Lyapunov exponents and eigenvalues of products of random matrices

Nanda Kishore Reddy
Department of Mathematics
IISc Bangalore

Random Product Matrices
New Developments and Applications
ZiF - Center for Interdisciplinary Research, Bielefeld University August 22, 2016

Lyapunov exponents

Consider a sequence $\left\{Y_{n}, n \geq 1\right\}$ of i.i.d $d \times d$ real random matrices with common distribution μ. Let $S_{n}=Y_{n} \cdots Y_{1}$ for all $n \geq 1$. Then the Lyapunov exponents are defined as follows.

Definition

If $\mathbf{E}\left(\log ^{+}\left\|Y_{1}\right\|\right)<\infty$ (we write a^{+}for $\max (a, 0)$), the first Lyapunov exponent associated with μ is the element γ of $\mathbb{R} \cup\{-\infty\}$ defined by

$$
\gamma_{1}=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbf{E}\left(\log \left\|S_{n}\right\|\right)
$$

If $d=1$, then $\gamma_{1}=\mathbf{E}\left(\log \left|Y_{1}\right|\right)$

Fact

Let Y_{1}, Y_{2}, \ldots be i.i.d matrices in $G L_{d}(\mathbb{R})$ and $S_{n}=Y_{n} \cdots Y_{1}$. If $\boldsymbol{E}\left(\log ^{+}\left\|Y_{1}\right\|\right)<\infty$, then with probability one

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|S_{n}\right\|=\gamma_{1}
$$

Exterior powers

- The p-th exterior power $\wedge^{p} M(1 \leq p \leq d)$ is $\binom{d}{p} \times\binom{ d}{p}$ matrix.

Exterior powers

- The p-th exterior power $\wedge^{p} M(1 \leq p \leq d)$ is $\binom{d}{p} \times\binom{ d}{p}$ matrix.
- Rows and columns are indexed by p-sized subsets of $\{1,2 \ldots d\}$ in dictionary order, such that I, J-th element is given by

$$
\wedge^{p} M_{I, J}=[M]_{I, J},
$$

where $[M]_{I, J}$ denotes the $p \times p$ minor of M that corresponds to the rows with index in I and the columns with index in J. ([$M]_{I}$ denotes $\left.[M]_{I, I}\right)$.

Exterior powers

- The p-th exterior power $\wedge^{p} M(1 \leq p \leq d)$ is $\binom{d}{p} \times\binom{ d}{p}$ matrix.
- Rows and columns are indexed by p-sized subsets of $\{1,2 \ldots d\}$ in dictionary order, such that I, J-th element is given by

$$
\wedge^{p} M_{I, J}=[M]_{I, J},
$$

where $[M]_{I, J}$ denotes the $p \times p$ minor of M that corresponds to the rows with index in I and the columns with index in J. ([$M]_{I}$ denotes $\left.[M]_{I, I}\right)$.

- By Cauchy-Binet formula, $[M N]_{I, J}=\sum_{K}[M]_{I, K}[N]_{K, J}$. Therefore,

$$
\wedge^{p}(M N)=\left(\wedge^{p} M\right)\left(\wedge^{p} N\right)
$$

Exterior powers

- The p-th exterior power $\wedge^{p} M(1 \leq p \leq d)$ is $\binom{d}{p} \times\binom{ d}{p}$ matrix.
- Rows and columns are indexed by p-sized subsets of $\{1,2 \ldots d\}$ in dictionary order, such that I, J-th element is given by

$$
\wedge^{p} M_{I, J}=[M]_{I, J}
$$

where $[M]_{I, J}$ denotes the $p \times p$ minor of M that corresponds to the rows with index in I and the columns with index in J. ([$M]_{I}$ denotes $\left.[M]_{I, I}\right)$.

