Moments and Spectral Densities of Singular Value Distributions for Products of Gaussian and Truncated Unitary Random Matrices

Thorsten Neuschel

Université catholique de Louvain, Belgium

Bielefeld, August 23rd, 2016

Introduction and known results

Consider the product

$$
Y_{r, s}=G_{r} \cdots G_{s+1} T_{s} \cdots T_{1}
$$

Introduction and known results

Consider the product

$$
Y_{r, s}=G_{r} \cdots G_{s+1} T_{s} \cdots T_{1}
$$

- the j-th factor is of size $\left(n+\nu_{j}\right) \times\left(n+\nu_{j-1}\right)$ for fixed $\nu_{j} \geq 0$, $1 \leq j \leq r$ and $\nu_{0}=0$,

Introduction and known results

Consider the product

$$
Y_{r, s}=G_{r} \cdots G_{s+1} T_{s} \cdots T_{1}
$$

- the j-th factor is of size $\left(n+\nu_{j}\right) \times\left(n+\nu_{j-1}\right)$ for fixed $\nu_{j} \geq 0$, $1 \leq j \leq r$ and $\nu_{0}=0$,
- each G_{j} is a standard complex Gaussian (complex Ginibre matrix),

Introduction and known results

Consider the product

$$
Y_{r, s}=G_{r} \cdots G_{s+1} T_{s} \cdots T_{1}
$$

- the j-th factor is of size $\left(n+\nu_{j}\right) \times\left(n+\nu_{j-1}\right)$ for fixed $\nu_{j} \geq 0$, $1 \leq j \leq r$ and $\nu_{0}=0$,
- each G_{j} is a standard complex Gaussian (complex Ginibre matrix),
- each T_{j} is a truncated unitary matrix taken from a Haar distributed unitary matrix of dimension $\ell_{j} \times \ell_{j}$ with $\ell_{j} \geq 2 n+\nu_{j}+\nu_{j-1}$,

Introduction and known results

Consider the product

$$
Y_{r, s}=G_{r} \cdots G_{s+1} T_{s} \cdots T_{1}
$$

- the j-th factor is of size $\left(n+\nu_{j}\right) \times\left(n+\nu_{j-1}\right)$ for fixed $\nu_{j} \geq 0$, $1 \leq j \leq r$ and $\nu_{0}=0$,
- each G_{j} is a standard complex Gaussian (complex Ginibre matrix),
- each T_{j} is a truncated unitary matrix taken from a Haar distributed unitary matrix of dimension $\ell_{j} \times \ell_{j}$ with $\ell_{j} \geq 2 n+\nu_{j}+\nu_{j-1}$,
- all factors are independent.

Introduction and known results

Consider the product

$$
Y_{r, s}=G_{r} \cdots G_{s+1} T_{s} \cdots T_{1}
$$

- the j-th factor is of size $\left(n+\nu_{j}\right) \times\left(n+\nu_{j-1}\right)$ for fixed $\nu_{j} \geq 0$, $1 \leq j \leq r$ and $\nu_{0}=0$,
- each G_{j} is a standard complex Gaussian (complex Ginibre matrix),
- each T_{j} is a truncated unitary matrix taken from a Haar distributed unitary matrix of dimension $\ell_{j} \times \ell_{j}$ with $\ell_{j} \geq 2 n+\nu_{j}+\nu_{j-1}$,
- all factors are independent.
\rightarrow study of the eigenvalues of $Y_{r, s}^{*} Y_{r, s}$

Introduction and known results

For finite dimensions n :

Introduction and known results

For finite dimensions n :

- Akemann, Ipsen, Kieburg (2013): In the case $s=0$ the eigenvalues form a determinantal point process with joint probability density functions involving Meijer G-functions.

Introduction and known results

For finite dimensions n :

- Akemann, Ipsen, Kieburg (2013): In the case $s=0$ the eigenvalues form a determinantal point process with joint probability density functions involving Meijer G-functions.
- Kuijlaars, Zhang (2013): Interpretation as a multiple orthogonal polynomial ensemble and study of the correlation kernel at the hard edge.

Introduction and known results

For finite dimensions n :

- Akemann, Ipsen, Kieburg (2013): In the case $s=0$ the eigenvalues form a determinantal point process with joint probability density functions involving Meijer G-functions.
- Kuijlaars, Zhang (2013): Interpretation as a multiple orthogonal polynomial ensemble and study of the correlation kernel at the hard edge.
- Kieburg, Kuijlaars, Stivigny (2015): Extension of these results to the general case $r \geq s$.

