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The free Fokker-Planck equation

Given a (polynomial) potential V : R→ R, the process (µt)t≥0 satisfies
the free Fokker-Planck equation if

∂µt

∂t
=

∂

∂x

[
µt

(
1

2
V ′ − Hµt

)]
,

where

Hµt(x) = vp

∫
1

x − y
dµt(y),∀x ∈ R.

This equation is often called “McKean-Vlasov or Fokker-Planck with logarithmic interaction”

For any regular function ϕ,

d

dt

∫
ϕ(x)dµt (x) = −

1

2

∫
V ′(x)ϕ′(x)dµt (x) +

∫∫
ϕ′(x)− ϕ′(y)

x − y
dµt (x)dµt (y)

What can we say about the asymptotic behavior of µt as t → +∞ ?
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Outline of the talk

I Introduction, motivations, known results

I Convergence result for some non-convex potential

I Free probability reminder

I Study of critical measures

I Conclusion
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First motivation : granular media equation

Several equations arising from physics can be stated under the following
form :

∂µt

∂t
= ∇. [µt∇(U ′(µt) + V +W ∗ µt)] .

where U is an internal energy, V a (confining) external potential and W a
self-interaction energy.

Examples/references : linear Fokker-Planck equation (U(s) = s ln s,W(s) = 0), equation for porous media
(U = 0,W polynomial or convex) [Benedetto-Caglioti-Carrillo-Pulvirenti, Malrieu, Carrillo-McCann-Villani,
Bolley-Gentil-Guillin etc.].

The free Fokker-Planck equation is given by U = 0,W = − ln [see also
Carrillo-Castorina-Volzone for d = 2].

Remark : we are used in RMT to encountering the logarithmic interaction in dimension 1.
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Motivation : a more probabilistic point of view

If the process (Xt )t≥0 satisfies the classical SDE (in dimension 1)

dXt = dBt −
1

2
V ′(Xt )dt,

its law (µt )t≥0 satisfies the linear Fokker-Planck equation

∂µt

∂t
= ∆µt +

1

2

∂

∂x
µt V ′.

If we want to get not trivial interactions W, one can consider the

empirical measure LN (t) =
1

N

N∑
i=1

δλN
i (t) of a particle system of the form

dλN
i (t) =

1√
N

dBi (t) +
1

N

∑
j 6=i

W ′
(
λN

i (t)− λN
j (t)

)
dt − 1

2
V ′(λN

i (t))dt.
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The generalized Dyson Brownian motion

Let (B̃N
t )t≥0 an N × N Hermitian matrix with Brownian coefficients. The

process of the eigenvalues (λN
1 (t), . . . , λN

N (t))t≥0 of (B̃N
t /
√

N)t≥0 is
called Dyson Brownian motion.

It satisfies the system of SDEs

dλN
i (t) =

1√
N

dBi (t) +
1

N

∑
j 6=i

1

λN
i (t)− λN

j (t)
dt

Similarly, the process (λN
1 (t), . . . , λN

N (t))t≥0 satisfying the system of
SDEs

dλN
i (t) =

1√
N

dBi (t) +
1

N

∑
j 6=i

1

λN
i (t)− λN

j (t)
dt − 1

2
V ′(λN

i (t))dt

is called generalized Brownian motion.



6

The generalized Dyson Brownian motion

Let (B̃N
t )t≥0 an N × N Hermitian matrix with Brownian coefficients. The

process of the eigenvalues (λN
1 (t), . . . , λN

N (t))t≥0 of (B̃N
t /
√

N)t≥0 is
called Dyson Brownian motion.

It satisfies the system of SDEs

dλN
i (t) =

1√
N

dBi (t) +
1

N

∑
j 6=i

1

λN
i (t)− λN

j (t)
dt

Similarly, the process (λN
1 (t), . . . , λN

N (t))t≥0 satisfying the system of
SDEs

dλN
i (t) =

1√
N

dBi (t) +
1

N

∑
j 6=i

1

λN
i (t)− λN

j (t)
dt − 1

2
V ′(λN

i (t))dt

is called generalized Brownian motion.



