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Abstract Universality results in the statistical behaviour of spectra of random matrices typically consider the fluctuations near a macroscopic point of
the spectrum. In an ensemble of positive definite matrices, there are two essentially different distinguished points; the largest eigenvalues and the smallest.
Since they are positive definite the study of the smallest eigenvalue is the study of the statistics near the origin of the spectral axis.

The simplest instance is the Laguerre ensemble; in this case the fluctuations are described by a determinant random point field defined in terms of the
celebrated Bessel kernel. This behaviour is also proven in the literature to be "universal”.

We consider a model of several coupled matrices of Laguerre type (with a specific interaction) and address the corresponding study of the origin of the
spectrum. We find a natural generalization of the Bessel random point field to a multi-specie analog that involves special functions (Meijer-G). It is then
natural to formulate a universality conjecture. Time permitting | will also discuss results concerning the expectation of ratios of characteristic polynomials
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The Cauchy chain of positive matrices

Definition 1 (The p-chain-Cauchy Matrix-Model)

Let Mff,’) be the set of p—tuples of positive semidefinite Hermitean matrices with the following
class of measures

T2, det(M;)% e NTr UM,

[127 det(M; + Mj1)"

dp(M) = Z

The scaling parameter N is taken proportional to the size when considering the limit of large sizesJ
n — oo.
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The eigenvalues X; = (xj,1,...,%j,n) j =1,2,...,p form a (multi-specie) determinantal point
field

The Cauchy matrix chain (B.Gekhtman-Szmigielski 09 [3]) can be reduced to spectral variables
(Mehta-Shubin 94)

AX)AX) o = 1 n
P(X1,...,Xp) = MHHE_UmxmjdmeHdEt[i]

Zn w1 jo1 Xej + Xer1,k ] g1

X¢ = (x¢,1,---,%e,n) = Spectrum of M,
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A general angular integral

The reduction to the eigenvalue formula above relies upon the following

Theorem 3 (Gross--Richards ’89, Harnad--Orlov, ’06)

det [(1 — za;jb;)" 1]
A(A)A(B)

1<i,j<n

/ det(1 — z AUBU')™"dU
U(n)

Set A=X"1B=Y, r=n, z=—1, multiply by det(X)~"

Corollary 4

1
/ du det |:x,-+yj]’-J
7 X
U(n) det (X 4+ UYUT) A(X)A(Y)
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Dyson—like theorem |

The correlation functions are expressed as a determinant (Eynard-Mehta '98 for the
Itzykson—Zuber case (but essentially general), B-Bothner '14 )

1
RE8) (D}, {x1y?) = H(n_e)l Z,

n

X/RHI "'/R"—EP P({xlj}g,...,{xpj}g)ﬁ I dxm

-+ + J=1mj=¢;+1
Kll(Xlry Xls) . Klp(Xlry Xps)
1<r<61,1<s<0; 1<r<41,1<s<4p
= det . . : ,
Kp1 (Xpr, x15) . Kpp (Xpr, Xps)
1<r<0,,1<5< 0y 1<r<£,,1<5< 0, (50 6)x (3P £,)

with correlation kernels
_ly(x)—=1
Kje(x,y) = e 272V IMyy (x,y),  Mpa(x,y) =D de(x)vely) —

These can be expressed in terms of iterated integrals of certain biorthogonal polynomials {¢¢, v };
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Dyson—like theorem |l

The monic (Cauchy) biorthogonal polynomials {15(x), #n(x)} >0 are defined by the requirements

L [ n000m e, ) dxdy = oo &)
Yn(x) =x"+ O (x"_l) , X — 00; on(x) =x"+0O (x"_l) , X — 00.

with

_ wi (x) Hfz_zl w;(&)) wp(y) dér---d
el = /Ri’”*gl <l_lf_13(€j+§j+1) Ep—2+y stredep—2

The pair {tn(x), pa(x)}, n > 1 is given in terms of determinants:
oo oo |
b= [ [Ty ) dxdy, >0 @
0 0

In terms of (2), the biorthogonal polynomials can be written as

1
Ag

n,n—1

1 i I n—1,n o
Wn(x) = L det [ | X] 77, én(y) = - det { JZ} P Dn = det[f]7 L,

L
Yolje=0
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Example: the Cauchy-Laguerre 2—chain

dp(My, M) = - det(M)™ det(My)?2e—Tr(My+My)
p\ My, Vo) = Zn det(M1+M2)n

Serendipity allows to find explicitly the correlation functions for any size n so that the limit as
n — oo becomes a simple inspection [3]

