Lyapunov exponents and eigenvalues of products of random matrices

Nanda Kishore Reddy

Department of Mathematics IISc Bangalore

Random Product Matrices New Developments and Applications ZiF - Center for Interdisciplinary Research, Bielefeld University August 22, 2016

Lyapunov exponents

Consider a sequence $\{Y_n, n \ge 1\}$ of *i.i.d* $d \times d$ real random matrices with common distribution μ . Let $S_n = Y_n \cdots Y_1$ for all $n \ge 1$. Then the Lyapunov exponents are defined as follows.

Definition

If $\mathbf{E}(\log^+ ||Y_1||) < \infty$ (we write a^+ for max(a, 0)), the **first Lyapunov** exponent associated with μ is the element γ of $\mathbb{R} \cup \{-\infty\}$ defined by

$$\gamma_1 = \lim_{n \to \infty} \frac{1}{n} \mathbf{E}(\log \|S_n\|)$$

If d = 1, then $\gamma_1 = \mathbf{E}(\log |Y_1|)$

Fact

Let Y_1, Y_2, \ldots be *i.i.d* matrices in $GL_d(\mathbb{R})$ and $S_n = Y_n \cdots Y_1$. If $E(\log^+ ||Y_1||) < \infty$, then with probability one

$$\lim_{n \to \infty} \frac{1}{n} \log \|S_n\| = \gamma_1.$$

• The *p*-th exterior power $\wedge^p M$ $(1 \le p \le d)$ is $\binom{d}{p} \times \binom{d}{p}$ matrix.

- The *p*-th exterior power $\wedge^p M$ $(1 \le p \le d)$ is $\binom{d}{p} \times \binom{d}{p}$ matrix.
- Rows and columns are indexed by *p*-sized subsets of $\{1, 2...d\}$ in dictionary order, such that *I*, *J*-th element is given by

$$\wedge^p M_{I,J} = [M]_{I,J},$$

where $[M]_{I,J}$ denotes the $p \times p$ minor of M that corresponds to the rows with index in I and the columns with index in J. $([M]_I$ denotes $[M]_{I,I})$.

(本間) (本臣) (本臣) (臣)

- The *p*-th exterior power $\wedge^p M$ $(1 \le p \le d)$ is $\binom{d}{p} \times \binom{d}{p}$ matrix.
- Rows and columns are indexed by *p*-sized subsets of $\{1, 2...d\}$ in dictionary order, such that *I*, *J*-th element is given by

$$\wedge^p M_{I,J} = [M]_{I,J},$$

where $[M]_{I,J}$ denotes the $p \times p$ minor of M that corresponds to the rows with index in I and the columns with index in J. $([M]_I$ denotes $[M]_{I,I})$.

• By Cauchy-Binet formula, $[MN]_{I,J} = \sum_{K} [M]_{I,K} [N]_{K,J}$. Therefore,

 $\wedge^p(MN) = (\wedge^p M)(\wedge^p N).$

- The *p*-th exterior power $\wedge^p M$ $(1 \le p \le d)$ is $\binom{d}{p} \times \binom{d}{p}$ matrix.
- Rows and columns are indexed by *p*-sized subsets of $\{1, 2...d\}$ in dictionary order, such that *I*, *J*-th element is given by

$$\wedge^p M_{I,J} = [M]_{I,J},$$

where $[M]_{I,J}$ denotes the $p \times p$ minor of M that corresponds to the rows with index in I and the columns with index in J. $([M]_I$ denotes $[M]_{I,I})$.

• By Cauchy-Binet formula, $[MN]_{I,J} = \sum_{K} [M]_{I,K} [N]_{K,J}$. Therefore,

$$\wedge^p(MN) = (\wedge^p M)(\wedge^p N).$$

• Let $M = U\Sigma V^*$ be a singular value decomposition of M and $\sigma_1(M) \ge \sigma_2(M) \cdots \ge \sigma_d(M)$ be singular values of M, then

$$\wedge^{p} M = (\wedge^{p} U)(\wedge^{p} \Sigma)(\wedge^{p} V^{*})$$

is a singular value decomposition of $\wedge^p M$. Therefore

$$\|\wedge^p M\| = \sigma_1(M) \cdots \sigma_p(M).$$

< ロト (同) (三) (三) 三 三)

The **Lyapunov exponents** $\gamma_1, \gamma_2 \dots \gamma_d$ associated with μ are defined inductively by $\gamma = \gamma_1$ and for $p \ge 2$

$$\sum_{i=1}^{p} \gamma_i = \lim_{n \to \infty} \frac{1}{n} \mathbf{E}(\log \| \wedge^p S_n \|).$$

If for some $p \sum_{i=1}^{p-1} \gamma_i = -\infty$, we put $\gamma_p = \gamma_{p+1} = \cdots \gamma_d = -\infty$.