- By Cauchy-Binet formula, $[M N]_{I, J}=\sum_{K}[M]_{I, K}[N]_{K, J}$. Therefore,

$$
\wedge^{p}(M N)=\left(\wedge^{p} M\right)\left(\wedge^{p} N\right)
$$

- Let $M=U \Sigma V^{*}$ be a singular value decomposition of M and $\sigma_{1}(M) \geq \sigma_{2}(M) \cdots \geq \sigma_{d}(M)$ be singular values of M, then

$$
\wedge^{p} M=\left(\wedge^{p} U\right)\left(\wedge^{p} \Sigma\right)\left(\wedge^{p} V^{*}\right)
$$

is a singular value decomposition of $\wedge^{p} M$. Therefore

$$
\left\|\wedge^{p} M\right\|=\sigma_{1}(M) \cdots \sigma_{p}(M)
$$

Definition

The Lyapunov exponents $\gamma_{1}, \gamma_{2} \ldots \gamma_{d}$ associated with μ are defined inductively by $\gamma=\gamma_{1}$ and for $p \geq 2$

$$
\sum_{i=1}^{p} \gamma_{i}=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbf{E}\left(\log \left\|\wedge^{p} S_{n}\right\|\right)
$$

If for some $p \sum_{i=1}^{p-1} \gamma_{i}=-\infty$, we put $\gamma_{p}=\gamma_{p+1}=\cdots \gamma_{d}=-\infty$.

Fact

Let Y_{1}, Y_{2}, \ldots be i.i.d matrices in $G L_{d}(\mathbb{R})$ and $S_{n}=Y_{n} \cdots Y_{1}$. Let $\sigma_{1}(n) \geq \sigma_{2}(n) \geq \cdots \geq \sigma_{d}(n)>0$ are singular values of S_{n}. If $\boldsymbol{E}\left(\log ^{+}\left\|Y_{1}\right\|\right)<\infty$, then with probability one, for $1 \leq p \leq d$

$$
\gamma_{p}=\lim _{n \rightarrow \infty} \frac{1}{n} \boldsymbol{E}\left(\log \sigma_{p}(n)\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sigma_{p}(n)
$$

Definition

Let μ (resp. μ^{*}) be the probability measure of the invertible random matrix $Y_{1}\left(\right.$ resp. $\left.Y_{1}^{*}\right)$ on $G L_{d}(\mathbb{R})$. Then T_{μ} is defined to be the smallest closed semigroup in $G L_{d}(\mathbb{R})$ which contains the support of μ in $G L_{d}(\mathbb{R})$. (Support of μ in $G L_{d}(\mathbb{R})$ is the set of all points in $G L_{d}(\mathbb{R})$ whose every open-neighbourhood has positive measure).

Definition

Let μ (resp. μ^{*}) be the probability measure of the invertible random matrix Y_{1} (resp. Y_{1}^{*}) on $G L_{d}(\mathbb{R})$. Then T_{μ} is defined to be the smallest closed semigroup in $G L_{d}(\mathbb{R})$ which contains the support of μ in $G L_{d}(\mathbb{R})$. (Support of μ in $G L_{d}(\mathbb{R})$ is the set of all points in $G L_{d}(\mathbb{R})$ whose every open-neighbourhood has positive measure).

Definition

Given a subset T of $G L_{d}(\mathbb{R})$, we define the index of T as the least integer r such that there exists a sequence $\left\{M_{n}, n \geq 0\right\}$ in T for which $\left\|M_{n}\right\|^{-1} M_{n}$ converges to a rank r matrix. We say that T is contracting when its index is one. T is said to be p - contracting if $\left\{\wedge^{p} M ; M \in T\right\}$ is contracting.

Definition

Let μ (resp. μ^{*}) be the probability measure of the invertible random matrix $Y_{1}\left(\right.$ resp. $\left.Y_{1}^{*}\right)$ on $G L_{d}(\mathbb{R})$. Then T_{μ} is defined to be the smallest closed semigroup in $G L_{d}(\mathbb{R})$ which contains the support of μ in $G L_{d}(\mathbb{R})$. (Support of μ in $G L_{d}(\mathbb{R})$ is the set of all points in $G L_{d}(\mathbb{R})$ whose every open-neighbourhood has positive measure).

