Distinguishing generic quantum states and symmetrized Marchenko–Pastur distribution

Karol Życzkowski

in collaboration with

Łukasz Pawela and Zbigniew Puchała (Gliwice)

Workshop: Random Product Matrices, Bielefeld, August 23, 2016 . . .

A short visit in a quantum shop

```
Suppose you need a quantum state \rho,
```

you go to a quantum shop, pay for it and

```
you get a state \sigma instead !
```

How good the quantum shop is doing ?

Is the state σ we bought at least ϵ -close to the state ρ we have ordered??

Close with respect to which metric?

If the desired state is pure, $ho = |\psi
angle \langle \psi|$

the situation is simple:

You need to maximize the overlap (fidelity), i.e. the expectation value: $F = \langle \psi | \sigma | \psi \rangle$,

What should one do, if the ordered state ρ is mixed?

How to measure the distance between density operators ρ and σ ?

The set Ω_N of mixed states of size N

definition

$$\Omega_{N} := \{ \rho : \mathcal{H}_{N} \to \mathcal{H}_{N}; \rho = \rho^{\dagger}, \rho \geq 0, \mathrm{Tr}\rho = 1 \}$$

Distances in the set of quantum states

a) Hilbert-Schmidt distance,
$$D_{\text{HS}}(\rho, \sigma) := [\text{Tr}(\rho - \sigma)^2]^{1/2}$$

b) trace distance, $D_{\text{tr}}(\rho, \sigma) := \frac{1}{2} \text{Tr} |\rho - \sigma|$
c) Bures distance, $D_{\text{B}}(\rho, \sigma) := (2[1 - \sqrt{F(\rho, \sigma)}])^{1/2}$,
where fidelity between two states reads (Uhlmann '76, Jozsa '94),
 $F(\rho, \sigma) := [\text{Tr}|_{1/2} \sqrt{\rho} \sqrt{\sigma}|_{1/2}^{2} = (\text{Tr}_{1/2} \sqrt{\rho} \sqrt{\sigma} \sqrt{\rho})^{2}$

$$F(\rho,\sigma) := [\operatorname{Tr} |\sqrt{\rho}\sqrt{\sigma}|]^2 = (\operatorname{Tr} \sqrt{\sqrt{\rho} \sigma}\sqrt{\rho})^2$$

٠

< □ > < ---->

Generic mixed states How they appear in quantum physics ?

Reduction of typical (=random) pure states

1) Consider an ensemble of random pure states $|\psi\rangle$ of a composite system $\mathcal{H}_A \otimes \mathcal{H}_B$ distributed according to a given measure μ .

2) Perform partial trace over a chosen subsystem *B* to get a **random mixed state**

$$\rho$$
 := Tr_B $|\psi\rangle\langle\psi|$

One quantum state fixed, one random...

Fix an arbitrary state $|\psi_1\rangle$. Generate randomly the other state $|\psi_2\rangle$.

- \bullet What is the average angle χ between these states ?
- What is the distribution $P(\chi)$ of the angle $\chi := \arccos |\langle \psi_1 | \psi_2 \rangle|$?

One quantum state fixed, one random...

Fix an arbitrary state $|\psi_1\rangle$. Generate randomly the other state $|\psi_2\rangle$.

- \bullet What is the average angle χ between these states ?
- What is the distribution $P(\chi)$ of the angle $\chi := \arccos |\langle \psi_1 | \psi_2 \rangle|$?

Measure concentration phenomenon

'Fat hiper-equator' of the sphere S^N in \mathbb{R}^{N+1} ...

It is a consequence of the Jacobian factor for expressing the volume element of the N- sphere. Let $z = \cos \vartheta_1$, so that

$$J \sim (\sin \vartheta_1)^{N-1} J_2(\vartheta_2, \ldots, \vartheta_N)$$

Hence the typical angle χ is 'close' to $\pi/2$ and two 'typical random states' are orthogonal and the distribution $P(\chi)$ is 'close' to $\delta(\chi - \pi/2)$. How close?