Introduction and known results

For finite dimensions n :

- Akemann, Ipsen, Kieburg (2013): In the case $s=0$ the eigenvalues form a determinantal point process with joint probability density functions involving Meijer G-functions.
- Kuijlaars, Zhang (2013): Interpretation as a multiple orthogonal polynomial ensemble and study of the correlation kernel at the hard edge.
- Kieburg, Kuijlaars, Stivigny (2015): Extension of these results to the general case $r \geq s$.
\rightarrow study of the eigenvalues of $Y_{r, s}^{*} Y_{r, s}$ for large dimensions $(n \rightarrow \infty)$

Introduction and known results

Raney distributions:

Introduction and known results

Raney distributions: For $\alpha, \beta \in \mathbb{R}, \alpha>1$ and $0<\beta \leq \alpha$

Introduction and known results

Raney distributions: For $\alpha, \beta \in \mathbb{R}, \alpha>1$ and $0<\beta \leq \alpha$
the Raney distribution $R_{\alpha, \beta}$ is a compactly supported measure on $[0, \infty)$ defined by the moment sequence

$$
R_{\alpha, \beta}(k)=\frac{\beta}{k \alpha+\beta}\binom{k \alpha+\beta}{k} .
$$

Introduction and known results

Raney distributions: For $\alpha, \beta \in \mathbb{R}, \alpha>1$ and $0<\beta \leq \alpha$
the Raney distribution $R_{\alpha, \beta}$ is a compactly supported measure on $[0, \infty)$ defined by the moment sequence

$$
R_{\alpha, \beta}(k)=\frac{\beta}{k \alpha+\beta}\binom{k \alpha+\beta}{k} .
$$

Forrester, Liu, Penson, Życzkowski, Zinn-Justin, Mlotkowski, ...

Introduction and known results

Raney distributions: For $\alpha, \beta \in \mathbb{R}, \alpha>1$ and $0<\beta \leq \alpha$
the Raney distribution $R_{\alpha, \beta}$ is a compactly supported measure on $[0, \infty)$ defined by the moment sequence

$$
R_{\alpha, \beta}(k)=\frac{\beta}{k \alpha+\beta}\binom{k \alpha+\beta}{k} .
$$

Forrester, Liu, Penson, Życzkowski, Zinn-Justin, Mlotkowski, ...

Special case $\alpha=r+1$ and $\beta=1$: Fuss-Catalan distributions of order r

$$
R_{r+1,1}=F C_{r} .
$$

Introduction and known results

- Classical result by Marchenko and Pastur (1967):

Introduction and known results

- Classical result by Marchenko and Pastur (1967): as $n \rightarrow \infty$ the eigenvalues of $\frac{1}{n} G_{j}^{*} G_{j}$ converge weakly, almost surely, to the Marchenko-Pastur distribution on [0,4] with density

$$
x \mapsto \frac{1}{2 \pi} \frac{\sqrt{4-x}}{\sqrt{x}}
$$

Introduction and known results

- Classical result by Marchenko and Pastur (1967): as $n \rightarrow \infty$ the eigenvalues of $\frac{1}{n} G_{j}^{*} G_{j}$ converge weakly, almost surely, to the Marchenko-Pastur distribution on [0,4] with density

$$
x \mapsto \frac{1}{2 \pi} \frac{\sqrt{4-x}}{\sqrt{x}}
$$

which coincides with $R_{2,1}=F C_{1}$.

Introduction and known results

- Classical result by Marchenko and Pastur (1967): as $n \rightarrow \infty$ the eigenvalues of $\frac{1}{n} G_{j}^{*} G_{j}$ converge weakly, almost surely, to the Marchenko-Pastur distribution on $[0,4]$ with density

$$
x \mapsto \frac{1}{2 \pi} \frac{\sqrt{4-x}}{\sqrt{x}}
$$

which coincides with $R_{2,1}=F C_{1}$.

- As $n \rightarrow \infty$ the eigenvalues of $T_{j}^{*} T_{j}$ converge weakly, almost surely, to the arcsine distribution on $[0,1]$ with density

$$
x \mapsto \frac{1}{\pi} \frac{1}{\sqrt{x(1-x)}},
$$

if $\ell_{j}-2 n$ is independent of n. This distribution coincides with $R_{1,1 / 2}$.

Introduction and known results

Lemma
 Let $Z_{n}=\frac{1}{n^{r-s}} Y_{r, s}^{*} Y_{r, s}$

Introduction and known results

Lemma
Let $Z_{n}=\frac{1}{n^{r-s}} Y_{r, s}^{*} Y_{r, s}$ and suppose that all ν_{j} and $\ell_{j}-2 n$ are independent of n.