Definition

Given a subset T of $G L_{d}(\mathbb{R})$, we define the index of T as the least integer r such that there exists a sequence $\left\{M_{n}, n \geq 0\right\}$ in T for which $\left\|M_{n}\right\|^{-1} M_{n}$ converges to a rank r matrix. We say that T is contracting when its index is one. T is said to be p - contracting if $\left\{\wedge^{p} M ; M \in T\right\}$ is contracting.

Definition

T is strongly irreducible if there does not exist a finite family of proper linear subspaces of $\mathbb{R}^{d}, V_{1}, V_{2} \ldots V_{k}$ such that $M\left(V_{1} \cup V_{2} \cup \ldots V_{k}\right)=\left(V_{1} \cup V_{2} \cup \ldots V_{k}\right)$ for any M in $T . T$ is p-strongly irreducible if $\left\{\wedge^{p} M ; M \in T\right\}$ is strongly irreducible.

Definition

Let μ (resp. μ^{*}) be the probability measure of the invertible random matrix Y_{1} (resp. Y_{1}^{*}) on $G L_{d}(\mathbb{R})$. Then T_{μ} is defined to be the smallest closed semigroup in $G L_{d}(\mathbb{R})$ which contains the support of μ in $G L_{d}(\mathbb{R})$. (Support of μ in $G L_{d}(\mathbb{R})$ is the set of all points in $G L_{d}(\mathbb{R})$ whose every open-neighbourhood has positive measure).

Definition

Given a subset T of $G L_{d}(\mathbb{R})$, we define the index of T as the least integer r such that there exists a sequence $\left\{M_{n}, n \geq 0\right\}$ in T for which $\left\|M_{n}\right\|^{-1} M_{n}$ converges to a rank r matrix. We say that T is contracting when its index is one. T is said to be p - contracting if $\left\{\wedge^{p} M ; M \in T\right\}$ is contracting.

Definition

T is strongly irreducible if there does not exist a finite family of proper linear subspaces of $\mathbb{R}^{d}, V_{1}, V_{2} \ldots V_{k}$ such that
$M\left(V_{1} \cup V_{2} \cup \ldots V_{k}\right)=\left(V_{1} \cup V_{2} \cup \ldots V_{k}\right)$ for any M in $T . T$ is p-strongly irreducible if $\left\{\wedge^{p} M ; M \in T\right\}$ is strongly irreducible.

Define $\ell(M)=\max \left(\log ^{+}\|M\|, \log ^{+}\left\|M^{-1}\right\|\right)$. Observe that $\frac{1}{p}\left|\log \left\|\wedge^{p} M\right\|\right| \leq \ell(M)$ for all $1 \leq p \leq d$.

Fact

Let μ be a probability measure on $G L_{d}(\mathbb{R})$ such that $\int \log ^{+}\|M\| d \mu(M)$ is finite. We suppose T_{μ} is irreducible. Then $\gamma_{1}>\gamma_{2}$ if and only if T_{μ} is strongly irreducible and contracting. If T_{μ} is p-strongly irreducible and p-contracting for some $p \in\{1, \ldots, d-1\}$, then $\gamma_{p}>\gamma_{p+1}$.

Fact

Let μ be a probability measure on $G L_{d}(\mathbb{R})$ such that $\int \log ^{+}\|M\| d \mu(M)$ is finite. We suppose T_{μ} is irreducible. Then $\gamma_{1}>\gamma_{2}$ if and only if T_{μ} is strongly irreducible and contracting. If T_{μ} is p-strongly irreducible and p-contracting for some $p \in\{1, \ldots, d-1\}$, then $\gamma_{p}>\gamma_{p+1}$.