Quantitative description of Measure Concentration

Levy's Lemma (on higher dimensional spheres)

Let $f: S^N \to \mathbb{R}$ be a Lipschitz function,

with the constant η and the mean value $\langle f \rangle = \int_{S^N} f(x) d\mu(x)$. Pick a point $x \in S^N$ at random from the sphere. For large N it is then **unlikely** to get a value of f much different then the average:

$$P(|f(x) - \langle f \rangle| > \alpha) \le 2 \exp(-\frac{(N+1)\alpha^2}{9\pi^3\eta^2})$$

Simple application: the distance from the 'equator'

Take $f(x_1, ..., x_{N+1}) = x_1$. Then **Levy's Lemma** says that the probability of finding a random point of S^N outside a band along the **equator of** width 2α converges **exponentially** to zero as $2 \exp[-C(N+1)\alpha^2]$.

As N >> 1 then every equator of S^N is 'FAT'.

KŻ (IF UJ/CFT PAN)

・ロト ・四ト ・ヨト ・ヨト

Random states and Marchenko-Pastur distribution (1967)

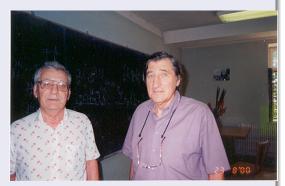
Consider a random state σ of size N obtained by partial trace over K dimensional environment, $\sigma = \text{Tr}_{K}[U |\psi_{N}, \phi_{K}\rangle \langle \psi_{N}, \phi_{K}| U^{\dagger}]$. Then its asymptotic **level density** is $P_{c}(x) = \frac{1}{2\pi x} \sqrt{(x - x_{-})(x_{+} - x)}$, where $x = N\lambda$, rectangularity c = N/K and support $x_{\pm} = (1 \pm \sqrt{c})^{2}$.

For equal subsystems c = 1this expression reduces to the standard

Marchenko – Pastur

distribution $P_1(x) = \frac{\sqrt{1-x/4}}{\pi\sqrt{x}}, x \in [0, 4],$ equivalent to setting $x = y^2$

with y distributed according to **Wigner semicircle**



Vladimir Marchenko & Leonid Pastur (2000)

KŻ (IF UJ/CFT PAN)

Distinguishing generic quantum states

23.08.2016 10 / 26

Symmetrized Marchenko–Pastur distribution I

Trace distance between two states. $D_{\text{Tr}}(\rho, \sigma) = \frac{1}{2} \|\rho - \sigma\|_1 = \frac{1}{2} \text{Tr} |\rho - \sigma|$ is used to describe their **distinguishability**.

What is the distribution of eigenvalue μ of the **Helstrom matrix**, $\Gamma = \rho - \sigma$, where both states are random? It is given by **symmetrized Marchenko–Pastur** distribution, $SMP_c(x) = MP_c(x) \boxplus MP_c(-x)$, where $x = N\mu$.

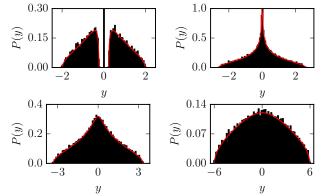
In the case of HS measure, (rectangularity c = 1) we obtain the normalized, symmetric MP distribution

$$SMP_{1}(x) = \frac{-1 - 3x^{2} + \left(1 + 3x\left(\sqrt{3 + 33x^{2} - 3x^{4}} + 6x\right)\right)^{2/3}}{2\sqrt{3}\pi x \left(1 + 3x\left(\sqrt{3 + 33x^{2} - 3x^{4}} + 6x\right)\right)^{1/3}}.$$
 (1)

and analogous analytical formulae for $SMP_c(x)$ with an arbitrary parameter c = N/K > 0.

Symmetrized Marchenko–Pastur distribution II

Level density $SMP_c(y)$ of the rescaled eigenvalue $y = \lambda_1 N$ for rectangularity c = N/K = 0.2, 0.5, 1.0 and 4.0



The case, c = 1 - free commutator of two semicircular distributions, studied by **Nica & Speicher** (1998),

and called tetilla law, Deya & Nourdin (2012).