Introduction and known results

Lemma
Let $Z_{n}=\frac{1}{n^{r-s}} Y_{r, s}^{*} Y_{r, s}$ and suppose that all ν_{j} and $\ell_{j}-2 n$ are independent of n. Then, as $n \rightarrow \infty$, the empirical eigenvalue distributions of Z_{n} converge weakly, almost surely to the measure

$$
\mu_{r, s}=R_{r-s+1,1} \boxtimes R_{1, \frac{1}{2}}^{\boxtimes s} .
$$

Introduction and known results

Lemma
Let $Z_{n}=\frac{1}{n^{r-s}} Y_{r, s}^{*} Y_{r, s}$ and suppose that all ν_{j} and $\ell_{j}-2 n$ are independent of n. Then, as $n \rightarrow \infty$, the empirical eigenvalue distributions of Z_{n} converge weakly, almost surely to the measure

$$
\mu_{r, s}=R_{r-s+1,1} \boxtimes R_{1, \frac{1}{2}}^{\boxtimes s} .
$$

\rightarrow Moments of these measures:

Introduction and known results

Lemma
Let $Z_{n}=\frac{1}{n^{r-s}} Y_{r, s}^{*} Y_{r, s}$ and suppose that all ν_{j} and $\ell_{j}-2 n$ are independent of n. Then, as $n \rightarrow \infty$, the empirical eigenvalue distributions of Z_{n} converge weakly, almost surely to the measure

$$
\mu_{r, s}=R_{r-s+1,1} \boxtimes R_{1, \frac{1}{2}}^{\boxtimes s} .
$$

\rightarrow Moments of these measures:

- $s=0$: Fuss-Catalan numbers of order $r, R_{r+1,1}(k)$

Introduction and known results

Lemma
Let $Z_{n}=\frac{1}{n^{r-s}} Y_{r, s}^{*} Y_{r, s}$ and suppose that all ν_{j} and $\ell_{j}-2 n$ are independent of n. Then, as $n \rightarrow \infty$, the empirical eigenvalue distributions of Z_{n} converge weakly, almost surely to the measure

$$
\mu_{r, s}=R_{r-s+1,1} \boxtimes R_{1, \frac{1}{2}}^{\boxtimes s} .
$$

\rightarrow Moments of these measures:

- $s=0$: Fuss-Catalan numbers of order $r, R_{r+1,1}(k)$
- $s=1$: Raney numbers $R_{\frac{r+1}{2}, \frac{1}{2}}(k)$

Introduction and known results

Lemma
Let $Z_{n}=\frac{1}{n^{r-s}} Y_{r, s}^{*} Y_{r, s}$ and suppose that all ν_{j} and $\ell_{j}-2 n$ are independent of n. Then, as $n \rightarrow \infty$, the empirical eigenvalue distributions of Z_{n} converge weakly, almost surely to the measure

$$
\mu_{r, s}=R_{r-s+1,1} \boxtimes R_{1, \frac{1}{2}}^{\boxtimes s} .
$$

\rightarrow Moments of these measures:

- $s=0$: Fuss-Catalan numbers of order $r, R_{r+1,1}(k)$
- $s=1$: Raney numbers $R_{\frac{r+1}{2}, \frac{1}{2}}(k)$
- $s>1$: ?

Results - Moments

Theorem (Neuschel, Stivigny, Gawronski, 2014)
Let $r, s \in \mathbb{N}_{0}$ such that $s<r$ and let m be a positive real number. Then there exists a unique measure $J_{r, s, m}$ supported on a compact interval $\left[0, x^{*}\right]$ such that its moments are given by the sequence $\left(J_{r, s, m}(k)\right)_{k}$ with

$$
J_{r, s, m}(0)=m
$$

Results - Moments

Theorem (Neuschel, Stivigny, Gawronski, 2014)

Let $r, s \in \mathbb{N}_{0}$ such that $s<r$ and let m be a positive real number. Then there exists a unique measure $J_{r, s, m}$ supported on a compact interval $\left[0, x^{*}\right]$ such that its moments are given by the sequence $\left(J_{r, s, m}(k)\right)_{k}$ with

$$
J_{r, s, m}(0)=m
$$

and for $k \geq 1$

$$
J_{r, s, m}(k)=\frac{m}{k}\left(\frac{m^{r}}{(1+m)^{s}}\right)^{k} P_{k-1}^{\left(\alpha_{k-1}, \beta_{k-1}\right)}\left(\frac{1-m}{1+m}\right),
$$

where $P_{k}^{\left(\alpha_{k}, \beta_{k}\right)}(x)$ are the Jacobi polynomials with varying parameters $\alpha_{k}=r k+r+1$ and $\beta_{k}=-(r+1-s) k-(r+2-s)$.

Results - Moments

Theorem (cont.)
Moreover, for $m=1$ we have

$$
J_{r, s, 1}=R_{r-s+1,1} \boxtimes R_{1, \frac{1}{2}}^{\boxtimes s} .
$$

Results - Moments

Theorem (cont.)
Moreover, for $m=1$ we have

$$
J_{r, s, 1}=R_{r-s+1,1} \boxtimes R_{1, \frac{1}{2}}^{\boxtimes s} .
$$

\rightarrow The moments of the limiting distributions $\mu_{r, s}$ are given by

$$
J_{r, s, 1}(k)=\frac{1}{k 2^{k s}} P_{k-1}^{\left(\alpha_{k-1}, \beta_{k-1}\right)}(0), \quad k \geq 1,
$$