Kg’{) (Xf7 XJ) ]K(()?)) (Xi7 .yj)
1<i,j<k 1<i<kil<j<¢

RO (x, . X ya,- ., ye) = det

KD (i) | K (i, 7)
1<i<;1<j<k 1<i,j<¢e
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Theorem 6 (B.-Gekhtman-Szmigielski '14)

1 1 _
KD (x, y) = /0 Hapn(0)Hopon(ty)dt K8 (x,x') = /0 Hay ()Pl (£}l

1 1
n Ll n ] ] 1
KD, y) = /0 Py oty Hapn(ty)dt KD (y,x) = /0 Pl () Flay n(£5)lt — ——

X+y

Hen(2) /du z7" T(u+c)f(n+ar+a—c+1—u)

z) = —

on 4 2imT(1—u)T(c+n+u)l(ar+a2—c—u+1)

Fen(w) /du Fu)f(u+c)f(n+ar+a—c+1—u) _,
w):= [ —

o J2im T(ai+a—c+1—u)l (c+n+u)

The kernels have the same (multiplicative) “convolution” form as the Bessel Kernel.
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Scaling behaviour near the origin of the spectrum
It is then straightforward (Stirling formula) to obtain scaling limit x = 5—2; y= %

Definition 7 (Meijer-G random point field and universal class)

In the scaling limit the correlations of the eigenvalues of M;, M> are determined by the two—level

random point field with kernels.

1 1 -
Gool€, ) = /0 Ha(t€)Hp(t)dt  Gor(£,€') = /O Ha(t6) Ao (€')dt

1 1 - 1
glo(c’7<):/0 Ha(t¢ Y Hp(t¢)dt 911(4,6):/0 Ha(tC)Hb(tg)dt—m

_ [ du Mu+c) v fey = [ _Mafete) .,
HC(C).7~/W2i7rr(1—u)r(a—c+1—u)c ’ HC(C)'f/ﬂf”(a—chl—U)C'

s
004

004
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Meijer-G random point field for p-chain

The integrals (Mellin-Barnes) that appear in the formula above are all Meijer-G functions. These
are generalizations of hypergeometric functions (which they contain as a subclass) (see review of
Szmigielski-Beals: " Meijer G-Functions: A Gentle Introduction”).

Let a;,b; € Cand 0 < m < q,0 < n < p be integers. The Meijer-G function is defined through
the Mellin-Barnes integral formula

C) 1 [T T(be+s) Tl TA—ar—s)

Gm,n(zu-u,zp _
2mi Jo [T9ZE T(L — bega —s) TI52) M(ags +s)

ds

¢

Figure: A choice for L corresponding to a; = b; = 0.

These special functions have appeared recently in the statistical analysis of singular values of
products of Ginibre random matrices (AB 12 [1], AKW 13 [2], KZ 13 [7], CKW 15 [8]).

Meijer-G functions appear pervasively because they form a family stable under convolution



http://www.ams.org/notices/201307/rnoti-p866.pdf

The p—chain

No explicit formulas for finite size n, p > 3 ; however

Theorem 9 (Riemann-Hilbert characterization for {1, ¢k }x>0)

Determine a (p + 1) x (p + 1) function I'(z) = ['n(z) with jump on R (;(z) = 2%e=Y@);

1 p(z)x+ 0 gT
na-r@|® 1 e o | [T
1

onmo
corm
omoe
V-moo

M(z)= (l + O (z_l)) diag [z", 1,..., 1,2_"] , z—o0o0.
Moreover the correlation kernels K, are given by (B-Bothner '15 [6])

Kje(x,y) =e —3U0=3 Ve ie(x,¥),

(=)t r(w; )l (z; ")}
(—2miy—t+1 w—z 1,0

Mijy(x,y) =

)1+1

1
y([
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The Biorthogonal polynomials are recovered:
Un(2) = (To(@)y + 6n(2) = (1D (T ((-P12) 4,
The proof is by induction on n > 0 using recursion relations;

Mri1(2) = Rn(2)Mn(2)
Rn(z) = zE11 + Ba

By, explicit. Also For any n € Z>g

E
RIAW)Ry(2) =1 — (z—w)—22L  z wec. (3)
[Yinl1,p+1
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Scaling behaviour at the origin and conjectural universality

