\
-\bar{\alpha} \mathbf{l} & \mathbf{0}
\end{array}\right)
$$

spectral distribution $\mu(\cdot)=\frac{1}{2} \delta_{|\alpha|}+\frac{1}{2} \delta_{-|\alpha|}$,

$$
M(z)=\frac{|\alpha|^{2} z^{2}}{1-|\alpha|^{2} z^{2}}
$$

R-transform of μ :

R-Transform of $J(\alpha)$

$2 n \times 2 n$ block-matrix

$$
\mathbf{J}(\alpha)=\left(\begin{array}{lc}
\mathbf{0} & -\alpha \mathbf{l} \\
-\bar{\alpha} \mathbf{l} & \mathbf{0}
\end{array}\right)
$$

spectral distribution $\mu(\cdot)=\frac{1}{2} \delta_{|\alpha|}+\frac{1}{2} \delta_{-|\alpha|}$,

$$
M(z)=\frac{|\alpha|^{2} z^{2}}{1-|\alpha|^{2} z^{2}}
$$

R-transform of μ :

$$
R_{\alpha}^{-1}(z)=\frac{\sqrt{z(1+z)}}{|\alpha|}
$$

R-Transform of $J(\alpha)$

$2 n \times 2 n$ block-matrix

$$
\mathbf{J}(\alpha)=\left(\begin{array}{lc}
\mathbf{0} & -\alpha \mathbf{l} \\
-\bar{\alpha} \mathbf{l} & \mathbf{0}
\end{array}\right)
$$

spectral distribution $\mu(\cdot)=\frac{1}{2} \delta_{|\alpha|}+\frac{1}{2} \delta_{-|\alpha|}$,

$$
M(z)=\frac{|\alpha|^{2} z^{2}}{1-|\alpha|^{2} z^{2}}
$$

R-transform of μ :

$$
\begin{gathered}
R_{\alpha}^{-1}(z)=\frac{\sqrt{z(1+z)}}{|\alpha|} . \\
R_{\alpha}^{2}(z)+R_{\alpha}(z)-|\alpha|^{2} z^{2}=0 .
\end{gathered}
$$

R-Transform of $J(\alpha)$

$2 n \times 2 n$ block-matrix

$$
\mathbf{J}(\alpha)=\left(\begin{array}{lc}
\mathbf{0} & -\alpha \mathbf{I} \\
-\bar{\alpha} \mathbf{I} & \mathbf{0}
\end{array}\right)
$$

spectral distribution $\mu(\cdot)=\frac{1}{2} \delta_{|\alpha|}+\frac{1}{2} \delta_{-|\alpha|}$,

$$
M(z)=\frac{|\alpha|^{2} z^{2}}{1-|\alpha|^{2} z^{2}}
$$

R-transform of μ :

$$
\begin{gathered}
R_{\alpha}^{-1}(z)=\frac{\sqrt{z(1+z)}}{|\alpha|} . \\
R_{\alpha}^{2}(z)+R_{\alpha}(z)-|\alpha|^{2} z^{2}=0 .
\end{gathered}
$$

Solving this equation, we obtain

$$
R_{\alpha}(z)=\frac{-1+\sqrt{1+4|\alpha|^{2} z^{2}}}{2}
$$

$$
\mathbf{V}(\alpha):=\mathbf{V}-\mathbf{J}(\alpha)=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{F}(\mathbf{Y})-\alpha \mathbf{I} \\
\mathbf{F}(\mathbf{Y})^{*}-\bar{\alpha} \mathbf{l} & \mathbf{O}
\end{array}\right]
$$

- V has spectral limit μ_{V} with R-transform $R_{V}(z)$ and 1/(a) has limit Sticlties transform $g^{\prime}(z, a)$
- \mathbf{V} and $\mathbf{J}(\alpha)$ are asymptotically free.