where

$$
\alpha_{k}=r k+r+1 \text { and } \beta_{k}=-(r+1-s) k-(r+2-s) .
$$

Results - Moments

Theorem (cont.)
Moreover, for $m=1$ we have

$$
J_{r, s, 1}=R_{r-s+1,1} \boxtimes R_{1, \frac{1}{2}}^{\boxtimes s} .
$$

\rightarrow The moments of the limiting distributions $\mu_{r, s}$ are given by

$$
J_{r, s, 1}(k)=\frac{1}{k 2^{k s}} P_{k-1}^{\left(\alpha_{k-1}, \beta_{k-1}\right)}(0), \quad k \geq 1,
$$

where

$$
\alpha_{k}=r k+r+1 \text { and } \beta_{k}=-(r+1-s) k-(r+2-s) .
$$

\rightarrow Densities of these measures?

Results - Densities

Known cases of densities of $\mu_{r, s}$:

- The case $s=0: \mu_{r, 0}=F C_{r}$

Results - Densities

Known cases of densities of $\mu_{r, s}$:

- The case $s=0: \mu_{r, 0}=F C_{r}$

$$
\frac{d \mu_{r, 0}}{d x}(x)=\frac{(\sin \varphi)^{2}(\sin r \varphi)^{r-1}}{\pi(\sin (r+1) \varphi)^{r}}
$$

where

$$
x=x(\varphi)=\frac{(\sin (r+1) \varphi)^{r+1}}{\sin \varphi(\sin r \varphi)^{r}}, \quad 0<\varphi<\frac{\pi}{r+1} .
$$

Results - Densities

Known cases of densities of $\mu_{r, s}$:

- The case $s=0: \mu_{r, 0}=F C_{r}$

$$
\frac{d \mu_{r, 0}}{d x}(x)=\frac{(\sin \varphi)^{2}(\sin r \varphi)^{r-1}}{\pi(\sin (r+1) \varphi)^{r}}
$$

where

$$
x=x(\varphi)=\frac{(\sin (r+1) \varphi)^{r+1}}{\sin \varphi(\sin r \varphi)^{r}}, \quad 0<\varphi<\frac{\pi}{r+1} .
$$

- The case $s=1: \mu_{r, 1}=R_{r, 1} \boxtimes R_{1, \frac{1}{2}}=R_{\frac{r+1}{2}, \frac{1}{2}}$.

Results - Densities

The case $r=s$:

Results - Densities

The case $r=s$: Consider the product

$$
\left(T_{r} \cdots T_{1}\right)^{*}\left(T_{r} \cdots T_{1}\right),
$$

Results - Densities

The case $r=s$: Consider the product

$$
\left(T_{r} \cdots T_{1}\right)^{*}\left(T_{r} \cdots T_{1}\right),
$$

then the limit distribution of the eigenvalues is given by

$$
\mu_{r, r}=R_{1, \frac{1}{2}}^{\boxtimes r} .
$$

Results - Densities

Theorem (Forrester, Wang, 2015)

The measure $\mu_{r, r}$ is supported on the interval $\left[0, \frac{(r+1)^{r+1}}{2^{r+1} r^{r}}\right]$ and has the density

$$
\frac{d \mu_{r, r}}{d x}(x)=\frac{2^{r+2} \sin (\varphi)^{2} \sin (r \varphi)^{r+1}}{\pi \sin ((r+1) \varphi)^{r}\left(4 \sin (\varphi)^{2} \sin (r \varphi)^{2}+\sin ((r-1) \varphi)^{2}\right)}
$$

where

$$
x=x(\varphi)=\frac{\sin ((r+1) \varphi)^{r+1}}{2^{r+1} \sin (\varphi) \sin (r \varphi)^{r}}, \quad 0<\varphi<\frac{\pi}{r+1}
$$

Results - Densities

Theorem (Forrester, Wang, 2015)

The measure $\mu_{r, r}$ is supported on the interval $\left[0, \frac{(r+1)^{r+1}}{2^{r+1} r^{r}}\right]$ and has the density

$$
\frac{d \mu_{r, r}}{d x}(x)=\frac{2^{r+2} \sin (\varphi)^{2} \sin (r \varphi)^{r+1}}{\pi \sin ((r+1) \varphi)^{r}\left(4 \sin (\varphi)^{2} \sin (r \varphi)^{2}+\sin ((r-1) \varphi)^{2}\right)}
$$

where

$$
x=x(\varphi)=\frac{\sin ((r+1) \varphi)^{r+1}}{2^{r+1} \sin (\varphi) \sin (r \varphi)^{r}}, \quad 0<\varphi<\frac{\pi}{r+1}
$$

\rightarrow Global density of the Jacobi Muttalib-Borodin ensemble!

