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Introduction and known results

Consider the product

Yr ,s = Gr · · · Gs+1Ts · · · T1

the j-th factor is of size (n + νj) × (n + νj−1) for fixed νj ≥ 0,
1 ≤ j ≤ r and ν0 = 0,
each Gj is a standard complex Gaussian (complex Ginibre matrix),
each Tj is a truncated unitary matrix taken from a Haar distributed
unitary matrix of dimension ℓj × ℓj with ℓj ≥ 2n + νj + νj−1,
all factors are independent.

→ study of the eigenvalues of Y ∗
r ,sYr ,s

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Introduction and known results

Consider the product

Yr ,s = Gr · · · Gs+1Ts · · · T1

the j-th factor is of size (n + νj) × (n + νj−1) for fixed νj ≥ 0,
1 ≤ j ≤ r and ν0 = 0,

each Gj is a standard complex Gaussian (complex Ginibre matrix),
each Tj is a truncated unitary matrix taken from a Haar distributed
unitary matrix of dimension ℓj × ℓj with ℓj ≥ 2n + νj + νj−1,
all factors are independent.

→ study of the eigenvalues of Y ∗
r ,sYr ,s

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Introduction and known results

Consider the product

Yr ,s = Gr · · · Gs+1Ts · · · T1

the j-th factor is of size (n + νj) × (n + νj−1) for fixed νj ≥ 0,
1 ≤ j ≤ r and ν0 = 0,
each Gj is a standard complex Gaussian (complex Ginibre matrix),

each Tj is a truncated unitary matrix taken from a Haar distributed
unitary matrix of dimension ℓj × ℓj with ℓj ≥ 2n + νj + νj−1,
all factors are independent.

→ study of the eigenvalues of Y ∗
r ,sYr ,s

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Introduction and known results

Consider the product

Yr ,s = Gr · · · Gs+1Ts · · · T1

the j-th factor is of size (n + νj) × (n + νj−1) for fixed νj ≥ 0,
1 ≤ j ≤ r and ν0 = 0,
each Gj is a standard complex Gaussian (complex Ginibre matrix),
each Tj is a truncated unitary matrix taken from a Haar distributed
unitary matrix of dimension ℓj × ℓj with ℓj ≥ 2n + νj + νj−1,

all factors are independent.

→ study of the eigenvalues of Y ∗
r ,sYr ,s

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Introduction and known results

Consider the product

Yr ,s = Gr · · · Gs+1Ts · · · T1

the j-th factor is of size (n + νj) × (n + νj−1) for fixed νj ≥ 0,
1 ≤ j ≤ r and ν0 = 0,
each Gj is a standard complex Gaussian (complex Ginibre matrix),
each Tj is a truncated unitary matrix taken from a Haar distributed
unitary matrix of dimension ℓj × ℓj with ℓj ≥ 2n + νj + νj−1,
all factors are independent.

→ study of the eigenvalues of Y ∗
r ,sYr ,s

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Introduction and known results

Consider the product

Yr ,s = Gr · · · Gs+1Ts · · · T1

the j-th factor is of size (n + νj) × (n + νj−1) for fixed νj ≥ 0,
1 ≤ j ≤ r and ν0 = 0,
each Gj is a standard complex Gaussian (complex Ginibre matrix),
each Tj is a truncated unitary matrix taken from a Haar distributed
unitary matrix of dimension ℓj × ℓj with ℓj ≥ 2n + νj + νj−1,
all factors are independent.

→ study of the eigenvalues of Y ∗
r ,sYr ,s

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Introduction and known results

For finite dimensions n:

Akemann, Ipsen, Kieburg (2013): In the case s = 0 the eigenvalues
form a determinantal point process with joint probability density
functions involving Meijer G-functions.
Kuijlaars, Zhang (2013): Interpretation as a multiple orthogonal
polynomial ensemble and study of the correlation kernel at the hard
edge.
Kieburg, Kuijlaars, Stivigny (2015): Extension of these results to the
general case r ≥ s.

→ study of the eigenvalues of Y ∗
r ,sYr ,s for large dimensions (n → ∞)
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Introduction and known results

Raney distributions:

For α, β ∈ R, α > 1 and 0 < β ≤ α

the Raney distribution Rα,β is a compactly supported measure on [0, ∞)
defined by the moment sequence

Rα,β(k) =
β

kα + β

(
kα + β

k

)
.

Forrester, Liu, Penson, Życzkowski, Zinn-Justin, Mlotkowski, ...