6

The generalized Dyson Brownian motion

Let (B̃N
t )t≥0 an N × N Hermitian matrix with Brownian coefficients. The

process of the eigenvalues (λN
1 (t), . . . , λN

N (t))t≥0 of (B̃N
t /
√

N)t≥0 is
called Dyson Brownian motion.

It satisfies the system of SDEs

dλN
i (t) =

1√
N

dBi (t) +
1

N

∑
j 6=i

1

λN
i (t)− λN

j (t)
dt

Similarly, the process (λN
1 (t), . . . , λN

N (t))t≥0 satisfying the system of
SDEs

dλN
i (t) =

1√
N

dBi (t) +
1

N

∑
j 6=i

1

λN
i (t)− λN

j (t)
dt − 1

2
V ′(λN

i (t))dt

is called generalized Brownian motion.



7

LN (t) → µt

↓ ↓ ?

LN → µV

where

LN :=
1

N

N∑
i=1

δ
λN

i
, (λN

1 , . . . , λ
N
N ) ∼

1

ZN

∏
i<j

|xi − xj |
2 exp

− N∑
i=1

V (xi )

 dx1 . . . dxN

and µV is the equilibrium measure associated to the potential V , that is
the unique minimizer of

ΣV : µ 7→ −
∫∫

R2

ln |x − y | dµ(x)dµ(y) +

∫
R

V (x) dµ(x).



7

LN (t) → µt

↓ ↓ ?

LN → µV

where

LN :=
1

N

N∑
i=1

δ
λN

i
, (λN

1 , . . . , λ
N
N ) ∼

1

ZN

∏
i<j

|xi − xj |
2 exp

− N∑
i=1

V (xi )

 dx1 . . . dxN

and µV is the equilibrium measure associated to the potential V , that is
the unique minimizer of

ΣV : µ 7→ −
∫∫

R2

ln |x − y | dµ(x)dµ(y) +

∫
R

V (x) dµ(x).



8

Known results

I For a locally Lipschitz potential V growing fast enough at infinity,
existence and unicity are well understood for a compactly
supported initial condition [Biane-Speicher 2001, Li-Li-Xie 2014].

I The asymptotic behavior is well understood when the potential V
is strictly convex : convergence towards µV , in W2 distance at
exponential rate [quadratic case addressed by Biane-Speicher,
general strictly convex V addressed by Li-Li-Xie].

I In some cases, the convergence towards µV cannot hold unless the
initial condition µ0 has the same filling fractions as µV .

We are interested in the quartic potential

V (x) =
1

4
x4 +

c

2
x2
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Asymptotic behavior when c ≥ −2

Théorème
(Donati-Martin, Groux, M. 2016)
Let c ≥ −2. Let us assume that µ0 is compactly supported. Then the
solution (µt)t≥0 of the free Fokker-Planck equation satisfies

lim
t→+∞

Wp(µt , µV ) = 0

for all p ≥ 1, where µV is given by

dµV (x) =
1

π

(
1

2
x2 + b0

)√
a2 − x21[−a,a](x) dx

with

a2 =
2

3

(√
c2 + 12− c

)
, b0 =

1

3

(
c +

√
c2

4
+ 3

)
.
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A quick free probability reminder

The free Brownian is a process (st)t≥0 of self-adjoint operators such that

I for all t ≥ 0, the distribution of st is the semi-circular law with
variance t,

I the increments st − su, 0 ≤ u ≤ t, are free and their distribution is
the semi-circular law with variance t − u.

→ free stochastic calculus developed by Biane-Speicher, free diffusions
etc.
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The free Fokker-Planck equation

We consider the free SDE

dxt = dst −
1

2
V ′(xt)dt

where s is a free Brownian motion and V a given (suitable) potential.

Proposition

Let (xt)t≥0 be the solution of this free SDE. If, for any t ≥ 0, we denote
by µt the law of xt , then (µt)t≥0 satisfies the free Fokker-Planck equation

∂µt

∂t
=

∂

∂x

[
µt

(
1

2
V ′ − Hµt

)]
.