Then $g^{\prime}(z, a)$ and $w=W^{\prime}(z, a)$ are determined by the system

$g(z, \alpha)=(1+w g(z, \alpha)) S_{V}(-(1+w g(z, \alpha))$.

$$
\mathbf{V}(\alpha):=\mathbf{V}-\mathbf{J}(\alpha)=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{F}(\mathbf{Y})-\alpha \mathbf{I} \\
\mathbf{F}(\mathbf{Y})^{*}-\bar{\alpha} \mathbf{I} & \mathbf{O}
\end{array}\right]
$$

Theorem (G.-Kösters-Tikhomirov 2014)

Assume

$$
\mathbf{V}(\alpha):=\mathbf{V}-\mathbf{J}(\alpha)=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{F}(\mathbf{Y})-\alpha \mathbf{I} \\
\mathbf{F}(\mathbf{Y})^{*}-\bar{\alpha} \mathbf{I} & \mathbf{O}
\end{array}\right]
$$

Theorem (G.-Kösters-Tikhomirov 2014)

Assume

- \mathbf{V} has spectral limit μ_{V} with R-transform $R_{V}(z)$ and $V(\alpha)$ has limit Stieltjes transform $g(z, \alpha)$

$$
\mathbf{V}(\alpha):=\mathbf{V}-\mathbf{J}(\alpha)=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{F}(\mathbf{Y})-\alpha \mathbf{I} \\
\mathbf{F}(\mathbf{Y})^{*}-\bar{\alpha} \mathbf{I} & \mathbf{O}
\end{array}\right]
$$

Theorem (G.-Kösters-Tikhomirov 2014)

Assume

- V has spectral limit μ_{V} with R-transform $R_{V}(z)$ and
$V(\alpha)$ has limit Stieltjes transform $\boldsymbol{g}(z, \alpha)$
- \mathbf{V} and $\mathbf{J}(\alpha)$ are asymptotically free.

$$
\mathbf{V}(\alpha):=\mathbf{V}-\mathbf{J}(\alpha)=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{F}(\mathbf{Y})-\alpha \mathbf{I} \\
\mathbf{F}(\mathbf{Y})^{*}-\bar{\alpha} \mathbf{I} & \mathbf{O}
\end{array}\right]
$$

Theorem (G.-Kösters-Tikhomirov 2014)

Assume

- V has spectral limit μ_{V} with R-transform $R_{V}(z)$ and $V(\alpha)$ has limit Stieltjes transform $\boldsymbol{g}(z, \alpha)$
- \mathbf{V} and $\mathbf{J}(\alpha)$ are asymptotically free.

Then $g(z, \alpha)$ and $w=w(z, \alpha)$ are determined by the system

$$
\begin{aligned}
w & =z+\frac{R_{\alpha}(-g(z, \alpha))}{g(z, \alpha)}, \quad z \text { large } \\
g(z, \alpha) & =(1+w g(z, \alpha)) S_{v}(-(1+w g(z, \alpha))
\end{aligned}
$$

$$
\mathbf{V}(\alpha):=\mathbf{V}-\mathbf{J}(\alpha)=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{F}(\mathbf{Y})-\alpha \mathbf{I} \\
\mathbf{F}(\mathbf{Y})^{*}-\bar{\alpha} \mathbf{I} & \mathbf{O}
\end{array}\right]
$$

Theorem (G.-Kösters-Tikhomirov 2014)

Assume

- V has spectral limit μ_{V} with R-transform $R_{V}(z)$ and $V(\alpha)$ has limit Stieltjes transform $\boldsymbol{g}(z, \alpha)$
- \mathbf{V} and $\mathbf{J}(\alpha)$ are asymptotically free.

Then $g(z, \alpha)$ and $w=w(z, \alpha)$ are determined by the system

$$
\begin{aligned}
w & =z+\frac{R_{\alpha}(-g(z, \alpha))}{g(z, \alpha)}, \quad z \text { large } \\
g(z, \alpha) & =(1+w g(z, \alpha)) S_{v}(-(1+w g(z, \alpha))
\end{aligned}
$$

Note that $R_{V(\alpha)}(z)=R_{V}(z)+R_{\alpha}(z)$.

$$
\mathbf{V}(\alpha):=\mathbf{V}-\mathbf{J}(\alpha)=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{F}(\mathbf{Y})-\alpha \mathbf{I} \\
\mathbf{F}(\mathbf{Y})^{*}-\bar{\alpha} \mathbf{I} & \mathbf{O}
\end{array}\right]
$$

Theorem (G.-Kösters-Tikhomirov 2014)

Assume

- \mathbf{V} has spectral limit μ_{V} with R-transform $R_{V}(z)$ and $V(\alpha)$ has limit Stieltjes transform $\boldsymbol{g}(\boldsymbol{z}, \alpha)$
- \mathbf{V} and $\mathbf{J}(\alpha)$ are asymptotically free.