In limiting case $c \rightarrow \infty$ one obtaines (rescaled) semicircle. KŻ (IF UJ/CFT PAN) Distinguishing generic quantum states 23.08.2016 12/26

co-author Zbyszek Puchała during his research visit in Spain

Average distance between 2 random states

Take two random states σ and ρ acting on \mathcal{H}_N , generated according to the flat (HS) measure (c = 1).

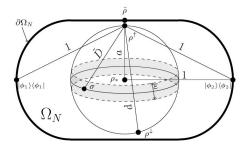
For large *N* their trace distance tends to an integral over the symmetrized MP distribution, which describes the spectrum of the **Helstrom matrix**, $\Gamma = \rho - \sigma$,

$$D_{ ext{tr}}(
ho,\sigma)
ightarrow rac{1}{2} \int SMP_1(y) |y| dy = ilde{D} := rac{1}{4} + rac{1}{\pi} pprox 0.5683$$

Average distance of a random state
$$\rho$$
 to
a) the center $\rho_* = 1/N$ reads
 $D_{tr}(\rho, \rho_*) \xrightarrow[N \to \infty]{} \frac{1}{2} \int dt |t - 1| MP(t) = a = \frac{3\sqrt{3}}{4\pi} \simeq 0.4135.$
b) the closest pure state, $D_{tr}(\rho, |\phi\rangle\langle\phi|) \xrightarrow[N \to \infty]{} 1 = \text{diam}(\Omega_N)$
c) the closest boundary state $\tilde{\rho}$, $D_{tr}(\rho, \tilde{\rho}) \xrightarrow[N \to \infty]{} 0$

The space of quantum states Ω_N for large N

Entire mass of Ω_N is concentrated in a ϵ -vininity of a generic orbit $\rho' = U\rho U^{\dagger}$, where U is a Haar random unitary and ρ is a **random** state with MP level density. Here a = 0.413 and $\tilde{D} = 0.568$, while



the **diameter** *d* of the orbit is equal to the distance between two diagonal matrices with opposite order of the eigenvalues, $d = D_{\text{Tr}}(p^{\uparrow}, p^{\downarrow}) = \int_{0}^{4} dx \operatorname{sign}(x - M) \times MP(x) \simeq 0.7875,$ where *M* is the **median**, $\int_{0}^{M} dx MP(x) = 1/2.$

KŻ (IF UJ/CFT PAN)

Consider two random states of dimension $N \gg 1$ The average value of their trace distance reads

$$\langle D_{
m tr}(
ho,\sigma)
angle = ilde{D} = 1/4 + 1/\pi$$
 ,

but this distribution becomes singular: for $N \to \infty$ one has $P(D_{\mathrm{tr}}(\rho, \sigma)) \to \delta(D - \tilde{D})$

This distance converges *almost surely* to a single value \tilde{D} ! How this might be possible ???

Consider two random states of dimension $N \gg 1$ The average value of their trace distance reads

$$\langle D_{
m tr}(
ho,\sigma)
angle = ilde{D} = 1/4 + 1/\pi$$
 ,

but this distribution becomes singular: for $N \to \infty$ one has $P(D_{\mathrm{tr}}(\rho, \sigma)) \to \delta(D - \tilde{D})$

This distance converges *almost surely* to a single value \tilde{D} ! How this might be possible ???

concentration of measure !

What is the expected distance between two random points in a unit ball in \mathbb{R}^N ?

and in a unit ball in \mathbb{R}^3 ?

What is the expected Euclidean distance between two random points in a unit ball in \mathbb{R}^N ? The answer is

What is the expected Euclidean distance between two random points in a unit ball in \mathbb{R}^N ?

The answer is

 $D(x,y) \rightarrow \sqrt{2}$!

as a) full measure of the ball is concentrated at the surface

b) for any point at the sphere another random point will belong to the **equator**, so their Euclidean distance is $D_2(x, y) = \sqrt{1+1}$, while their taxi distance is $D_1(x, y) = 1 + 1 = 2$.

