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Motivation

A short visit in a quantum shop

Suppose you need a quantum state ρ,

you go to a quantum shop, pay for it and
...

you get a state σ instead !

How good the quantum shop is doing ?

Is the state σ we bought at least ε–close
to the state ρ we have ordered??

Close with respect to which metric?
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If the desired state is pure, ρ = |ψ〉〈ψ|
the situation is simple:

You need to maximize the overlap (fidelity),
i.e. the expectation value: F = 〈ψ|σ|ψ〉,

What should one do, if the ordered state ρ is mixed?

How to measure the distance
between density operators ρ and σ?
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The set ΩN of mixed states of size N

definition

ΩN := {ρ : HN → HN ; ρ = ρ†, ρ ≥ 0,Trρ = 1}

Distances in the set of quantum states

a) Hilbert–Schmidt distance, DHS(ρ, σ) := [Tr(ρ− σ)2]1/2

b) trace distance, Dtr(ρ, σ) := 1
2Tr|ρ− σ|

c) Bures distance, DB(ρ, σ) :=
(
2[1−

√
F (ρ, σ)]

)1/2
,

where fidelity between two states reads (Uhlmann ’76, Jozsa ’94),

F (ρ, σ) := [Tr|√ρ
√
σ|]2 =

(
Tr
√√

ρ σ
√
ρ
)2
.
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Generic mixed states
How they appear in quantum physics ?

Reduction of typical (=random) pure states

1) Consider an ensemble of random pure states |ψ〉
of a composite system HA ⊗HB

distributed according to a given measure µ.

2) Perform partial trace over a chosen subsystem B to
get a random mixed state

ρ : = TrB |ψ〉〈ψ|
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Properties of ’typical’ pure states in HN

One quantum state fixed, one random...

Fix an arbitrary state |ψ1〉. Generate randomly the other state |ψ2〉.

• What is the average angle χ between these states ?

• What is the distribution P(χ) of the angle χ := arccos |〈ψ1|ψ2〉| ?
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One quantum state fixed, one random...

Fix an arbitrary state |ψ1〉. Generate randomly the other state |ψ2〉.

• What is the average angle χ between these states ?

• What is the distribution P(χ) of the angle χ := arccos |〈ψ1|ψ2〉| ?

Measure concentration phenomenon

’Fat hiper-equator’ of the sphere SN in RN+1...
It is a consequence of the Jacobian factor for expressing the volume
element of the N– sphere. Let z = cosϑ1, so that

J ∼ (sin ϑ1)N−1J2(ϑ2, . . . , ϑN)

Hence the typical angle χ is ’close’ to π/2 and two ’typical random states’
are orthogonal and the distribution P(χ) is ’close’ to δ(χ− π/2).

How close?
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Quantitative description of Measure Concentration

Levy’s Lemma (on higher dimensional spheres)

Let f : SN → R be a Lipschitz function,
with the constant η and the mean value 〈f 〉 =

∫
SN f (x)dµ(x).

Pick a point x ∈ SN at random from the sphere. For large N it is then
unlikely to get a value of f much different then the average:

P
(
|f (x)− 〈f 〉| > α

)
≤ 2 exp

(
−(N + 1)α2

9π3η2

)
Simple application: the distance from the ’equator’
.
Take f (x1, ...xN+1) = x1. Then Levy’s Lemma says that the probability
of finding a random point of SN outside a band along the equator of
width 2α converges exponentially to zero as 2 exp[−C (N + 1)α2].

As N >> 1 then every equator of SN is ’FAT’.
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Random states and Marchenko-Pastur distribution (1967)

Consider a random state σ of size N obtained by partial trace over K
dimensional environment, σ = TrK [U |ψN , φK 〉〈ψN , φK | U†].
Then its asymptotic level density is Pc(x) = 1

2πx

√
(x − x−) (x+ − x),

where x = Nλ, rectangularity c = N/K and support x± =
(
1±
√

c
)2

.

For equal subsystems c = 1
this expression reduces to the
standard

Marchenko – Pastur
distribution

P1(x) =

√
1−x/4

π
√

x
, x ∈ [0, 4],

equivalent to setting x = y2

with y distributed according
to Wigner semicircle Vladimir Marchenko & Leonid Pastur

(2000)
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Symmetrized Marchenko–Pastur distribution I

Trace distance between two states. DTr(ρ, σ) = 1
2‖ρ− σ‖1 = 1

2Tr|ρ− σ|
is used to describe their distinguishability.

What is the distribution of eigenvalue µ of the Helstrom matrix,
Γ = ρ− σ, where both states are random?

