Understanding the Cosmological Recombination Problem to ~0.1% Precision The University of Manchester #### Jens Chluba The Reionization History of the Universe Bielefeld, Germany, March 8th - 9th, 2018 ## Cosmic Microwave Background Anisotropies Planck all sky map - CMB has a blackbody spectrum in every direction - tiny variations of the CMB temperature $\Delta T/T \sim 10^{-5}$ ## Sketch of the Cosmic Ionization History - at redshifts higher than ~10⁴ Universe → fully ionized - z ≥ 10⁴ → free electron fraction N_e/N_H ~ 1.16 (Helium has 2 electrons and abundance ~ 8%) - HeIII → HeII recombination at z~6000 - HeII → HeI recombination at z~2000 - HII → HI recombination at z~1000 # CMB Sky → Cosmology #### Cosmological Time in Years ## Physical Conditions during Recombination - Temperature $T_{\gamma} \sim 2.725 (1+z) \text{ K} \sim 3000 \text{ K}$ - Baryon number density N_b ~ 2.5x10⁻⁷cm⁻³ (1+z)³ ~ 330 cm⁻³ - Photon number density $N_{\gamma} \sim 410 \text{ cm}^{-3} (1+z)^3 \sim 2 \times 10^9 N_{b}$ \Rightarrow photons in very distant Wien tail of blackbody spectrum can keep hydrogen ionized until $hv_{\alpha} \sim 40 \ kT_{\gamma} \Leftrightarrow T_{\gamma} \sim 0.26 \text{ eV}$ - Collisional processes negligible (completely different in stars!!!) - Rates dominated by radiative processes (e.g. stimulated emission & stimulated recombination) - Compton interaction couples electrons very tightly to photons until $z \sim 200 \Rightarrow T_{\gamma} \sim T_{\rm e} \sim T_{\rm m}$ #### 3-level Hydrogen Atom and Continuum Routes to the ground state? - direct recombination to 1s - Emission of photon is followed by immediate re-absorption No - recombination to 2p followed by Lyman-α emission - medium optically thick to Ly- α phot. - many resonant scatterings - escape very hard (p ~10-9 @ z ~1100) ~ 43% - recombination to 2s followed by 2s two-photon decay - 2s \rightarrow 1s ~108 times slower than Ly- α - 2s two-photon decay profile \rightarrow maximum at $v \sim$ 1/2 v_{α} - immediate escape ~ 57% ## These first computations were completed in 1968! Moscow Vladimir Kurt (UV astronomer) Yakov Zeldovich Rashid Sunyaev losif Shklovskii #### **Princeton** Jim Peebles #### Multi-level Atom ⇔ Recfast-Code Output of N_e/N_H #### **Hydrogen:** - up to 300 levels (shells) - n ≥ 2 → full SE for *l*-sub-states #### Helium: - Hel 200-levels (z ~ 1400-1500) - Hell 100-levels (z ~ 6000-6500) - Helll 1 equation #### Low Redshifts: - H chemistry (only at low z) - cooling of matter (Bremsstrahlung, collisional cooling, line cooling) Seager, Sasselov & Scott, 1999, ApJL, 523, L1 Seager, Sasselov & Scott, 2000, ApJS, 128, 407 RECFAST reproduces the result of detailed recombination calculation using fudge-functions $\Delta N_{\rm e}$ / $N_{\rm e}$ ~ 1% - 3% #### Getting the job done for Planck #### **Hydrogen recombination** - Two-photon decays from higher levels (Dubrovich & Grachev, 2005, Astr. Lett., 31, 359; Wong & Scott, 2007; JC & Sunyaev, 2007; Hirata, 2008; JC & Sunyaev 2009) - Induced 2s two-photon decay for hydrogen (JC & Sunyaev, 2006, A&A, 446, 39; Hirata 2008) - Feedback of the Lyman-α distortion on the 1s-2s two-photon absorption rate (Kholupenko & Ivanchik, 2006, Astr. Lett.; Fendt et al. 2008; Hirata 2008) - Feedback of Lyman-series photons (Ly[n] → Ly[n-1]) (JC & Sunyaev, 2007, A&A; Kholupenko et al. 2010; Haimoud, Grin & Hirata, 2010) - Lyman-α escape problem (atomic recoil, time-dependence, partial redistribution) (Dubrovich & Grachev, 2008; JC & Sunyaev, 2008; Forbes & Hirata, 2009; JC & Sunyaev, 2009) - Collisions and Quadrupole lines (JC, Rubiño-Martín & Sunyaev, 2007; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010; JC, Fung & Switzer, 2011) - Raman scattering (Hirata 2008; JC & Thomas , 2010; Haimoud & Hirata, 2010) #### **Helium recombination** - Similar list of processes as for hydrogen (Switzer & Hirata, 2007a&b; Hirata & Switzer, 2007) - Spin forbidden 2p-1s triplet-singlet transitions (Dubrovich & Grachev, 2005, Astr. Lett.; Wong & Scott, 2007; Switzer & Hirata, 2007; Kholupenko, Ivanchik&Varshalovich, 2007) - Hydrogen continuum opacity during He I recombination (Switzer & Hirata, 2007; Kholupenko, Ivanchik & Varshalovich, 2007; Rubiño-Martín, JC & Sunyaev, 2007; JC, Fung & Switzer, 2011) - Detailed feedback of helium photons (Switzer & Hirata, 2007a; JC & Sunyaev, 2009, MNRAS; JC, Fung & Switzer, 2011) ΔN_e / N_e ~ 0.1 % # Solving the problem for the *Planck* Collaboration was a common effort! ## Stimulated 2s → 1s decay Transition rate in vacuum $\rightarrow A_{2s1s} \sim 8.22 \text{ sec}^{-1}$ CMB ambient photons field - \rightarrow A_{2s1s} increased by ~1%-2% - \rightarrow HI recombination faster by $\Delta N_{\rm e}/N_{\rm e} \sim 1.3\%$ 2s-1s emission profile ## Feedback of Ly- α on the 1s \rightarrow 2s transition - Some Ly-α photon are reabsorbed in the 1s-2s channel - delays recombination - net effect on 2s-1s channel $\Delta N_e/N_e \sim 0.6\%$ around z~1100 - 2s-1s self-feedback $\Delta N_e/N_e \sim -0.08\%$ around $z\sim1100$ (JC & Thomas, 2010) ## Feedback of Ly- α on the 1s \rightarrow 2s transition - Some Ly-α photon are reabsorbed in the 1s-2s channel - delays recombination - net effect on 2s-1s channel $\Delta N_e/N_e \sim 0.6\%$ around z~1100 - 2s-1s self-feedback $\Delta N_e/N_e \sim -0.08\%$ around z~1100 (JC & Thomas, 2010) #### Two-photon emission process from upper levels #### Seaton cascade (1+1 photon) *No collisions* \rightarrow two photons (mainly H- α and Ly- α) are emitted! Maria-Göppert-Mayer (1931): description of two-photon emission as single process in Quantum Mechanics - → Deviations of the *two-photon line profile* from the Lorentzian in the damping wings - → Changes in the optically thin (below ~500-5000 Doppler width) parts of the line spectra ## 3s and 3d two-photon decay spectrum 3d --> 1s, all Ly_{α} #### Direct Escape in optically thin regions: - → HI -recombination is a bit *slower* due to 2γ-transitions from s-states - HI -recombination is a bit faster due to 2γ-transitions from d-states ## 2s-1s Raman scattering - Enhances blues side of Ly-α line - associated feedback delays recombination around z~900 - Computation similar to two-photon decay profiles - collisions weak ⇒ process needs to be modeled as single quantum act ## Evolution of the HI Lyman-series distortion #### Getting the job done for Planck #### **Hydrogen recombination** - Two-photon decays from higher levels (Dubrovich & Grachev, 2005, Astr. Lett., 31, 359; Wong & Scott, 2007; JC & Sunyaev, 2007; Hirata, 2008; JC & Sunyaev 2009) - Induced 2s two-photon decay for hydrogen (JC & Sunyaev, 