Special case α = r + 1 and β = 1: Fuss-Catalan distributions of order r

Rr+1,1 = FCr .

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Introduction and known results

Raney distributions: For α, β ∈ R, α > 1 and 0 < β ≤ α

the Raney distribution Rα,β is a compactly supported measure on [0, ∞)
defined by the moment sequence

Rα,β(k) =
β

kα + β

(
kα + β

k

)
.

Forrester, Liu, Penson, Życzkowski, Zinn-Justin, Mlotkowski, ...

Special case α = r + 1 and β = 1: Fuss-Catalan distributions of order r

Rr+1,1 = FCr .

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Introduction and known results

Raney distributions: For α, β ∈ R, α > 1 and 0 < β ≤ α

the Raney distribution Rα,β is a compactly supported measure on [0, ∞)
defined by the moment sequence

Rα,β(k) =
β

kα + β

(
kα + β

k

)
.

Forrester, Liu, Penson, Życzkowski, Zinn-Justin, Mlotkowski, ...

Special case α = r + 1 and β = 1: Fuss-Catalan distributions of order r

Rr+1,1 = FCr .

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Introduction and known results

Raney distributions: For α, β ∈ R, α > 1 and 0 < β ≤ α

the Raney distribution Rα,β is a compactly supported measure on [0, ∞)
defined by the moment sequence

Rα,β(k) =
β

kα + β

(
kα + β

k

)
.

Forrester, Liu, Penson, Życzkowski, Zinn-Justin, Mlotkowski, ...

Special case α = r + 1 and β = 1: Fuss-Catalan distributions of order r

Rr+1,1 = FCr .

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Introduction and known results

Raney distributions: For α, β ∈ R, α > 1 and 0 < β ≤ α

the Raney distribution Rα,β is a compactly supported measure on [0, ∞)
defined by the moment sequence

Rα,β(k) =
β

kα + β

(
kα + β

k

)
.

Forrester, Liu, Penson, Życzkowski, Zinn-Justin, Mlotkowski, ...

Special case α = r + 1 and β = 1: Fuss-Catalan distributions of order r

Rr+1,1 = FCr .

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Introduction and known results

Classical result by Marchenko and Pastur (1967):

as n → ∞ the
eigenvalues of 1

n G∗
j Gj converge weakly, almost surely, to the

Marchenko-Pastur distribution on [0, 4] with density

x 7→ 1
2π

√
4 − x√

x
,

which coincides with R2,1 = FC1.
As n → ∞ the eigenvalues of T ∗

j Tj converge weakly, almost surely,
to the arcsine distribution on [0, 1] with density

x 7→ 1
π

1√
x(1 − x)

,

if ℓj − 2n is independent of n. This distribution coincides with R1,1/2.
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Introduction and known results

Lemma
Let Zn = 1

nr−s Y ∗
r ,sYr ,s

and suppose that all νj and ℓj − 2n are
independent of n. Then, as n → ∞, the empirical eigenvalue
distributions of Zn converge weakly, almost surely to the measure

µr ,s = Rr−s+1,1 � R�s
1, 1

2
.

→ Moments of these measures:

s = 0 : Fuss-Catalan numbers of order r , Rr+1,1(k)

s = 1 : Raney numbers R r+1
2 , 1

2
(k)

s > 1 : ?
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Results - Moments

Theorem (Neuschel, Stivigny, Gawronski, 2014)
Let r , s ∈ N0 such that s < r and let m be a positive real number. Then
there exists a unique measure Jr ,s,m supported on a compact interval
[0, x∗] such that its moments are given by the sequence (Jr ,s,m(k))k with

Jr ,s,m(0) = m

and for k ≥ 1

Jr ,s,m(k) =
m
k

(
mr

(1 + m)s

)k
P(αk−1,βk−1)

k−1

(
1 − m
1 + m

)
,

where P(αk ,βk )
k (x) are the Jacobi polynomials with varying parameters

αk = rk + r + 1 and βk = −(r + 1 − s)k − (r + 2 − s).
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Results - Moments

Theorem (cont.)
Moreover, for m = 1 we have

Jr ,s,1 = Rr−s+1,1 � R�s
1, 1

2
.

→ The moments of the limiting distributions µr ,s are given by

Jr ,s,1(k) =
1

k2ks P(αk−1,βk−1)
k−1 (0), k ≥ 1,

where

αk = rk + r + 1 and βk = −(r + 1 − s)k − (r + 2 − s).