Results

Proof. Let F denote the Stieltjes transform of $\mu_{r, r}$

$$
F(z)=\int_{0}^{x^{*}} \frac{1}{z-t} d \mu_{r, r}(t)
$$

Results

Proof. Let F denote the Stieltjes transform of $\mu_{r, r}$

$$
F(z)=\int_{0}^{x^{*}} \frac{1}{z-t} d \mu_{r, r}(t)
$$

Using properties of the S-transform one can derive that $w(z)=z F(z)$ satisfies

$$
w^{r+1}-z(w-1)(w+1)^{r}=0 .
$$

Results

Proof. Let F denote the Stieltjes transform of $\mu_{r, r}$

$$
F(z)=\int_{0}^{x^{*}} \frac{1}{z-t} d \mu_{r, r}(t)
$$

Using properties of the S-transform one can derive that $w(z)=z F(z)$ satisfies

$$
\begin{aligned}
& w^{r+1}-z(w-1)(w+1)^{r}=0 \\
& \rightarrow x^{*}=\frac{(r+1)^{r+1}}{2^{r+1} r^{r}}
\end{aligned}
$$

Results

Proof. Let F denote the Stieltjes transform of $\mu_{r, r}$

$$
F(z)=\int_{0}^{x^{*}} \frac{1}{z-t} d \mu_{r, r}(t)
$$

Using properties of the S-transform one can derive that $w(z)=z F(z)$ satisfies

$$
\begin{aligned}
& w^{r+1}-z(w-1)(w+1)^{r}=0 \\
& \rightarrow x^{*}=\frac{(r+1)^{r+1}}{2^{r+1} r^{r}}
\end{aligned}
$$

and w is the unique solution analytic on $\mathbb{C} \cup\{\infty\} \backslash\left[0, x^{*}\right]$ taking the value 1 at infinity.

Results

Define the function v by

$$
v(z)=\frac{2 w(z)}{w(z)+1},
$$

Results

Define the function v by

$$
v(z)=\frac{2 w(z)}{w(z)+1},
$$

then v is a further analytic function on $\mathbb{C} \cup\{\infty\} \backslash\left[0, x^{*}\right]$ taking the value 1 at infinity.

Results

Define the function v by

$$
v(z)=\frac{2 w(z)}{w(z)+1},
$$

then v is a further analytic function on $\mathbb{C} \cup\{\infty\} \backslash\left[0, x^{*}\right]$ taking the value 1 at infinity. Inverting this transformation gives

$$
w(z)=\frac{v(z)}{2-v(z)}
$$

Results

Define the function v by

$$
v(z)=\frac{2 w(z)}{w(z)+1},
$$

then v is a further analytic function on $\mathbb{C} \cup\{\infty\} \backslash\left[0, x^{*}\right]$ taking the value 1 at infinity. Inverting this transformation gives

$$
\begin{aligned}
& w(z)=\frac{v(z)}{2-v(z)} \\
& \rightarrow v^{r+1}-2^{r+1} z(v-1)=0
\end{aligned}
$$

Results

Define the function v by

$$
v(z)=\frac{2 w(z)}{w(z)+1},
$$

then v is a further analytic function on $\mathbb{C} \cup\{\infty\} \backslash\left[0, x^{*}\right]$ taking the value 1 at infinity. Inverting this transformation gives

$$
\begin{aligned}
& w(z)=\frac{v(z)}{2-v(z)} \\
& \rightarrow v^{r+1}-2^{r+1} z(v-1)=0
\end{aligned}
$$

This equation corresponds to the Fuss-Catalan case.

Results

The boundary values of v on the branch cut $\left(0, x^{*}\right)$ are given by

$$
v_{+}(x)=\frac{\sin (r+1) \varphi}{\sin (r \varphi)} e^{-i \varphi}
$$

and

$$
v_{-}(x)=\frac{\sin (r+1) \varphi}{\sin (r \varphi)} e^{i \varphi}
$$

if we choose the parameterization

$$
x=x(\varphi)=\frac{\sin ((r+1) \varphi)^{r+1}}{2^{r+1} \sin (\varphi) \sin (r \varphi)^{r}}, \quad 0<\varphi<\frac{\pi}{r+1}
$$

Results

\rightarrow Stieltjes inversion:

$$
\frac{d \mu_{r, r}}{d x}(x)=\frac{1}{2 \pi i x(\varphi)}\left(w_{-}\left(x(\varphi)-w_{+}(x(\varphi))\right)\right.
$$

Results

\rightarrow Stieltjes inversion:

$$
\begin{aligned}
\frac{d \mu_{r, r}}{d x}(x) & =\frac{1}{2 \pi i x(\varphi)}\left(w_{-}\left(x(\varphi)-w_{+}(x(\varphi))\right)\right. \\
& =\frac{1}{2 \pi i x(\varphi)}\left(\frac{v_{-}(x(\varphi))}{2-v_{-}(x(\varphi))}-\frac{v_{+}(x(\varphi))}{2-v_{+}(x(\varphi))}\right)
\end{aligned}
$$