Theorem

Let Y_{1}, Y_{2}, \ldots be i.i.d random elements of $G L_{d}(\mathbb{R})$ with common distribution μ such that T_{μ} is strongly irreducible and contracting. Set $S_{n}=Y_{n} \cdots Y_{1}$ and let $\lambda_{1}(n)$ be an eigenvalue of S_{n} with maximum absolute value and $\sigma_{1}(n)$ be the maximum singular value of S_{n}, for all $n \geq 1$. If for some $\tau>0, \boldsymbol{E} e^{\tau \ell\left(Y_{1}\right)}$ is finite, then for any $r>0$ with probability one

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{r}} \log \left(\frac{\left|\lambda_{1}(n)\right|}{\sigma_{1}(n)}\right)=0
$$

Theorem

Let Y_{1}, Y_{2}, \ldots be i.i.d random elements of $G L_{d}(\mathbb{R})$ with common distribution μ such that T_{μ} is p-strongly irreducible and p-contracting for all $1 \leq p \leq d$. Set $S_{n}=Y_{n} \cdots Y_{1}$ and let $\lambda_{1}(n), \lambda_{2}(n), \ldots, \lambda_{d}(n)$ be the eigenvalues of S_{n} such that $\left|\lambda_{1}(n)\right| \geq\left|\lambda_{2}(n)\right| \geq \cdots \geq\left|\lambda_{d}(n)\right|>0$ and $\sigma_{1}(n), \sigma_{2}(n), \ldots, \sigma_{d}(n)$ be the singular values of S_{n} such that $\left|\sigma_{1}(n)\right| \geq\left|\sigma_{2}(n)\right| \geq \cdots \geq\left|\sigma_{d}(n)\right|>0$, for all $n \geq 1$. If for some $\tau>0$, $\boldsymbol{E} e^{\tau \ell\left(Y_{1}\right)}$ is finite, then for any $r>0$ with probability one

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{r}} \log \left(\frac{\left|\lambda_{p}(n)\right|}{\sigma_{p}(n)}\right)=0
$$

for all $1 \leq p \leq d$.

Key idea

- $\operatorname{Tr}\left(S_{n}\right)=\operatorname{Tr}\left(U_{n} \Sigma_{n} V_{n}^{*}\right)=\sum_{i=1}^{d} \sigma_{i}(n)\left\langle V_{n} e_{i}, U_{n} e_{i}\right\rangle$.

Key idea

- $\operatorname{Tr}\left(S_{n}\right)=\operatorname{Tr}\left(U_{n} \Sigma_{n} V_{n}^{*}\right)=\sum_{i=1}^{d} \sigma_{i}(n)\left\langle V_{n} e_{i}, U_{n} e_{i}\right\rangle$.
- $\left|\operatorname{Tr}\left(S_{n}\right)\right| \leq d\left|\lambda_{1}(n)\right| \leq d \sigma_{1}(n)$

Key idea

- $\operatorname{Tr}\left(S_{n}\right)=\operatorname{Tr}\left(U_{n} \Sigma_{n} V_{n}^{*}\right)=\sum_{i=1}^{d} \sigma_{i}(n)\left\langle V_{n} e_{i}, U_{n} e_{i}\right\rangle$.
- $\left|\operatorname{Tr}\left(S_{n}\right)\right| \leq d\left|\lambda_{1}(n)\right| \leq d \sigma_{1}(n)$
- $S_{n, k}=Y_{n} \cdots Y_{k+1}$. Then
$\operatorname{Tr}\left(S_{n}\right)=\operatorname{Tr}\left(S_{n, k} S_{k, 0}\right)$
$=\sum_{i=1}^{d} \sum_{j=1}^{d} \sigma_{i}(n, k) \sigma_{j}(k, 0)\left\langle V_{n, k} e_{i}, U_{k, 0} e_{j}\right\rangle\left\langle V_{k, 0} e_{j}, U_{n, k} e_{i}\right\rangle$.