It is given by symmetrized Marchenko–Pastur distribution,
SMPc(x) = MPc(x) � MPc(−x), where x = Nµ.

In the case of HS measure, (rectangularity c = 1) we obtain the
normalized, symmetric MP distribution

SMP1(x) =
−1− 3x2 +

(
1 + 3x

(√
3 + 33x2 − 3x4 + 6x

))2/3

2
√

3πx
(

1 + 3x
(√

3 + 33x2 − 3x4 + 6x
))1/3

. (1)

and analogous analytical formulae for SMPc(x) with an arbitrary
parameter c = N/K > 0.
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Symmetrized Marchenko–Pastur distribution II

Level density SMPc(y) of the rescaled eigenvalue y = λ1N for
rectangularity c = N/K = 0.2, 0.5, 1.0 and 4.0
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The case, c = 1 - free commutator of two semicircular distributions,
studied by Nica & Speicher (1998),

and called tetilla law, Deya & Nourdin (2012).
In limiting case c →∞ one obtaines (rescaled) semicircle.
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co-author Zbyszek Pucha la during his research visit in Spain
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Average distance between 2 random states

Take two random states σ and ρ acting on HN ,
generated according to the flat (HS) measure (c = 1).

For large N their trace distance tends to an integral over the
symmetrized MP distribution, which describes the spectrum of the
Helstrom matrix, Γ = ρ− σ,

Dtr(ρ, σ)→ 1
2

∫
SMP1(y)|y |dy = D̃ := 1

4
+ 1

π
≈ 0.5683

Average distance of a random state ρ to
a) the center ρ∗ = 1/N reads

Dtr(ρ, ρ∗)
a.s.−−−−→

N→∞
1
2

∫
dt|t − 1|MP(t) = a = 3

√
3

4π ' 0.4135.

b) the closest pure state, Dtr(ρ, |φ〉〈φ|)
a.s.−−−−→

N→∞
1 = diam(ΩN)

c) the closest boundary state ρ̃, Dtr(ρ, ρ̃)
a.s.−−−−→

N→∞
0
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The space of quantum states ΩN for large N

Entire mass of ΩN is concentrated in a ε-vininity of a generic orbit
ρ′ = UρU†, where U is a Haar random unitary and ρ is a random state
with MP level density. Here a = 0.413 and D̃ = 0.568, while

the diameter d of the orbit is equal to the distance between two diagonal
matrices with opposite order of the eigenvalues,
d = DTr(p

↑, p↓) =
∫ 4
0 dx sign(x −M) x MP(x) ' 0.7875,

where M is the median,
∫M
0 dx MP(x) = 1/2.
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Concentration of measure in high dimensions

Consider two random states of dimension N � 1
The average value of their trace distance reads

〈Dtr(ρ, σ)〉 = D̃ = 1/4 + 1/π ,
but this distribition becomes singular: for N →∞ one has

P
(
Dtr(ρ, σ)

)
→ δ(D − D̃)

This distance converges almost surely to a single value D̃ !
How this might be possible ???

concentration of measure !

What is the
expected distance between
two random points in a unit
ball in RN ? and in a unit ball in R3 ?
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KŻ (IF UJ/CFT PAN ) Distinguishing generic quantum states 23.08.2016 16 / 26



Concentration of measure in high dimensions

What is the expected Euclidean distance between two random
points in a unit ball in RN ?

The answer is

D(x , y)→
√

2 !

as a) full measure of the ball is concentrated at the surface
b) for any point at the sphere another random point will belong to the

equator, so their Euclidean distance is D2(x , y) =
√

1 + 1,
while their taxi distance is D1(x , y) = 1 + 1 = 2.

For two random states of large dimension N their
Hilbert Schmidt (=Euclidean) distance vanishes as

D2
HS(ρ, σ) = Tr(ρ− σ)2 = Trρ2 + Trσ2 − 2Trρσ → 0.

However, their average trace distance is larger and non-trivial,
Dtr(ρ, σ)→ D̃ := 1

4
+ 1

π
≈ 0.568

Why do we care about the trace distance ?
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Distinguishing random states

Helstrom theorem (1967)

Suppose one is given a quantum state ρ ∈ {ρ1, ρ2}.
Probability P of discriminating between these states is bounded by

P ≤ 1
2

+ 1
2
Dtr(ρ1, ρ2)

For instance, for orthogonal states Dtr = 1, so that P = 1

Distinguishing two generic quantum states
.
Theorem. Two random states of large dimension N � 1 can be
distinguished in a single–shot experiment with probability bounded by

P ≤ 1

2
+

1

2
D̃ =

5

8
+

1

2π
' 0.784155.

universal bound for distinguishability in high dimensions
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Asymptotic distinguishability results

for two random states σ and ρ acting on HN ,
Related asymptotic results (N � 1) for the average:

a) relative entropy: S(ρ ||σ) = Trρ log ρ/σ
S(ρ ||σ)→

∫
dt
∫

ds(t log t − t log s)MP(t)MP(s) = 3
2

Asymmetric distinguishability by quantum Sanov theorem:
Performing n measurements on ρ one obtains results compatible with σ
with probability P ∼ exp(−3n/2).

c) Chernoff information Q(ρ, σ) := mins∈[0,1] Trρsσ1−s .