2006, A&A, 446, 39; Hirata 2008) - Feedback of the Lyman-α distortion on the 1s-2s two-photon absorption rate (Kholupenko & Ivanchik, 2006, Astr. Lett.; Fendt et al. 2008; Hirata 2008) - Feedback of Lyman-series photons (Ly[n] → Ly[n-1]) (JC & Sunyaev, 2007, A&A; Kholupenko et al. 2010; Haimoud, Grin & Hirata, 2010) - Lyman-α escape problem (atomic recoil, time-dependence, partial redistribution) (Dubrovich & Grachev, 2008; JC & Sunyaev, 2008; Forbes & Hirata, 2009; JC & Sunyaev, 2009) - Collisions and Quadrupole lines (JC, Rubiño-Martín & Sunyaev, 2007; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010; JC, Fung & Switzer, 2011) - Raman scattering (Hirata 2008; JC & Thomas , 2010; Haimoud & Hirata, 2010) #### **Helium recombination** - Similar list of processes as for hydrogen (Switzer & Hirata, 2007a&b; Hirata & Switzer, 2007) - Spin forbidden 2p-1s triplet-singlet transitions (Dubrovich & Grachev, 2005, Astr. Lett.; Wong & Scott, 2007; Switzer & Hirata, 2007; Kholupenko, Ivanchik&Varshalovich, 2007) - Hydrogen continuum opacity during He I recombination (Switzer & Hirata, 2007; Kholupenko, Ivanchik & Varshalovich, 2007; Rubiño-Martín, JC & Sunyaev, 2007; JC, Fung & Switzer, 2011) - Detailed feedback of helium photons (Switzer & Hirata, 2007a; JC & Sunyaev, 2009, MNRAS; JC, Fung & Switzer, 2011) ΔN_e / N_e ~ 0.1 % #### Grotrian diagram for neutral helium ## Main corrections during Hel Recombination #### Evolution of the Hel high frequency distortion ## Cumulative Changes to the Ionization History ## Cumulative Change in the CMB Power Spectra #### Importance of recombination for *Planck* #### Biases as they would have been for Planck - Biases a little less significant with real *Planck* data - absolute biases very similar - In particular n_s would be biased significantly Planck Collaboration, XIII 2015 #### Importance of recombination for inflation constraints Planck Collaboration, 2015, paper XX Analysis uses refined recombination model (CosmoRec/HyRec) #### CMB constraints on N_{eff} and Y_{p} - Consistent with SBBN and standard value for N_{eff} - Future CMB constraints (Stage-IV CMB) on Yp will reach 1% level ## Importance of recombination for measuring helium #### Differences for current recombination codes - Different codes agree very well! - largest biases $\Delta n_{\rm s} \approx 0.15\sigma$ (CosmoRec \Leftrightarrow RECFAST) $\Delta n_{\rm s} \approx 0.03\sigma$ (CosmoRec \Leftrightarrow HyRec) Nothing to worry about at this point! Planck Collaboration, XIII 2015 # Constraints on possible departures from standard recombination history ## Planck measurement of the HI 2s-1s two-photon rate - HI 2s-1s two-photon rate crucial for recombination dynamics - Value is not well measured in lab (best constraint ~ 43% error; Krueger & Oed 1975) - Planck data can be used to directly constrain its value ## Planck measurement of the HI 2s-1s two-photon rate - HI 2s-1s two-photon rate crucial for recombination dynamics - Value is not well measured in lab (best constraint ~ 43% error; Krueger & Oed 1975) - Planck data can be used to directly constrain its value ## Planck measurement of the HI 2s-1s two-photon rate - HI 2s-1s two-photon rate crucial for recombination dynamics - Value is not well measured in lab (best constraint ~ 43% error; Krueger & Oed 