The logarithmic singularity has been swept away.
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Consequence : nice properties of {µt , t ≥ 0}

Proposition
(Biane-Speicher) Let (µt )t≥0 be the solution of the free Fokker-Planck equation starting from a compactly
supported measure µ0.

I There exists M > 0 such that for all t ≥ 0, supp(µt ) ⊂ [−M,M]

I There exists K1,K2 > 0 depending only on V such that for all t ≥ 0, the density pt of µt satisfies

‖pt‖∞ ≤
K1
√

t
+ K2, ‖D1/2pt‖2 ≤

K1

t
+ K2.

One can deduce that

I the free entropy ΣV is decreasing and continuous along the
trajectories

I any accumulation point µ has bounded density and is a solution of
the Euler-Lagrange equation : Hµ = 1

2 V ′ µ-a.e.
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Equilibrium, stationary and critical measures
I Equilibrium measure :

Global minimizer of the free entropy ΣV . Unique measure for

which there exists a constant C such that

I for any z ∈ supp(µ), we have Uµ(z) +
1

2
V (z) = C ,

I for any z outside supp(µ), we have Uµ(z) +
1

2
V (z) ≥ C ,

where Uµ(z) = −
∫

ln |z − x | dµ(x) is the logarithmic potential of
µ.

I Stationary measure
Solution of Hµ = 1

2 V ′ µ-a.e., supported on R with bounded
density

I Critical measure [Mart́ınez-Finkelshtein Rakhnmanov, Kuijlaars-Silva etc.]

∀h : C→ C regular, lim
s→0

ΣV (µh,s)− ΣV (µ)

s
= 0.

Equivalence between stationary measure and critical measure supported
on R.
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Determination of stationary measures

Question : In the case of the quartic potential, is the equilibrium measure
the only stationary measure ?

Key idea : it boils down to the determination of the support.

Proposition
[Kuijlaars-Silva, Huybrechs-Kuijlaars-Lejon] Let V be a polynomial and µ a critical measure for ΣV supported on
R.

I There exists a polynomial R of degree 2 deg(V )− 2 such that

R(z) =

(∫
1

z − x
dµ(x) +

1

2
V ′(z)

)2

Moreover,

R(z) =
1

4
V ′(z)2 −

∫
R

V ′(x)− V ′(z)

x − z
dµ(x).

I Any non-real root of R has even multiplicity.

I The support of µ is a finite union of intervals connecting real zeros of R.
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Key idea : it boils down to the determination of the support.

Proposition
[Kuijlaars-Silva, Huybrechs-Kuijlaars-Lejon] Let V be a polynomial and µ a critical measure for ΣV supported on
R.

I There exists a polynomial R of degree 2 deg(V )− 2 such that

R(z) =

(∫
1

z − x
dµ(x) +

1

2
V ′(z)

)2

Moreover,

R(z) =
1

4
V ′(z)2 −

∫
R

V ′(x)− V ′(z)

x − z
dµ(x).

I Any non-real root of R has even multiplicity.

I The support of µ is a finite union of intervals connecting real zeros of R.
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Application to the quartic potential

For the potential

V (x) =
1

4
x4 +

c

2
x2

we have

R(z) =
1

4
z6 +

c

2
z4 +

1

4
(c2 − 4)z2 −

∫
x dµ(x).z −

∫
x2 dµ(x)− c .

Elementary arguments allow to conclude that for −2 ≤ c , any critical
measure has a connected support.

We then use standard analytic tools to show that the only critical

measure with connected support is the equilibrium measure, and we can

then conclude the proof.
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Conclusion

We obtain the first convergence result for the granular media equation in
dimension 1, with a double-well potential V and a singular self-interaction
W.

Open questions :

I Description of critical measures for c < −2 ? Description of the
basins of attraction for c < −2 ?

I Generalization of the method to other families of potentials (higher
degree, higher dimension, non-confining potential [Allez-Dumaz]...)

I Biane and Speicher’s conjecture for the potential
V (x) = 1

2 x2 + g
4 x4, with − 1

12 < g < 0 ?

I Extension to the multiplicative setting ?
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Thank you for your attention.