Results

\rightarrow Stieltjes inversion:

$$
\begin{aligned}
\frac{d \mu_{r, r}}{d x}(x) & =\frac{1}{2 \pi i x(\varphi)}\left(w_{-}\left(x(\varphi)-w_{+}(x(\varphi))\right)\right. \\
& =\frac{1}{2 \pi i x(\varphi)}\left(\frac{v_{-}(x(\varphi))}{2-v_{-}(x(\varphi))}-\frac{v_{+}(x(\varphi))}{2-v_{+}(x(\varphi))}\right) \\
& =\frac{1}{\pi x(\varphi)} \Im\left(\frac{\sin ((r+1) \varphi) e^{i \varphi}}{2 \sin (r \varphi)-\sin ((r+1) \varphi) e^{i \varphi}}\right)
\end{aligned}
$$

Results - Densities

Remark. The behavior at the endpoints of the support:

$$
\frac{d \mu_{r, r}}{d x}(x) \sim \frac{\sin \frac{\pi}{r+1}}{\pi} x^{-r /(r+1)}, \quad x \rightarrow 0+
$$

Results - Densities

Remark. The behavior at the endpoints of the support:

$$
\frac{d \mu_{r, r}}{d x}(x) \sim \frac{\sin \frac{\pi}{r+1}}{\pi} x^{-r /(r+1)}, \quad x \rightarrow 0+
$$

and, provided that $r>1$,

$$
\frac{d \mu_{r, r}}{d x}(x) \sim \frac{2^{r+2+1 / 2}}{\pi} \frac{r^{r+1 / 2}}{(r+1)^{r+1 / 2}(r-1)^{2}} \sqrt{1-\frac{2^{r+1} r^{r}}{(r+1)^{r+1}} x}
$$

as $x \rightarrow \frac{(r+1)^{r+1}}{2^{r+1} r^{r}}-$.

Results - Densities

Figure: Densities of $\mu_{r, r}$ for $r=3,4,5$ (from right to left).

Results - Densities

The case $r=s+1$:

Results - Densities

The case $r=s+1$: Consider the product

$$
\frac{1}{n}\left(G_{r} T_{r-1} \cdots T_{1}\right)^{*}\left(G_{r} T_{r-1} \cdots T_{1}\right),
$$

Results - Densities

The case $r=s+1$: Consider the product

$$
\frac{1}{n}\left(G_{r} T_{r-1} \cdots T_{1}\right)^{*}\left(G_{r} T_{r-1} \cdots T_{1}\right)
$$

then the limit distribution of the eigenvalues is given by

$$
\mu_{r, r-1}=R_{2,1} \boxtimes R_{1, \frac{1}{2}}^{\boxtimes r-1} .
$$

Results - Densities

Theorem
The measure $\mu_{r, r-1}$ is supported on the interval $\left[0, x_{r, r-1}^{*}\right]$ and has the density

$$
\frac{d \mu_{r, r-1}}{d x}(x)=\frac{2^{r+1} \sin (\varphi)\left(3 \sin (\varphi)-\rho_{r}(\varphi) \sin (2 \varphi)\right)}{\pi \sin (r+1) \varphi \rho_{r}(\varphi)^{r-1}\left(4-4 \rho_{r}(\varphi) \cos (\varphi)+\rho_{r}(\varphi)^{2}\right)}
$$

Results - Densities

Theorem

The measure $\mu_{r, r-1}$ is supported on the interval $\left[0, x_{r, r-1}^{*}\right]$ and has the density

$$
\frac{d \mu_{r, r-1}}{d x}(x)=\frac{2^{r+1} \sin (\varphi)\left(3 \sin (\varphi)-\rho_{r}(\varphi) \sin (2 \varphi)\right)}{\pi \sin (r+1) \varphi \rho_{r}(\varphi)^{r-1}\left(4-4 \rho_{r}(\varphi) \cos (\varphi)+\rho_{r}(\varphi)^{2}\right)}
$$

where

$$
x=x(\varphi)=\frac{\rho_{r}(\varphi)^{r} \sin (r+1) \varphi}{2^{r}\left(3 \sin (\varphi)-\rho_{r}(\varphi) \sin (2 \varphi)\right)}, \quad 0<\varphi<\frac{\pi}{r+1}
$$