Meijer-G random point field for p-chain

Conjecture 1 (BB 14 [6])

For any p=2,3, ..., there exists co = co(p) and {n;}; which depend on {a;}; such that
QO me—mjte. ( 2y <o ) (P) [P
Jim T KGe (S o) & Y (&mi{a}7)

uniformly for &, m chosen from compact subsets of (0,00). Here the limiting correlation kernels
equal

= o M(u — a) b T(as —v) &n~Y  dvdu
P 5=
(f n:{3}7) // r(1+315—u) HJ M(1—aps+v)1l—u+dv (2mi)?

+ Z res Hi ) r(l tv= als) l_[s:j I(a1s — v) &n—Y
sePufo} Hg ,T(a1s — v) H’;(l) F(1+v—aw) (=Y —(=)n

with P = {ay .= 3¢

jzlaj, 1 ngp}

The blue part is present only for j < £. In the statistical analysis of singular values of products of Ginibre random matrices (AB 12 [1], AKW 13 [2], KZ 13
[7]) only the correlation kernel of one product was considered; thus we can only compare it to one (the (1, 1) specifically) of the kernels.

14/24



Theorem 10 (BB 14 [6])

The conjecture holds for p = 2,3 and potentials U;j(x) = Nx — a;jInx, (N = n)

Idea of Proof. e: use the formula for kernels

Kjo(x,y) = e 240~ 3V (x, y),

(=) [T (wim)(zin)

Mie(x,y) = -
je(x.y) (=2mi)—t+1 w—z :|j+1,e

w=x(—ytt
z=

y(=)ft

e In of |z| < ¢ introduce ¢ ~ nPt1z and solve a "model RHP" in the ¢ plane; the boundary
|z =€ = [¢] = nPTle =

Different asymptotics at ¢ = oo (.... next slide...)
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Theorem 11 (Solution of the model problem)

(£) S HJlZ:I r(s al,j—l) :tiwsaj -4 .
{ =4 [ 22El & 1 1<j<p+1 C\(—o0,0].
g Q) 2ni LTI, T aﬂ_s)e (°ds, 1<j<p ¢ € C\(=00,0]

i . . /p+1
oj=(+1) mod?2 ¢ = (2mi)P! 14 ()’

. +1 d
6B = [ —aa) 8P L ceo00,  Aci=¢g
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Theorem 11 (Solution of the model problem)

J
(£) S [[oy T(s +arj-1) timsojr—sqs. 1< < 1
\ == | == = , + € C\(—o0,0].
g (=5 T T P ¢(°ds, 1<j<p ¢ € C\( ]

. 1
o;=(+1) mod2 ¢ = (2mi)Pti 52:),3,

. +1 d
6B = [ —aa) 8P L ceo00,  Aci=¢g

e Estimate remainder of approximation (x x Hard part x x). Needs detailed knowledge of the

solution of a vector equilibrium problem. In general the densities have a singularity |x| ™ P+1.

This is why partly conjecture!
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Theorem 11 (Solution of the model problem)

J
Gy G [z Tt agi1) tine, —sq .

i =55 TP r(1ta, < , 1<j< 1 ¢ €C\(~o,0].
& () 2mi Jy Z:j r(1+ aj —s)e ¢ ds sjspt+l ¢ \(—o0, 0]

; 1
o;=(+1) mod2 ¢ = (2mi)Pti f;)"’
™
i—1 (% p+1 d
6B(Q) = [(Ac— a1y g PQ] L ceC\(—00,0,  Aci=¢—.
jk=1 d¢
v
e Estimate remainder of approximation (x x Hard part x x). Needs detailed knowledge of the
_ b
solution of a vector equilibrium problem. In general the densities have a singularity |x| ™ P+1.
This is why partly conjecture! )
L (@) 'eHm) .
o Write nice formulae for T (Bilinear Concomitant formulze).

Ginibre random matrices: (Akemann-Burda '12, Akemann-Kieburg-Wei '13, Kuijlaars-Zhang '13,
Strahov '15). J
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Chain separation

We can make a consistency check about these formulz; if we send ag — oo with 1 < g < p, the chain should (and does) "separate”.