Then $g(z, \alpha)$ and $w=w(z, \alpha)$ are determined by the system

$$
\begin{aligned}
w & =z+\frac{R_{\alpha}(-g(z, \alpha))}{g(z, \alpha)}, \quad z \text { large } \\
g(z, \alpha) & =(1+w g(z, \alpha)) S_{v}(-(1+w g(z, \alpha))
\end{aligned}
$$

Note that $R_{V(\alpha)}(z)=R_{V}(z)+R_{\alpha}(z)$.
The S-transform needs to be extended to \mathbf{V} where $\mathbf{E}(\mathbf{V})=0$ WITH Two branches $S_{\mathrm{V}}(z)$ AND $\tilde{S}_{\mathrm{V}}(z)$

$$
\mathbf{V}(\alpha):=\mathbf{V}-\mathbf{J}(\alpha)=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{F}(\mathbf{Y})-\alpha \mathbf{I} \\
\mathbf{F}(\mathbf{Y})^{*}-\bar{\alpha} \mathbf{I} & \mathbf{0}
\end{array}\right]
$$

Theorem (G.-Kösters-Tikhomirov 2014)

Assume

- \mathbf{V} has spectral limit μ_{V} with R-transform $R_{V}(z)$ and $V(\alpha)$ has limit Stieltjes transform $\boldsymbol{g}(\boldsymbol{z}, \alpha)$
- \mathbf{V} and $\mathbf{J}(\alpha)$ are asymptotically free.

Then $g(z, \alpha)$ and $w=w(z, \alpha)$ are determined by the system

$$
\begin{aligned}
w & =z+\frac{R_{\alpha}(-g(z, \alpha))}{g(z, \alpha)}, \quad z \text { large } \\
g(z, \alpha) & =(1+w g(z, \alpha)) S_{v}(-(1+w g(z, \alpha))
\end{aligned}
$$

Note that $R_{V(\alpha)}(z)=R_{V}(z)+R_{\alpha}(z)$.
The S-transform needs to be extended to \mathbf{V} where $\mathbf{E}(\mathbf{V})=0$ WITH TWO BRANCHES $S_{\mathrm{v}}(z)$ and $\tilde{S}_{\mathrm{V}}(z)$ AS FUNCTIONS OF $\sqrt{z} \quad$ (Speicher and Rao 2009).

Spectral Limit Density of $\mathbb{F}(\mathbf{Y})$

$$
\alpha=u+i v, \quad u, v \in \mathbf{R}
$$

```
                                    q(y,\alpha) and require decay of tails of }\mp@subsup{\mu}{\textrm{V}}{}\mathrm{ ,
and }J(a)\mathrm{ are acymntotically, free
Let Sv resp. p(u,v) denote the limit S-transform resp. limit density of V for
n->\infty}\mathrm{ . Define
\varkappa(n):=-\mp@subsup{\operatorname{lim}}{\cdots,10}{}ig(ix,a)\geq0,\quad\psi(a)=\mp@subsup{\operatorname{lim}}{xj0}{0}(-i)g(ix,a)(-i)w(ix,a)\geq0.
Then \psi=\psi(\alpha)\geq0 and }\varkappa=\varkappa(\alpha)\geq0\mathrm{ satisfy the equations
\psi(1-\psi)=|\alpha\mp@subsup{|}{}{2}\mp@subsup{\varkappa}{}{2}\quad\mathrm{ and }\quad\varkappa=-i(1-\psi)S}\mp@subsup{S}{V}{}(-(1-\psi))
Let }\mp@subsup{Q}{V}{}(\alpha):=\int(\operatorname{log}|y|)q(y,\alpha)dy.The
```


Spectral Limit Density of $\mathbb{F}(\mathbf{Y})$

$$
\alpha=u+i v, \quad u, v \in \mathbf{R}, \quad \Delta=\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}} .
$$

Theorem (G.-Kösters-Tikhomirov 2014, RMTA)