Results - Densities

Theorem

The measure $\mu_{r, r-1}$ is supported on the interval $\left[0, x_{r, r-1}^{*}\right]$ and has the density

$$
\frac{d \mu_{r, r-1}}{d x}(x)=\frac{2^{r+1} \sin (\varphi)\left(3 \sin (\varphi)-\rho_{r}(\varphi) \sin (2 \varphi)\right)}{\pi \sin (r+1) \varphi \rho_{r}(\varphi)^{r-1}\left(4-4 \rho_{r}(\varphi) \cos (\varphi)+\rho_{r}(\varphi)^{2}\right)}
$$

where

$$
x=x(\varphi)=\frac{\rho_{r}(\varphi)^{r} \sin (r+1) \varphi}{2^{r}\left(3 \sin (\varphi)-\rho_{r}(\varphi) \sin (2 \varphi)\right)}, \quad 0<\varphi<\frac{\pi}{r+1}
$$

and

$$
\rho_{r}(\varphi)=\frac{3 \sin (r \varphi)}{2 \sin (r-1) \varphi}-\sqrt{\left(\frac{3 \sin (r \varphi)}{2 \sin (r-1) \varphi}\right)^{2}-\frac{2 \sin (r+1) \varphi}{\sin (r-1) \varphi}}
$$

Results - Densities

Remark. The behavior at the endpoints of the support:

$$
\frac{d \mu_{r, r-1}}{d x}(x) \sim a x^{-r /(r+1)}, \quad x \rightarrow 0+
$$

and at the right endpoint of the support

$$
\frac{d \mu_{r, r-1}}{d x}(x) \sim b \sqrt{1-\frac{x}{x_{r, r-1}^{*}}}, \quad x \rightarrow x_{r, r-1}^{*}
$$

with positive constants a and b.

Results - Densities

Figure: Densities of $\mu_{r, r-1}$ for $r=3,4,5$ (from right to left).

Results - Densities

The case $r \geq s+2$:

Results - Densities

The case $r \geq s+2$: Consider the product

$$
\frac{1}{n^{r-s}}\left(G_{r} \cdots G_{s+1} T_{s} \cdots T_{1}\right)^{*}\left(G_{r} \cdots G_{s+1} T_{s} \cdots T_{1}\right)
$$

Results - Densities

The case $r \geq s+2$: Consider the product

$$
\frac{1}{n^{r-s}}\left(G_{r} \cdots G_{s+1} T_{s} \cdots T_{1}\right)^{*}\left(G_{r} \cdots G_{s+1} T_{s} \cdots T_{1}\right)
$$

then the limit distribution of the eigenvalues is given by

$$
\mu_{r, s}=R_{r-s+1,1} \boxtimes R_{1, \frac{1}{2}}^{\boxtimes s} .
$$

Results - Densities

Theorem
Let μ be a probability measure supported on the compact interval $\left[0, x^{*}\right]$ with $x^{*}>0$ and let its Stieltjes transform be denoted by

$$
F(z)=\int_{0}^{x^{*}} \frac{1}{z-t} d \mu(t)
$$

Results - Densities

Theorem
Let μ be a probability measure supported on the compact interval $\left[0, x^{*}\right]$ with $x^{*}>0$ and let its Stieltjes transform be denoted by

$$
F(z)=\int_{0}^{x^{*}} \frac{1}{z-t} d \mu(t)
$$

Suppose that $w(z)=z F(z)$ is an algebraic function with a branch cut on the interval $\left(0, x^{*}\right)$ satisfying an algebraic equation of the form

$$
P(w)-z Q(w)=0,
$$

Results - Densities

Theorem
Let μ be a probability measure supported on the compact interval $\left[0, x^{*}\right]$ with $x^{*}>0$ and let its Stieltjes transform be denoted by

$$
F(z)=\int_{0}^{x^{*}} \frac{1}{z-t} d \mu(t)
$$

Suppose that $w(z)=z F(z)$ is an algebraic function with a branch cut on the interval $\left(0, x^{*}\right)$ satisfying an algebraic equation of the form

$$
P(w)-z Q(w)=0,
$$

where P and Q are real polynomials with $\operatorname{gcd}(P, Q)=1$ and $P(t)>0$ for $t \in(0,1], Q^{\prime}(1)>0$ and $\operatorname{deg} P \geq \operatorname{deg} Q+2$ such that $\lim _{t \rightarrow+\infty} P(t) / Q(t)=+\infty$.

Results - Densities

Moreover, suppose that for all $x>0$ the polynomial $w \mapsto P(w)-x Q(w)$ has exactly two roots (counted with multiplicities) inside the sector

$$
S_{\alpha}=\left\{z \in \mathbb{C} \mid z=t e^{i s}, t \geq 0,-\alpha \leq s \leq \alpha\right\}
$$

Results - Densities

Moreover, suppose that for all $x>0$ the polynomial $w \mapsto P(w)-x Q(w)$ has exactly two roots (counted with multiplicities) inside the sector

$$
S_{\alpha}=\left\{z \in \mathbb{C} \mid z=t e^{i s}, t \geq 0,-\alpha \leq s \leq \alpha\right\}
$$

no roots are located on the boundary, and assume that P does not have any roots on the semi-infinite ray $\left\{t e^{i \alpha} \mid t>0\right\}(\alpha \in(0, \pi / 2]$ is a fixed number).