Fact

Let Y_1, Y_2, \ldots be i.i.d matrices in $GL_d(\mathbb{R})$ and $S_n = Y_n \cdots Y_1$. Let $\sigma_1(n) \ge \sigma_2(n) \ge \cdots \ge \sigma_d(n) > 0$ are singular values of S_n . If $\mathbf{E}(\log^+ ||Y_1||) < \infty$, then with probability one, for $1 \le p \le d$

$$\gamma_p = \lim_{n \to \infty} \frac{1}{n} \boldsymbol{E}(\log \sigma_p(n)) = \lim_{n \to \infty} \frac{1}{n} \log \sigma_p(n).$$

(4 個 ト 4 ヨ ト 4 ヨ ト

Let μ (resp. μ^*) be the probability measure of the invertible random matrix Y_1 (resp. Y_1^*) on $GL_d(\mathbb{R})$. Then T_{μ} is defined to be the smallest closed semigroup in $GL_d(\mathbb{R})$ which contains the support of μ in $GL_d(\mathbb{R})$. (Support of μ in $GL_d(\mathbb{R})$ is the set of all points in $GL_d(\mathbb{R})$ whose every open-neighbourhood has positive measure).

・ロト ・ 日本・ ・ 日本・ ・ 日本・

Let μ (resp. μ^*) be the probability measure of the invertible random matrix Y_1 (resp. Y_1^*) on $GL_d(\mathbb{R})$. Then T_{μ} is defined to be the smallest closed semigroup in $GL_d(\mathbb{R})$ which contains the support of μ in $GL_d(\mathbb{R})$. (Support of μ in $GL_d(\mathbb{R})$ is the set of all points in $GL_d(\mathbb{R})$ whose every open-neighbourhood has positive measure).

Definition

Given a subset T of $GL_d(\mathbb{R})$, we define the index of T as the least integer r such that there exists a sequence $\{M_n, n \ge 0\}$ in T for which $||M_n||^{-1}M_n$ converges to a rank r matrix. We say that T is **contracting** when its index is one. T is said to be p- **contracting** if $\{\wedge^p M; M \in T\}$ is contracting.

・ロト ・ 日本・ ・ 日本・ ・ 日本・

Let μ (resp. μ^*) be the probability measure of the invertible random matrix Y_1 (resp. Y_1^*) on $GL_d(\mathbb{R})$. Then T_{μ} is defined to be the smallest closed semigroup in $GL_d(\mathbb{R})$ which contains the support of μ in $GL_d(\mathbb{R})$. (Support of μ in $GL_d(\mathbb{R})$ is the set of all points in $GL_d(\mathbb{R})$ whose every open-neighbourhood has positive measure).

Definition

Given a subset T of $GL_d(\mathbb{R})$, we define the index of T as the least integer r such that there exists a sequence $\{M_n, n \ge 0\}$ in T for which $||M_n||^{-1}M_n$ converges to a rank r matrix. We say that T is **contracting** when its index is one. T is said to be p- **contracting** if $\{\wedge^p M; M \in T\}$ is contracting.

Definition

T is **strongly irreducible** if there does not exist a finite family of proper linear subspaces of \mathbb{R}^d , $V_1, V_2 \dots V_k$ such that $M(V_1 \cup V_2 \cup \dots V_k) = (V_1 \cup V_2 \cup \dots V_k)$ for any *M* in *T*. *T* is *p*-strongly irreducible if $\{\wedge^p M; M \in T\}$ is strongly irreducible.

Let μ (resp. μ^*) be the probability measure of the invertible random matrix Y_1 (resp. Y_1^*) on $GL_d(\mathbb{R})$. Then T_{μ} is defined to be the smallest closed semigroup in $GL_d(\mathbb{R})$ which contains the support of μ in $GL_d(\mathbb{R})$. (Support of μ in $GL_d(\mathbb{R})$ is the set of all points in $GL_d(\mathbb{R})$ whose every open-neighbourhood has positive measure).

Definition

Given a subset T of $GL_d(\mathbb{R})$, we define the index of T as the least integer r such that there exists a sequence $\{M_n, n \ge 0\}$ in T for which $||M_n||^{-1}M_n$ converges to a rank r matrix. We say that T is **contracting** when its index is one. T is said to be p- **contracting** if $\{\wedge^p M; M \in T\}$ is contracting.