Theorem 12 (Chain separat

Let 1 < q < p and consider the kernels 9}2’)((, n;{a1, . . ., ag}). In the limit as A = ag — oo we have the following behaviors;
=1
ARG o)
AP—at+1 [g(p)(/\”“’“g,/\”‘q“n;a‘]’_’ _ £<qg—1 ,
it j,e=1
@) )
onh o)
A9 ggp)(/\qC An; 3P = 2 p—q
[ je ’ ]J,E:l e (%) 1‘79,(2 )€, mi {ag1s - - ap})
1<j,£<p—q

That is, the p-chain random point field split into two independent multi-level random point fields corresponding to two subchains of lengths ¢ — 1, p — q
with scaling at the indicated rates. (~ continued on next slide)

v
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Theorem 13 (Chain separation, cont'd)

In the case that p — q = q — 1 (i.e. p is odd and p = 2q — 1) so that the two subchains scale at the same rate, we have

o) o)
ol nIe, sma)?, | = o1 oW :
€219 g(P=D (¢ . P
op=1) on-1 | 11965 Ve miadi_ )
1<j,£<p—q
and hence they still are independent subchains because the correlation functions factorize to leading order.
y
e, dee(m)% o~ VT M) gy,

du(M) = =
e e 1 det(M; + M)

e

B =2.000 B=1.500 p=0

B =4.000 =3.000

Figure: The limiting densities of eigenvalues for the p = 3 separated chain for ay = nf3 and different values of 3 and aj is independent of n. Note that
the support of the density of the matrix My is separated from the origin. By comparison we also show the densities for 3 = 0 (connected chain). The
profile of the density on the negative axis is the asymptotic macroscopic density of the eigenvalues of — My, while on the positive axis the profile

corresponds to the densities of My, M3 (they are identical).
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Another use of the Riemann-Hilbert formulation: Expectations of rational

characteristic functions |

We want to consider also the expectation of rational characteristic functions (product/ratios of
charpolys); same was done by [Baik-Deift-Strahov, Fyodorov-Strahov ('03)] for the one-matrix
model.

. P % det(z, ;1 — M,

CEN({Z, ) = <H Ul T >
et Hj:l det (wy j1 — M)

1 P js-il det (2,1 — M,) P (det My)ae=Ue(Mo)dp,

 Zpn /(Hﬁ)v o [Ty det (w1 = My)  TTP2! det(M; + M)
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They can all be written solely in terms of the solution of the RHP I',(z);

Obvious observation

¥l 7/ =
71_[,4.:1(2]’2 x) (j(x) = x¥e~Y))
[Te=1(wj.e —x)

We need to compute the ratio of two partition functions with measures related as above

pi(x) = (%) = pi(x)

1 ﬁl(z)X‘F 0 1 0 o0 o0 1 m o0 o

0 1 ja(-z2)x. O s;rsz;?‘)]
Fa(z) = (2) Ao =2)x R
N

Nz)=@1+o0 (2_1)) diag [2",1,...,1,z7"], z — oo.

20/24



Discrete Schlesinger tranformations

The effect is the same as modification of the RHP; the jump matrix M(z) is conjugated by a
diagonal, rational, matrix D(z). This was studied in [B. Cafasso, 2014] and corresponds to the
" discrete Schlesinger transformations” in the theory of Painlevé equations.

The partition function Z is a tau function

§InzZ = / Tr(r*l(z)r’(z)aM(z)M*I(z)) E =

[ z)dz dpoi(z)dz
= Z/ _l(z)rl(z))zj+1,2j+2 Uepplcys Z/ rr (Z))2j+1’2j 7“21(. )

=0 2im =1 2im

1 wm(2)x+ 0
- 0 1 — _ 0
M(z; i) = pa( ]_Z)X
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Rational Diagonal Conjugations [B. Cafasso, " Darboux Transformations and Random Point
Processes” '14]

If we maintain all boundary behaviours of the RHP for I' but modify the jumps
M(2) =T (M(z) = T(2)=T_(DM(z);  M(2):= D" (2)M(z)D(z)
then the blue part gets an extra term
SINZ=6InZ+5InG

and G is a finite determinant of the size equal to the total degree of D(z) whose entries are
entirely read off I'(z), i.e. (in our case) orthogonal polynomials and associated functions.