For two random states of large dimension N their Hilbert Schmidt (=Euclidean) distance vanishes as $D_{\text{HS}}^2(\rho, \sigma) = \text{Tr}(\rho - \sigma)^2 = \text{Tr}\rho^2 + \text{Tr}\sigma^2 - 2\text{Tr}\rho\sigma \rightarrow 0.$

However, their average trace distance is larger and non-trivial, $D_{\rm tr}(\rho,\sigma) \rightarrow \tilde{D} := \frac{1}{4} + \frac{1}{\pi} \approx 0.568$

Why do we care about the trace distance ?

▲圖▶ ▲ 国▶ ▲ 国▶

Helstrom theorem (1967)

Suppose one is given a quantum state $\rho \in \{\rho_1, \rho_2\}$. Probability *P* of discriminating between these states is bounded by

$$P \leq \frac{1}{2} + \frac{1}{2}D_{\mathrm{tr}}(
ho_1,
ho_2)$$

For instance, for orthogonal states $D_{\rm tr}=1$, so that P=1

Distinguishing two generic quantum states

Theorem. Two random states of large dimension $N \gg 1$ can be distinguished in a single-shot experiment with probability bounded by

$$P \leq \frac{1}{2} + \frac{1}{2}\tilde{D} = \frac{5}{8} + \frac{1}{2\pi} \simeq 0.784155.$$

universal bound for distinguishability in high dimensions

KŻ (IF UJ/CFT PAN)

(日) (同) (日) (日)

Asymptotic distinguishability results

for two random states σ and ρ acting on \mathcal{H}_N , Related **asymptotic** results $(N \gg 1)$ for the average:

a) relative entropy:
$$S(\rho || \sigma) = \operatorname{Tr} \rho \log \rho / \sigma$$

 $S(\rho || \sigma) \rightarrow \int dt \int ds(t \log t - t \log s) MP(t) MP(s) = \frac{3}{2}$

Asymmetric distinguishability by **quantum Sanov** theorem: Performing *n* measurements on ρ one obtains results compatible with σ with probability $P \sim \exp(-3n/2)$.

c) Chernoff information $Q(\rho, \sigma) := \min_{s \in [0,1]} \operatorname{Tr} \rho^s \sigma^{1-s}$.

Chernoff bound for random states: $Q(\rho, \sigma) \rightarrow Q_* = \langle \operatorname{Tr} \rho^{\frac{1}{2}} \sigma^{\frac{1}{2}} \rangle \rightarrow \left(\int dt \sqrt{t} M P(t) \right)^2 = \left(\frac{8}{3\pi} \right)^2 \approx 0.72.$

Symmetric distinguishability by **quantum Chernoff** bound: Performing *n* measurements on ρ and σ one cannot distinguish them with probability $P \sim \exp(-Q_*n)$.

KŻ (IF UJ/CFT PAN)

23.08.2016 20 / 26

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへぐ

a) Suppose you need a quantum state ρ , you go to a quantum shop, pay for it and you get a state σ instead so that their fidelity $F(\rho, \sigma)$ equals (say) 0.8636.

Are these states **close** enough? We know that $0 \le F \le 1$.

Assume you do numerical computations (or perform measurements) and get result that the **fidelity** between the **desired state** ρ and the actual state σ is equal to $F_1 = 0.8636$.

Is the fidelity F_1 a 'big number' (hifi = high fidelity) or a small one, (low fidelity)?