→ Densities of these measures?
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Results - Densities

Known cases of densities of µr ,s :
The case s = 0: µr ,0 = FCr

dµr ,0
dx (x) = (sin φ)2(sin rφ)r−1

π(sin(r + 1)φ)r

where

x = x(φ) = (sin (r + 1)φ)r+1

sin φ (sin rφ)r , 0 < φ <
π

r + 1 .

The case s = 1: µr ,1 = Rr ,1 � R1, 1
2
= R r+1

2 , 1
2
.
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Results - Densities

The case r = s:

Consider the product

(Tr · · · T1)
∗ (Tr · · · T1) ,

then the limit distribution of the eigenvalues is given by

µr ,r = R�r
1, 1

2
.
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Results - Densities

Theorem (Forrester, Wang, 2015)
The measure µr ,r is supported on the interval

[
0, (r+1)r+1

2r+1r r

]
and has the

density

dµr ,r
dx (x) = 2r+2 sin(φ)2 sin(rφ)r+1

π sin((r + 1)φ)r (4 sin(φ)2 sin(rφ)2 + sin((r − 1)φ)2)

where

x = x(φ) = sin((r + 1)φ)r+1

2r+1 sin(φ) sin(rφ)r , 0 < φ <
π

r + 1 .

→ Global density of the Jacobi Muttalib–Borodin ensemble!
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Results

Proof. Let F denote the Stieltjes transform of µr ,r

F (z) =
x∗∫

0

1
z − t dµr ,r (t).

Using properties of the S-transform one can derive that w(z) = zF (z)
satisfies

w r+1 − z(w − 1)(w + 1)r = 0.

→ x∗ =
(r + 1)r+1

2r+1r r

and w is the unique solution analytic on C ∪ {∞}\[0, x∗] taking the
value 1 at infinity.
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value 1 at infinity.

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Results

Proof. Let F denote the Stieltjes transform of µr ,r

F (z) =
x∗∫

0

1
z − t dµr ,r (t).

Using properties of the S-transform one can derive that w(z) = zF (z)
satisfies

w r+1 − z(w − 1)(w + 1)r = 0.

→ x∗ =
(r + 1)r+1

2r+1r r

and w is the unique solution analytic on C ∪ {∞}\[0, x∗] taking the
value 1 at infinity.

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Results

Proof. Let F denote the Stieltjes transform of µr ,r

F (z) =
x∗∫

0

1
z − t dµr ,r (t).

Using properties of the S-transform one can derive that w(z) = zF (z)
satisfies

w r+1 − z(w − 1)(w + 1)r = 0.

→ x∗ =
(r + 1)r+1

2r+1r r

and w is the unique solution analytic on C ∪ {∞}\[0, x∗] taking the
value 1 at infinity.

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Results

Define the function v by

v(z) = 2w(z)
w(z) + 1 ,

then v is a further analytic function on C ∪ {∞}\[0, x∗] taking the value
1 at infinity. Inverting this transformation gives

w(z) = v(z)
2 − v(z) .

→ v r+1 − 2r+1z(v − 1) = 0.

This equation corresponds to the Fuss-Catalan case.
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Results

The boundary values of v on the branch cut (0, x∗) are given by

v+(x) =
sin(r + 1)φ

sin(rφ)
e−iφ

and

v−(x) = sin(r + 1)φ
sin(rφ)

e iφ,

if we choose the parameterization

x = x(φ) = sin((r + 1)φ)r+1

2r+1 sin(φ) sin(rφ)r , 0 < φ <
π

r + 1 .
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Results

→ Stieltjes inversion:

dµr ,r
dx (x) = 1

2πix(φ) (w−(x(φ) − w+(x(φ)))

dµr ,r
dx (x)

=
1

2πix(φ)

(
v−(x(φ))

2 − v−(x(φ)) − v+(x(φ))
2 − v+(x(φ))

)

dµr ,r
dx (x)

=
1

πx(φ)ℑ
(

sin((r + 1)φ)e iφ

2 sin(rφ) − sin((r + 1)φ)e iφ

)
.
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Results - Densities

Remark. The behavior at the endpoints of the support:

dµr ,r
dx (x) ∼

sin π
r+1

π
x−r/(r+1), x → 0+,

and, provided that r > 1,

dµr ,r
dx (x) ∼ 2r+2+1/2

π

r r+1/2

(r + 1)r+1/2(r − 1)2

√
1 − 2r+1r r

(r + 1)r+1 x ,

as x → (r+1)r+1

2r+1r r − .
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Results - Densities

Figure: Densities of µr,r for r = 3, 4, 5 (from right to left).
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Results - Densities

The case r = s + 1:

Consider the product

1
n (Gr Tr−1 · · · T1)

∗ (Gr Tr−1 · · · T1) ,

then the limit distribution of the eigenvalues is given by

µr ,r−1 = R2,1 � R�r−1
1, 1

2
.
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Results - Densities

Theorem
The measure µr ,r−1 is supported on the interval

[
0, x∗

r ,r−1
]

and has the
density

dµr ,r−1
dx (x) = 2r+1 sin(φ) (3 sin(φ) − ρr (φ) sin(2φ))

π sin(r + 1)φ ρr (φ)r−1 (4 − 4ρr (φ) cos(φ) + ρr (φ)2)
,

where

x = x(φ) = ρr (φ)
r sin(r + 1)φ

2r (3 sin(φ) − ρr (φ) sin(2φ))
, 0 < φ <

π

r + 1 .

and

ρr (φ) =
3 sin(rφ)

2 sin(r − 1)φ −

√(
3 sin(rφ)

2 sin(r − 1)φ

)2
− 2 sin(r + 1)φ

sin(r − 1)φ .

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Results - Densities

Theorem
The measure µr ,r−1 is supported on the interval

[
0, x∗

r ,r−1
]

and has the
density

dµr ,r−1
dx (x) = 2r+1 sin(φ) (3 sin(φ) − ρr (φ) sin(2φ))

π sin(r + 1)φ ρr (φ)r−1 (4 − 4ρr (φ) cos(φ) + ρr (φ)2)
,

where

x = x(φ) = ρr (φ)
r sin(r + 1)φ

2r (3 sin(φ) − ρr (φ) sin(2φ))
, 0 < φ <

π

r + 1 .

and

ρr (φ) =
3 sin(rφ)

2 sin(r − 1)φ −

√(
3 sin(rφ)

2 sin(r − 1)φ

)2
− 2 sin(r + 1)φ

sin(r − 1)φ .

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Results - Densities

Theorem
The measure µr ,r−1 is supported on the interval

[
0, x∗

r ,r−1
]

and has the
density

dµr ,r−1
dx (x) = 2r+1 sin(φ) (3 sin(φ) − ρr (φ) sin(2φ))

π sin(r + 1)φ ρr (φ)r−1 (4 − 4ρr (φ) cos(φ) + ρr (φ)2)
,

where

x = x(φ) = ρr (φ)
r sin(r + 1)φ

2r (3 sin(φ) − ρr (φ) sin(2φ))
, 0 < φ <

π

r + 1 .

and

ρr (φ) =
3 sin(rφ)

2 sin(r − 1)φ −

√(
3 sin(rφ)

2 sin(r − 1)φ

)2
− 2 sin(r + 1)φ

sin(r − 1)φ .

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Results - Densities

Remark. The behavior at the endpoints of the support:

dµr ,r−1
dx (x) ∼ ax−r/(r+1), x → 0+,

and at the right endpoint of the support

dµr ,r−1
dx (x) ∼ b

√
1 − x

x∗
r ,r−1

, x → x∗
r ,r−1,

with positive constants a and b.
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Results - Densities

Figure: Densities of µr,r−1 for r = 3, 4, 5 (from right to left).
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Results - Densities

The case r ≥ s + 2:

Consider the product

1
nr−s (Gr · · · Gs+1Ts · · · T1)

∗ (Gr · · · Gs+1Ts · · · T1) ,

then the limit distribution of the eigenvalues is given by

µr ,s = Rr−s+1,1 � R�s
1, 1

2
.
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Results - Densities

Theorem
Let µ be a probability measure supported on the compact interval [0, x∗]
with x∗ > 0 and let its Stieltjes transform be denoted by

F (z) =
x∗∫

0

1
z − t dµ(t).

Suppose that w(z) = zF (z) is an algebraic function with a branch cut on
the interval (0, x∗) satisfying an algebraic equation of the form

P(w) − zQ(w) = 0,

where P and Q are real polynomials with gcd(P,Q)=1 and P(t) > 0 for
t ∈ (0, 1], Q′(1) > 0 and deg P ≥ deg Q + 2 such that
limt→+∞ P(t)/Q(t) = +∞.
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Results - Densities

Moreover, suppose that for all x > 0 the polynomial w 7→ P(w) − xQ(w)
has exactly two roots (counted with multiplicities) inside the sector

Sα = {z ∈ C | z = te is , t ≥ 0, −α ≤ s ≤ α},

no roots are located on the boundary, and assume that P does not have
any roots on the semi-infinite ray {te iα | t > 0} (α ∈ (0, π/2] is a fixed
number).
Then the measure µ is absolutely continuous with respect to the
Lebesgue measure with a strictly positive density on (0, x∗) given by

dµ

dx (x) = 1
2π2x ℜ

∫
γα

log
(

1 − x Q(t)
P(t)

)
dt,

where the path of integration γα is given as the concatenation of two
semi-infinite rays γ

(1)
α ⊕ γ

(2)
α with γ

(1)
α defined as the path

t 7→ e iα/t, t > 0, and γ
(2)
α is defined as the positive real axis.
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Results - Densities

..