1975) - Planck data can be used to directly constrain its value $$A_{2s\to 1s}^{\text{theory}} = 8.2206 \,\text{s}^{-1}(\text{Labzowsky et al. } 2005)$$ $$A_{2s\rightarrow 1s} = 7.71 \pm 0.99 \,\mathrm{s}^{-1}$$ ($Planck \,\mathrm{TT} + \mathrm{lowP} + \mathrm{BAO}$) $$A_{2s\rightarrow 1s} = 7.75 \pm 0.61 \,\mathrm{s}^{-1}$$ ~ 8% errorl ($Planck \,\mathrm{TT,TE,EE+lowP+BAO}$) - Planck measurement in excellent agreement with theoretical value - Planck only values very similar - CosmoRec and Recfast agree... ## Changes of CMB anisotropies by annihilating particles 95% c.l. Chen & Kamionikowski, 2004 Padmanabhan & Finkbeiner, 2005 - more damping because τ increases - change close to visibility maximum → shift in peak positions #### Latest Planck limits on annihilation cross section 95% c.l. - AMS/Pamela models in tension - but interpretation model-dependent - Sommerfeld enhancement? - clumping factors? - annihilation channels? Planck Collaboration, paper XIII, 2015 ## Effect of decaying particles - Effect at different stages of the evolution - CMB Anisotropies for long-lived particles - CMB spectral distortions for short-lived particles - PBHs are similar to decaying particles # Primordial magnetic fields ## Changes to recombination from PMFs - One has to be careful how to compute the effect... - Large uncertainties in the heating rates → already working on it.... - Constraints from this effect better than other CMB effects ## Variations of fundamental constants #### Varying the fine-structure constants at recombination • Constant change of α and m_e were frequently considered (e.g., Kaplinghat et al., 1999; Battye et al., 2001; Planck Collaboration, 2015) #### Varying the fine-structure constants at recombination • Constant change of α and m_e were frequently considered (e.g., Kaplinghat et al., 1999; Battye et al., 2001; Planck Collaboration, 2015) #### Varying the fine-structure constants at recombination Data also sensitive to explicit time-dependence around recombination (Luke Hart & JC, 2017) #### Current constraints using Planck 2015 | Parameter | Planck 2015 | + varying $\alpha_{\rm EM}/\alpha_{\rm EM,0}$ | + varying p | + varying $\alpha_{\rm EM}/\alpha_{\rm EM,0}$ and p | |---|-----------------------|---|-----------------------|---| | $\Omega_{\rm b} h^2$ | 0.02224 ± 0.00016 | 0.02225 ± 0.00016 | 0.02226 ± 0.00018 | 0.02223 ± 0.00019 | | $\Omega_{ m c} h^2$ | 0.1193 ± 0.0014 | 0.1191 ± 0.0018 | 0.1194 ± 0.0014 | 0.1193 ± 0.0020 | | $100\theta_{\mathrm{MC}}$ | 1.0408 ± 0.0003 | 1.0398 ± 0.0035 | 1.0408 ± 0.0003 | 1.0406 ± 0.0051 | | au | 0.062 ± 0.014 | 0.063 ± 0.014 | 0.062 ± 0.014 | 0.063 ± 0.015 | | $\ln(10^{10}A_{\rm s})$ | 3.057 ± 0.025 | 3.060 ± 0.027 | 3.058 ± 0.026 | 3.059 ± 0.027 | | n_{S} | 0.9649 ± 0.0047 | 0.9668 ± 0.0081 | 0.9663 ± 0.0060 | 0.9666 ± 0.0081 | | $\alpha_{\mathrm{EM}}/\alpha_{\mathrm{EM},0}$ | _ | 0.9993 ± 0.0025 | _ | 0.9998 ± 0.0036 | | p | _ | _ | 0.0008 ± 0.0025 | 0.0007 ± 0.0036 | | $H_0 [{\rm km s^{-1} Mpc^{-1}}]$ | 67.5 ± 0.6 | 67.2 ± 1.0 | 67.5 ± 0.6 | 67.3 ± 1.4 | - For α, Planck 2015 gives slight improvement over Planck 2013 because of polarization (~30%) - Constraint on m_e asymmetric $$m_{\rm e}/m_{\rm e,0} = 0.961^{+0.046}_{-0.072}$$ BAO improves m_e constraint and allows breaking degeneracies between α and m_e # Model-independent constraints ## Principle component analysis for recombination - E.g., something standard was missed, or something non-standard happened !? - A non-parametric estimation of possible corrections to the recombination history would be very useful → Principle component analysis (PCA) ## Power spectrum response at different redshifts ## Principle component analysis for recombination - E.g., something standard was missed, or something non-standard happened!? - A non-parametric estimation of possible corrections to the recombination history would be very useful → Principle component analysis (PCA) ## PCA analysis with Planck 2015 - Planck data is consistent with standard recombination - Non-trivial statement, even if it is expected! - Improvement in next release | Parameter | + 1 mode | + 2 modes | + 3 modes | |------------------------------------|-----------------------|-----------------------|-----------------------| | $\Omega_{\rm b}h^2$ | 0.02229 ± 0.00017 | 0.02237 ± 0.00018 | 0.02237 ± 0.00019 | | $\Omega_{\rm c} h^2 \ldots \ldots$ | 0.1190 ± 0.0010 | 0.1186 ± 0.0011 | 0.1187 ± 0.0012 | | H_0 | 67.64 ± 0.48 | 67.80 ± 0.51 | 67.80 ± 0.56 | | τ | 0.065 ± 0.012 | 0.068 ± 0.013 | 0.068 ± 0.013 | | $n_{\rm S}$ | 0.9667 ± 0.0053 | 0.9677 ± 0.0055 | 0.9678 ± 0.0067 | | $\ln(10^{10}A_{\rm s})$ | 3.062 ± 0.023 | 3.066 ± 0.024 | 3.066 ± 0.024 | | μ_1 | -0.03 ± 0.12 | 0.03 ± 0.14 | 0.02 ± 0.15 | | μ_2 | | -0.17 ± 0.18 | -0.18 ± 0.19 | | μ_3 | ••• | ••• | -0.02 ± 0.88 | ## We can do this for fundamental constants too... # Cosmological Recombination Radiation ## Simple estimates for hydrogen recombination #### Hydrogen recombination: - per recombined hydrogen atom an energy of ~ 13.6 eV in form of photons is released - at z ~ 1100 $\rightarrow \Delta \epsilon / \epsilon$ ~ 13.6 eV $N_{\rm b}$ / $(N_{\rm y} 2.7 {\rm k} T_{\rm r})$ ~ 10-9 -10-8 - \rightarrow recombination occurs at redshifts $z < 10^4$ - → At that time the *thermalization* process doesn't work anymore! - There should be some small spectral distortion due to additional Ly-α and 2s-1s photons! (Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278; Peebles, 1968, ApJ, 153, 1) - In 1975 *Viktor Dubrovich* emphasized the possibility to observe the recombinational lines from n > 3 and $\Delta n << n!$ #### Cosmological Time in Years ## New detailed and fast computation! ## CosmoSpec: fast and accurate computation of the CRR - Like in old days of CMB anisotropies! - detailed forecasts and feasibility studies - non-standard physics (variation of α, energy injection etc.) CosmoSpec will be available here: www.Chluba.de/CosmoSpec ## Dark matter annihilations / decays - Additional photons at all frequencies - Broadening of spectral features - Shifts in the positions JC, 2009, arXiv:0910.3663 #### Conclusions - The standard recombination problem has been solved to a level that is sufficient for the analysis of current and future CMB data (<0.1% precision!) - Many people helped with this problem! - Without the improvements over the original version of Recfast cosmological parameters derived from Planck would be biased significantly - In particular the discussion of inflation models would be affected - Cosmological recombination radiation allows us to directly constrain the recombination history