(本語)と (本語)と (本語)と

Products of random matrices and average fidelity

Related **asymptotic** results ($N \gg 1$) for the average:

a) **root fidelity** - a benchmark for experimental and theoretical studies involving fidelity:

 $\sqrt{F(\rho,\sigma)} = \operatorname{Tr}|\sqrt{\rho}\sqrt{\sigma}| \to \sum_{i} \sqrt{\lambda_i(\rho\sigma)} \to \int dx \sqrt{x} \mathcal{FC}(x) = \frac{3}{4},$ where

$$\mathcal{FC}(x) = \frac{\sqrt[3]{2}\sqrt{3}}{12\pi} \frac{\left[\sqrt[3]{2}\left(27 + 3\sqrt{81 - 12x}\right)^{\frac{2}{3}} - 6\sqrt[3]{x}\right]}{x^{\frac{2}{3}}\left(27 + 3\sqrt{81 - 12x}\right)^{\frac{1}{3}}},$$

denotes **Fuss–Catalan** distribution, $\mathcal{FC} = MP \boxtimes MP$,

which describes level density of a **product** $\rho\sigma$ of two random states.

Related quantities:

b) Bures distance

$$D_B(\rho,\sigma) = \sqrt{2(1-\sqrt{F(\rho,\sigma)})} \to \frac{\sqrt{2}}{2}$$

c) Quantum Hellinger distance

$$D_{\mathcal{H}}(\rho,\sigma) = \sqrt{2 - 2\mathrm{Tr}\rho^{\frac{1}{2}}\sigma^{\frac{1}{2}}} \rightarrow \sqrt{2 - \frac{128}{9\pi^2}} \approx 0.746$$

Asymptotic average entanglement

Consder a random bipartite **pure state** $|\psi\rangle \in \mathcal{H}_N \otimes \mathcal{H}_N$, so that level density of the reduced state $\rho = \text{Tr}_N |\psi\rangle \langle \psi|$ is given by MP_1 distribution

Then the density of partially transposed matrix, ρ^{T_A} , converges to the shifted semicircle (**Aubrun 2012**),

$$\lambda(
ho^{\widetilde{\mathrm{T}}_{\mathcal{A}}})\sim rac{1}{2\pi}\sqrt{4-(x-1)^2}, \hspace{1em} ext{for} \hspace{1em} x\in [-1,3]$$

This implies that

a) the **fraction** of negative eigenvalues converges to $\int_{-1}^{0} \frac{1}{2\pi} \sqrt{4 - (x - 1)^2} dx = \frac{1}{3} - \frac{\sqrt{3}}{4\pi} \simeq 0.1955$ b) the **average negativity** tends to $\langle \mathcal{N} \rangle_{\psi} \rightarrow \int_{-1}^{3} \frac{|x| - x}{2} \frac{1}{2\pi} \sqrt{4 - (x - 1)^2} dx \simeq 0.080.$ Let $G(|\psi\rangle) = N(\det\rho)^{1/N}$ be the *G*-concurrence of a state (**Gour 2005**). Then the average *G*-concurrence of a random state $|\psi\rangle$ converges to $\langle G \rangle_{\psi} \rightarrow_{N \rightarrow \infty} \exp(\int_{0}^{4} \log t \ MP(t) dt) = \exp(-1) = 1/e \approx 0.368$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ● ●

Concluding Remarks

- We derived symmetric MP distribution for level density of Helstrom matrix $\rho \sigma$ for two random states and found their average trace distance $\tilde{D} = \frac{1}{4} + \frac{1}{\pi}$, valid almost surely for any states due to **concentration of measure** effect.
- \implies universal **Helstrom distinguishability** bound, $P_d \leq 1/2 + \tilde{D}/2 \approx 0.784$
- Average fidelity obtained for N → ∞ reads (F(ρ, σ)) = F_{*} = 9/16. It describes well results for a dimension N of order ten and provides a universal benchmark - a reference value for this quantity (even if the dimension N is unknown!)
- It the state σ offered by the quantum shop has **fidelity** with respect to the **ordered state** ρ only *slightly larger* than $F_* = 9/16$ better go to another shop !

イロト 不得下 イヨト イヨト

Bench commemorating discussion between Stefan Banach and Otton Nikodym (Kraków, summer 1916)

Opening : Planty Garden, Cracow, Friday, Oct. 14, 2016 at 12.00

KŻ (IF UJ/CFT PAN)