Definition

T is **strongly irreducible** if there does not exist a finite family of proper linear subspaces of \mathbb{R}^d , $V_1, V_2 \dots V_k$ such that $M(V_1 \cup V_2 \cup \dots V_k) = (V_1 \cup V_2 \cup \dots V_k)$ for any *M* in *T*. *T* is *p*-strongly irreducible if $\{\wedge^p M; M \in T\}$ is strongly irreducible.

Define $\ell(M) = \max(\log^+ ||M||, \log^+ ||M^{-1}||)$. Observe that $\frac{1}{p} |\log || \wedge^p M|| \le \ell(M)$ for all $1 \le p \le d$.

Fact

Let μ be a probability measure on $GL_d(\mathbb{R})$ such that $\int \log^+ ||M|| d\mu(M)$ is finite. We suppose T_{μ} is irreducible. Then $\gamma_1 > \gamma_2$ if and only if T_{μ} is strongly irreducible and contracting. If T_{μ} is p-strongly irreducible and p-contracting for some $p \in \{1, \ldots, d-1\}$, then $\gamma_p > \gamma_{p+1}$.

Fact

Let μ be a probability measure on $GL_d(\mathbb{R})$ such that $\int \log^+ ||M|| d\mu(M)$ is finite. We suppose T_{μ} is irreducible. Then $\gamma_1 > \gamma_2$ if and only if T_{μ} is strongly irreducible and contracting. If T_{μ} is p-strongly irreducible and p-contracting for some $p \in \{1, \ldots, d-1\}$, then $\gamma_p > \gamma_{p+1}$.

Theorem

Let Y_1, Y_2, \ldots be i.i.d random elements of $GL_d(\mathbb{R})$ with common distribution μ such that T_{μ} is strongly irreducible and contracting. Set $S_n = Y_n \cdots Y_1$ and let $\lambda_1(n)$ be an eigenvalue of S_n with maximum absolute value and $\sigma_1(n)$ be the maximum singular value of S_n , for all $n \ge 1$. If for some $\tau > 0$, $\mathbf{E}e^{\tau\ell(Y_1)}$ is finite, then for any r > 0 with probability one

$$\lim_{n \to \infty} \frac{1}{n^r} \log \left(\frac{|\lambda_1(n)|}{\sigma_1(n)} \right) = 0.$$

・ロト ・ 母ト ・ ヨト ・ ヨト ・ ヨ

Theorem

Let Y_1, Y_2, \ldots be i.i.d random elements of $GL_d(\mathbb{R})$ with common distribution μ such that T_{μ} is p-strongly irreducible and p-contracting for all $1 \leq p \leq d$. Set $S_n = Y_n \cdots Y_1$ and let $\lambda_1(n), \lambda_2(n), \ldots, \lambda_d(n)$ be the eigenvalues of S_n such that $|\lambda_1(n)| \geq |\lambda_2(n)| \geq \cdots \geq |\lambda_d(n)| > 0$ and $\sigma_1(n), \sigma_2(n), \ldots, \sigma_d(n)$ be the singular values of S_n such that $|\sigma_1(n)| \geq |\sigma_2(n)| \geq \cdots \geq |\sigma_d(n)| > 0$, for all $n \geq 1$. If for some $\tau > 0$, $\mathbf{E}e^{\tau \ell(Y_1)}$ is finite, then for any r > 0 with probability one

$$\lim_{n \to \infty} \frac{1}{n^r} \log \left(\frac{|\lambda_p(n)|}{\sigma_p(n)} \right) = 0,$$

for all $1 \leq p \leq d$.

(本間) (本臣) (本臣) (王臣)

• $\operatorname{Tr}(S_n) = \operatorname{Tr}(U_n \Sigma_n V_n^*) = \sum_{i=1}^d \sigma_i(n) \langle V_n e_i, U_n e_i \rangle.$

イロト 不得下 イヨト イヨト 二日

- $\operatorname{Tr}(S_n) = \operatorname{Tr}(U_n \Sigma_n V_n^*) = \sum_{i=1}^d \sigma_i(n) \langle V_n e_i, U_n e_i \rangle.$
- $|\operatorname{Tr}(S_n)| \le d|\lambda_1(n)| \le d\sigma_1(n)$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

• Tr(S_n) = Tr(U_n
$$\Sigma_n V_n^*$$
) = $\sum_{i=1}^d \sigma_i(n) \langle V_n e_i, U_n e_i \rangle$.