Lemma

Let Y_{1}, Y_{2}, \ldots be i.i.d random elements of $G L_{d}(\mathbb{R})$ with common distribution μ such that T_{μ} is strongly irreducible and contracting and for some $\tau>0$, $\boldsymbol{E} e^{\tau \ell\left(Y_{1}\right)}$ is finite. Set $S_{n}=Y_{n} \cdots Y_{1}$ and consider a Singular value decomposition $S_{n}=U_{n} \Sigma_{n} V_{n}^{*}$ with U_{n} and V_{n} in $O(d)$, for all $n \geq 1$. Then for any $r>0$
(i) for any sequence $\left\{u_{n}, n \geq 1\right\}$ of random unit vectors in \mathbb{R}^{d} such that $S_{n} e_{1}$ and u_{n} are independent for each n, with probability one we have that

$$
\lim _{n \rightarrow \infty}\left|\frac{\left\langle S_{n} e_{1}, u_{n}\right\rangle}{\left\|S_{n} e_{1}\right\|}\right|^{\frac{1}{n^{r}}}=\lim _{n \rightarrow \infty}\left|\left\langle U_{n} e_{1}, u_{n}\right\rangle\right|^{\frac{1}{n^{\top}}}=1
$$

(ii) for any sequence $\left\{v_{n}, n \geq 1\right\}$ of random unit vectors in \mathbb{R}^{d} such that $S_{n}^{*} e_{1}$ and v_{n} are independent for each n, with probability one we have that

$$
\lim _{n \rightarrow \infty}\left|\frac{\left\langle S_{n}^{*} e_{1}, v_{n}\right\rangle}{\left\|S_{n}^{*} e_{1}\right\|}\right|^{\frac{1}{n^{r}}}=\lim _{n \rightarrow \infty}\left|\left\langle V_{n} e_{1}, v_{n}\right\rangle\right|^{\frac{1}{n^{r}}}=1
$$

Corollary

Let ξ be a real valued continuous random variable whose support contains an open set and there exists $\tau>0$ such that

$$
\boldsymbol{E}|\xi|^{\tau}<\infty \text { and } \sup _{a \in \mathbb{R}} \boldsymbol{E}|\xi-a|^{-\tau}<\infty .
$$

Let X_{1}, X_{2}, \ldots be a sequence of $d \times d$ i.i.d random matrices whose elements are i.i.d random variables distributed like ξ. Then for any $r>0$ with probability one for all $1 \leq p \leq d$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{r}} \log \left(\frac{\left|\lambda_{p}(n)\right|}{\sigma_{p}(n)}\right)=0
$$

Remark

If the random variable ξ has bounded density, then $\sup _{a \in \mathbb{R}} \boldsymbol{E}|\xi-a|^{-\tau}<\infty$ for any $0<\tau<1$. Let us say f is the probability density of ξ,bounded by K, then

$$
\begin{aligned}
\boldsymbol{E}|\xi-a|^{-\tau} & =\sup _{a \in \mathbb{R}} \int|x-a|^{-\tau} f(x) d x \\
& =\int_{|x-a|<\epsilon}|x-a|^{-\tau} f(x) d x+\int_{|x-a| \geq \epsilon}|x-a|^{-\tau} f(x) d x \\
& \leq K \int_{|x-a|<\epsilon}|x-a|^{-\tau} d x+\epsilon^{-\tau} \\
& =K \frac{2 \epsilon^{1-\tau}}{1-\tau}+\epsilon^{-\tau}<\infty
\end{aligned}
$$

Since ϵ, K, τ do not depend on a, we get that

$$
\sup _{a \in \mathbb{R}} \boldsymbol{E}|\xi-a|^{-\tau}<\infty
$$

Fact

T_{μ} is p-strongly irreducible and p-contracting, for any
$1 \leq p \leq d$, if there exists a matrix M such that

- $\|M\|^{-1} M$ is not orthogonal,
- for any $K \in O(d), K M K^{-1}$ is in T_{μ}.

Thank you!!