After the dust settles we obtain all necessary formulas (and set on equal footing the various
formulas used in Baik-Deift-Strahov '03, Fyodorov-Strahov '03).
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Rational Diagonal Conjugations [B. Cafasso, " Darboux Transformations and Random Point
Processes” '14]

If we maintain all boundary behaviours of the RHP for I' but modify the jumps
M(2) =T (M(z) = T(2)=T_(DM(z);  M(2):= D" (2)M(z)D(z)
then the blue part gets an extra term
SINZ=6InZ+5InG

and G is a finite determinant of the size equal to the total degree of D(z) whose entries are
entirely read off ['(z), i.e. (in our case) orthogonal polynomials and associated functions.

After the dust settles we obtain all necessary formulas (and set on equal footing the various
formulas used in Baik-Deift-Strahov '03, Fyodorov-Strahov '03).

Example 14

If D(z) = diag (1 1, HKEE ‘:f;,l, . .,1) then

(r=2(a)r( bk))

{5’1_717"}“:1 — det |:(r_1(aj)r(bk))jj:| ‘ [T (aj — bx)

. [ﬁ]’( aj — by A(3)A(b)
J kJj k=1

G =
Jrk=1
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Koz, w) i T2 ()n(2)

w—2z
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Koz, w) i T2 ()n(2)

w—2z

K

K K ntk—1 \ det | (Knpk(zk, ()W) ’ ] )

<Hdet (21— M) [T det (w1 - Mp)> B ( 1 ”e) | AZ)AW) S
f=n

j=1 B

23/24



—1
Kp(z,w) i= o (n(2)

w—2z

K
K K n+K—1 det K, (Z ,(—)pW') .
<H det (511 — M1) [ ] det (w1 — M,,)> x ( +H hg> (ot - )p“’l]f’k:l
L=n

=1 =1 A(2)A(w)
< 1 1 > R 1 det I:(anK(Zkv (*)p""j))lﬁpﬂ];ﬁk:l
[T/, det (z11 — My) [T/, det (w1 — My) (HZ;LW) A(Z)A(W)
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—1
Kp(z,w) i= o (n(2)

w—2z

K
K K n+K—1 det K, (Z ,(—)pW') .
<H det (511 — M1) [ ] det (w1 — M,,)> x ( +H hg> (ot - )p“’l]f’k:l
L=n

=1 =1 A(2)A(w)
< 1 1 > R 1 det I:(anK(Zkv (*)p""j))lﬁpﬂ];ﬁk:l
[T/, det (z11 — My) [T/, det (w1 — My) (HZ;LW) A(Z)A(W)

K
zi — wy)d Kn(zk, w;
< [T, det (zi1 — My) > _ }_:(I( 4 i) det [( (2« J))1,1]j’k:1

TS, det (w1 — M) A(D)A(W)
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Mo (w)n(2)

w—2z

Kn(z,w) :=

< K K > (HKI > ™ [(KHK(ZM(_)pwj))pﬂ,l]fkﬂ

[T det (1 — M) [ ] det (w1 — M) I #e

i1 1 A(Z)A(w)
< X X > R e S
T1E, det (z1 — My) TTE, det (w1 — M) (HZ;;7IJ7£> A(2)A(w)

K
< [T5, det (511 — My) > _ }V—kI(Zj T [(K"(Zk’ Wj))l’l]j,kzl

[T/, det (w1 — My)

A(2)A(wW)

K

ITts - i) det [ (Kn((~)7w;, (<P 2)) 11 ]

A(2)A(W)

jrk=1

< [T/, det (211 — My) >

[T/, det (w1 — Mp)

(here o means up to a constant depending on K only)
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Challenge: study the gap probabilities! (e.g. p = 2—matrix model)

In this case we can study joint gaps because we have the full control of scaling limit kernels;

; 9\ = —. g
nllm P, (Xl > n2) = det |:IdL2([O,s]) — R++:| =: Fl (S)
(see recent Forrester-Witte '16)

. s t
lim P, (xl > o> ?) = det [Idy, — R] =: Fa(s, t),

Figure: Fy(s,s) (solid), Fl(l)(s) (dash), FI(Z)(S) (dash-dot) and Fl(l)(s)Fz(2)(s) (dots) computed numerically as

(2)

(1)
A OF O o1 the domain [0,2] x [0,2]. This

explained [Bornemann '10], a; = 0, a» = 1. Right: plot of 1 — IFQT
quantity is a measure of deviation from independence, and it would be identically zero if the spectra were

‘mdanandant
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