•
$$|\operatorname{Tr}(S_n)| \le d|\lambda_1(n)| \le d\sigma_1(n)$$

•
$$S_{n,k} = Y_n \cdots Y_{k+1}$$
. Then

$$\operatorname{Tr}(S_n) = \operatorname{Tr}(S_{n,k}S_{k,0})$$

$$=\sum_{i=1}^{d}\sum_{j=1}^{d}\sigma_i(n,k)\sigma_j(k,0)\langle V_{n,k}e_i,U_{k,0}e_j\rangle\langle V_{k,0}e_j,U_{n,k}e_i\rangle.$$

◆□ → ◆□ → ◆豆 → ◆豆 → □ □

Lemma

Let Y_1, Y_2, \ldots be i.i.d random elements of $GL_d(\mathbb{R})$ with common distribution μ such that T_{μ} is strongly irreducible and contracting and for some $\tau > 0$, $\mathbf{E}e^{\tau^{\ell}(Y_1)}$ is finite. Set $S_n = Y_n \cdots Y_1$ and consider a Singular value decomposition $S_n = U_n \Sigma_n V_n^*$ with U_n and V_n in O(d), for all $n \ge 1$. Then for any r > 0

(i) for any sequence $\{u_n, n \ge 1\}$ of random unit vectors in \mathbb{R}^d such that $S_n e_1$ and u_n are independent for each n, with probability one we have that

$$\lim_{n \to \infty} \left| \frac{\langle S_n e_1, u_n \rangle}{\|S_n e_1\|} \right|^{\frac{1}{n^r}} = \lim_{n \to \infty} |\langle U_n e_1, u_n \rangle|^{\frac{1}{n^r}} = 1$$

(ii) for any sequence $\{v_n, n \ge 1\}$ of random unit vectors in \mathbb{R}^d such that $S_n^* e_1$ and v_n are independent for each n, with probability one we have that

$$\lim_{n \to \infty} \left| \frac{\langle S_n^* e_1, v_n \rangle}{\|S_n^* e_1\|} \right|^{\frac{1}{n^r}} = \lim_{n \to \infty} |\langle V_n e_1, v_n \rangle|^{\frac{1}{n^r}} = 1.$$

イロト イポト イヨト イヨト 二日

Corollary

Let ξ be a real valued continuous random variable whose support contains an open set and there exists $\tau > 0$ such that

$$E|\xi|^{ au} < \infty \ and \ \sup_{a \in \mathbb{R}} E|\xi - a|^{- au} < \infty.$$

Let X_1, X_2, \ldots be a sequence of $d \times d$ i.i.d random matrices whose elements are i.i.d random variables distributed like ξ . Then for any r > 0 with probability one for all $1 \le p \le d$,

$$\lim_{n \to \infty} \frac{1}{n^r} \log \left(\frac{|\lambda_p(n)|}{\sigma_p(n)} \right) = 0.$$

Remark

If the random variable ξ has bounded density, then $\sup_{a \in \mathbb{R}} \mathbf{E} |\xi - a|^{-\tau} < \infty$ for any $0 < \tau < 1$. Let us say f is the probability density of ξ , bounded by K, then

$$\begin{split} \boldsymbol{E} |\xi - a|^{-\tau} &= \sup_{a \in \mathbb{R}} \int |x - a|^{-\tau} f(x) dx \\ &= \int_{|x - a| < \epsilon} |x - a|^{-\tau} f(x) dx + \int_{|x - a| \ge \epsilon} |x - a|^{-\tau} f(x) dx \\ &\leq K \int_{|x - a| < \epsilon} |x - a|^{-\tau} dx + \epsilon^{-\tau} \\ &= K \frac{2\epsilon^{1 - \tau}}{1 - \tau} + \epsilon^{-\tau} < \infty. \end{split}$$

Since ϵ, K, τ do not depend on a, we get that

$$\sup_{a\in\mathbb{R}}\boldsymbol{E}\,|\boldsymbol{\xi}-\boldsymbol{a}|^{-\tau}<\infty.$$

Fact

 T_{μ} is p-strongly irreducible and p-contracting, for any $1 \le p \le d$, if there exists a matrix M such that

- $||M||^{-1}M$ is not orthogonal,
- for any $K \in O(d)$, KMK^{-1} is in T_{μ} .

Thank you!!

Nanda kishore Reddy Lyapunov exponents and eigenvalues of products of ra

E