Chernoff bound for random states:
Q(ρ, σ)→ Q∗ = 〈Trρ

1
2σ

1
2 〉 →

(∫
dt
√

tMP(t)
)2

=
(

8
3π

)2 ≈ 0.72.

Symmetric distinguishability by quantum Chernoff bound:
Performing n measurements on ρ and σ one cannot distinguish them with
probability P ∼ exp(−Q∗n).
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Motivation II

a) Suppose you need a quantum state ρ,

you go to a quantum shop, pay for it and

you get a state σ instead so that their fidelity F (ρ, σ)
equals (say) 0.8636.

Are these states close enough? We know that 0 ≤ F ≤ 1.

Assume you do numerical computations (or perform measurements) and
get result that the fidelity between the desired state ρ and the actual
state σ is equal to F1 = 0.8636.

Is the fidelity F1 a ’big number’ (hifi = high fidelity)
or a small one, (low fidelity)?
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Products of random matrices and average fidelity

Related asymptotic results (N � 1) for the average:

a) root fidelity - a benchmark for experimental and theoretical studies
involving fidelity:√

F (ρ, σ) = Tr|√ρ
√
σ| →

∑
i

√
λi (ρσ)→

∫
dx
√

xFC(x) =
3
4 ,

where

FC(x) =
3
√

2
√

3

12π

[
3
√

2
(
27 + 3

√
81− 12x

) 2
3 − 6 3

√
x
]

x
2
3

(
27 + 3

√
81− 12x

) 1
3

,

denotes Fuss–Catalan distribution, FC = MP � MP,
which describes level density of a product ρσ of two random states.

Related quantities:
b) Bures distance

DB(ρ, σ) =
√

2(1−
√

F (ρ, σ))→
√

2
2 .

c) Quantum Hellinger distance

DH(ρ, σ) =

√
2− 2Trρ

1
2σ

1
2 →

√
2− 128

9π2 ≈ 0.746
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Asymptotic average entanglement

Consder a random bipartite pure state |ψ〉 ∈ HN ⊗HN , so that level
density of the reduced state ρ = TrN |ψ〉〈ψ| is given by MP1 distribution

Then the density of partially transposed matrix, ρTA , converges to the
shifted semicircle (Aubrun 2012),

λ(ρTA) ∼ 1
2π

√
4− (x − 1)2, for x ∈ [−1, 3]

This implies that

a) the fraction of negative eigenvalues converges to∫ 0
−1

1
2π

√
4− (x − 1)2dx = 1

3 −
√

3
4π ' 0.1955

b) the average negativity tends to

〈N〉ψ →
∫ 3
−1
|x |−x

2
1
2π

√
4− (x − 1)2dx ' 0.080.

Let G (|ψ〉) = N(detρ)1/N be the G–concurrence of a state (Gour 2005).

Then the average G–concurrence of a random state |ψ〉 converges to

〈G 〉ψ →N→∞ exp
(∫ 4

0 log t MP(t)dt
)

= exp(−1) = 1/e ≈ 0.368
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Concluding Remarks

We derived symmetric MP distribution for level density of Helstrom
matrix ρ− σ for two random states and found their average trace
distance D̃ = 1

4 + 1
π , valid almost surely for any states due to

concentration of measure effect.

=⇒ universal Helstrom distinguishability bound,
Pd ≤ 1/2 + D̃/2 ≈ 0.784

Average fidelity obtained for N →∞ reads 〈F (ρ, σ)〉 = F∗ = 9/16.
It describes well results for a dimension N of order ten and provides a
universal benchmark - a reference value for this quantity

(even if the dimension N is unknown!)

It the state σ offered by the quantum shop has fidelity with respect
to the ordered state ρ only slightly larger than F∗ = 9/16

better go to another shop !
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Bench commemorating discussion between
Stefan Banach and Otton Nikodym (Kraków, summer 1916)

Opening : Planty Garden, Cracow, Friday, Oct. 14, 2016 at 12.00
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