- $\mu_{\mathbf{V}(\alpha)}$ has limit density

Spectral Limit Density of $\mathbb{F}(\mathbf{Y})$

$$
\alpha=u+i v, \quad u, v \in \mathbf{R}, \quad \Delta=\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}} .
$$

Theorem (G.-Kösters-Tikhomirov 2014, RMTA)

- $\mu_{\mathbf{V}(\alpha)}$ has limit density $q(y, \alpha)$ and require decay of tails of $\mu_{\mathbf{V}}$,
- \mathbf{V} and $\mathbf{J}(\alpha)$ are asymptotically free

Spectral Limit Density of $\mathbb{F}(\mathbf{Y})$

$\alpha=u+i v, \quad u, v \in \mathbf{R}, \quad \Delta=\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}$.

Theorem (G.-Kösters-Tikhomirov 2014, RMTA)

- $\mu_{\mathbf{V}(\alpha)}$ has limit density $q(y, \alpha)$ and require decay of tails of $\mu_{\mathbf{V}}$,
- \mathbf{V} and $\mathbf{J}(\alpha)$ are asymptotically free

Let S_{V} resp. $p(u, v)$ denote the limit S-transform resp. limit density of \mathbf{V} for $n \rightarrow \infty$. Define

Spectral Limit Density of $\mathbb{F}(\mathbf{Y})$

$\alpha=u+i v, \quad u, v \in \mathbf{R}, \quad \Delta=\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}$.

Theorem (G.-Kösters-Tikhomirov 2014, RMTA)

- $\mu_{\mathbf{V}(\alpha)}$ has limit density $q(y, \alpha)$ and require decay of tails of $\mu_{\mathbf{V}}$,
- \mathbf{V} and $\mathbf{J}(\alpha)$ are asymptotically free

Let S_{V} resp. $p(u, v)$ denote the limit S-transform resp. limit density of \mathbf{V} for $n \rightarrow \infty$. Define
$\varkappa(\alpha):=-\lim _{x \downarrow 0} i g(i x, \alpha) \geq 0, \quad \psi(\alpha)=\lim _{x \downarrow 0}(-i) g(i x, \alpha)(-i) w(i x, \alpha) \geq 0$.
Then $\psi=\psi(\alpha) \geq 0$ and $\varkappa=\varkappa(\alpha) \geq 0$ satisfy the equations

$$
\psi(1-\psi)=|\alpha|^{2} \varkappa^{2} \quad \text { and } \quad \varkappa=-i(1-\psi) S_{V}(-(1-\psi))
$$

Spectral Limit Density of $\mathbb{F}(\mathbf{Y})$

$\alpha=u+i v, \quad u, v \in \mathbf{R}, \quad \Delta=\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}$.

Theorem (G.-Kösters-Tikhomirov 2014, RMTA)

- $\mu_{\mathbf{V}(\alpha)}$ has limit density $q(y, \alpha)$ and require decay of tails of $\mu_{\mathbf{V}}$,
- \mathbf{V} and $\mathbf{J}(\alpha)$ are asymptotically free

Let S_{V} resp. $p(u, v)$ denote the limit S-transform resp. limit density of \mathbf{V} for $n \rightarrow \infty$. Define
$\varkappa(\alpha):=-\lim _{x \downarrow 0} i g(i x, \alpha) \geq 0, \quad \psi(\alpha)=\lim _{x \downarrow 0}(-i) g(i x, \alpha)(-i) w(i x, \alpha) \geq 0$.
Then $\psi=\psi(\alpha) \geq 0$ and $\varkappa=\varkappa(\alpha) \geq 0$ satisfy the equations

$$
\psi(1-\psi)=|\alpha|^{2} \varkappa^{2} \quad \text { and } \quad \varkappa=-i(1-\psi) S_{V}(-(1-\psi)),
$$

Let $Q_{V}(\alpha):=\int(\log |y|) q(y, \alpha) d y$. Then

$$
p(u, v)=\frac{1}{2 \pi} \Delta Q_{v}(\alpha)=\frac{1}{2 \pi|\alpha|^{2}}\left(u \frac{\partial \psi}{\partial u}+v \frac{\partial \psi}{\partial v}\right), \quad \alpha=u+i v,
$$

assuming that $\psi(\alpha)$ is differentiable up to a finite set of values $|\alpha|$.