0

.

γ
(1)
α

.
γ
(2)
α

Figure: The path of integration γα.
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Results - Densities

Remark. The behavior at the endpoints of the support:

lim
x→x∗−

1√
x∗ − x

dµ

dx (x) = a > 0

→ vanishing like a square root as x → x∗.

Moreover, let ℓ be defined as the order of the zero of P at the origin.

lim
x→0+

x (ℓ−1)/ℓ dµ

dx (x) = b > 0

→ the density behaves like x−(ℓ−1)/ℓ as x → 0.

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Results - Densities

Remark. The behavior at the endpoints of the support:

lim
x→x∗−

1√
x∗ − x

dµ

dx (x) = a > 0

→ vanishing like a square root as x → x∗.

Moreover, let ℓ be defined as the order of the zero of P at the origin.

lim
x→0+

x (ℓ−1)/ℓ dµ

dx (x) = b > 0

→ the density behaves like x−(ℓ−1)/ℓ as x → 0.

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Results - Densities

Remark. The behavior at the endpoints of the support:

lim
x→x∗−

1√
x∗ − x

dµ

dx (x) = a > 0

→ vanishing like a square root as x → x∗.

Moreover, let ℓ be defined as the order of the zero of P at the origin.

lim
x→0+

x (ℓ−1)/ℓ dµ

dx (x) = b > 0

→ the density behaves like x−(ℓ−1)/ℓ as x → 0.

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Results - Densities

Remark. The behavior at the endpoints of the support:

lim
x→x∗−

1√
x∗ − x

dµ

dx (x) = a > 0

→ vanishing like a square root as x → x∗.

Moreover, let ℓ be defined as the order of the zero of P at the origin.

lim
x→0+

x (ℓ−1)/ℓ dµ

dx (x) = b > 0

→ the density behaves like x−(ℓ−1)/ℓ as x → 0.

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Results - Densities

Remark. The behavior at the endpoints of the support:

lim
x→x∗−

1√
x∗ − x

dµ

dx (x) = a > 0

→ vanishing like a square root as x → x∗.

Moreover, let ℓ be defined as the order of the zero of P at the origin.

lim
x→0+

x (ℓ−1)/ℓ dµ

dx (x) = b > 0

→ the density behaves like x−(ℓ−1)/ℓ as x → 0.

T. Neuschel Moments and Spectral Densities of Singular Values of Products of Random Matrices August 23rd, 2016



Results - Densities

Define two quantities:

w∗
r ,s =

1 − s +
√
(1 − s)2 + 4(r + 1)(r − s)

2(r − s) > 1

and

x∗
r ,s =

r + 1
s + 1

(w∗
r ,s)

r

(w∗
r ,s + 1)s−1

(
w∗

r ,s − s−1
s+1

) > 0.
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Results - Densities

Theorem
The measure µr ,s is supported on the interval [0, x∗

r ,s ] and has a strictly
positive density on the interval (0, x∗

r ,s) given by

dµr ,s
dx (x) = 1

2π2x ℜ
∫

γ2π/(r+1)

log
(

1 − x (t − 1)(t + 1)s

t r+1

)
dt,

where the path γ2π/(r+1) and the branch of the logarithm are defined as
in the preceeding Theorem.

Moreover, the density behaves like x−r/(r+1) as x → 0+ and it vanishes
like a square root as x → x∗−. Hence, only the boundary behavior at the
origin depends on the number of matrices involved in the product.
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Results - Densities

Figure: Plot of µ7,3 on its entire support.
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Results - Densities

Figure: Plot of µ7,3 in the neighborhood of the right endpoint of its support.
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Results - Densities

Remark. The special case s = 0 gives a new representation for the
densities of the Fuss-Catalan distributions of order r > 1

dµr ,0
dx (x) = 1

2π2x ℜ
∫

γ2π/(r+1)

log
(

1 − x t − 1
t r+1

)
dt,

where 0 < x < (r+1)r+1

r r .

Thank You
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