Results - Densities

Moreover, suppose that for all $x>0$ the polynomial $w \mapsto P(w)-x Q(w)$ has exactly two roots (counted with multiplicities) inside the sector

$$
S_{\alpha}=\left\{z \in \mathbb{C} \mid z=t e^{i s}, t \geq 0,-\alpha \leq s \leq \alpha\right\}
$$

no roots are located on the boundary, and assume that P does not have any roots on the semi-infinite ray $\left\{t e^{i \alpha} \mid t>0\right\}(\alpha \in(0, \pi / 2]$ is a fixed number).
Then the measure μ is absolutely continuous with respect to the Lebesgue measure with a strictly positive density on ($0, x^{*}$) given by

$$
\frac{d \mu}{d x}(x)=\frac{1}{2 \pi^{2} x} \Re \int_{\gamma_{\alpha}} \log \left(1-x \frac{Q(t)}{P(t)}\right) d t
$$

where the path of integration γ_{α} is given as the concatenation of two semi-infinite rays $\gamma_{\alpha}^{(1)} \oplus \gamma_{\alpha}^{(2)}$ with $\gamma_{\alpha}^{(1)}$ defined as the path $t \mapsto e^{i \alpha} / t, t>0$, and $\gamma_{\alpha}^{(2)}$ is defined as the positive real axis.

Results - Densities

Figure: The path of integration γ_{α}.

Results - Densities

Remark. The behavior at the endpoints of the support:

$$
\lim _{x \rightarrow x^{*}-} \frac{1}{\sqrt{x^{*}-x}} \frac{d \mu}{d x}(x)=a>0
$$

Results - Densities

Remark. The behavior at the endpoints of the support:

$$
\lim _{x \rightarrow x^{*}-} \frac{1}{\sqrt{x^{*}-x}} \frac{d \mu}{d x}(x)=a>0
$$

\rightarrow vanishing like a square root as $x \rightarrow x^{*}$.

Results - Densities

Remark. The behavior at the endpoints of the support:

$$
\lim _{x \rightarrow x^{*}-} \frac{1}{\sqrt{x^{*}-x}} \frac{d \mu}{d x}(x)=a>0
$$

\rightarrow vanishing like a square root as $x \rightarrow x^{*}$.
Moreover, let ℓ be defined as the order of the zero of P at the origin.

Results - Densities

Remark. The behavior at the endpoints of the support:

$$
\lim _{x \rightarrow x^{*}-} \frac{1}{\sqrt{x^{*}-x}} \frac{d \mu}{d x}(x)=a>0
$$

\rightarrow vanishing like a square root as $x \rightarrow x^{*}$.
Moreover, let ℓ be defined as the order of the zero of P at the origin.

$$
\lim _{x \rightarrow 0+} x^{(\ell-1) / \ell} \frac{d \mu}{d x}(x)=b>0
$$

Results - Densities

Remark. The behavior at the endpoints of the support:

$$
\lim _{x \rightarrow x^{*}-} \frac{1}{\sqrt{x^{*}-x}} \frac{d \mu}{d x}(x)=a>0
$$

\rightarrow vanishing like a square root as $x \rightarrow x^{*}$.

Moreover, let ℓ be defined as the order of the zero of P at the origin.

$$
\lim _{x \rightarrow 0+} x^{(\ell-1) / \ell} \frac{d \mu}{d x}(x)=b>0
$$

\rightarrow the density behaves like $x^{-(\ell-1) / \ell}$ as $x \rightarrow 0$.

Results - Densities

Define two quantities:

$$
w_{r, s}^{*}=\frac{1-s+\sqrt{(1-s)^{2}+4(r+1)(r-s)}}{2(r-s)}>1
$$

and

$$
x_{r, s}^{*}=\frac{r+1}{s+1} \frac{\left(w_{r, s}^{*}\right)^{r}}{\left(w_{r, s}^{*}+1\right)^{s-1}\left(w_{r, s}^{*}-\frac{s-1}{s+1}\right)}>0 .
$$

Results - Densities

Theorem
The measure $\mu_{r, s}$ is supported on the interval $\left[0, x_{r, s}^{*}\right]$ and has a strictly positive density on the interval $\left(0, x_{r, s}^{*}\right)$ given by

$$
\frac{d \mu_{r, s}}{d x}(x)=\frac{1}{2 \pi^{2} x} \Re \int_{\gamma_{2 \pi /(r+1)}} \log \left(1-x \frac{(t-1)(t+1)^{s}}{t^{r+1}}\right) d t,
$$

where the path $\gamma_{2 \pi /(r+1)}$ and the branch of the logarithm are defined as in the preceeding Theorem.

Results - Densities

Theorem
The measure $\mu_{r, s}$ is supported on the interval $\left[0, x_{r, s}^{*}\right]$ and has a strictly positive density on the interval $\left(0, x_{r, s}^{*}\right)$ given by

$$
\frac{d \mu_{r, s}}{d x}(x)=\frac{1}{2 \pi^{2} x} \Re \int_{\gamma_{2 \pi /(r+1)}} \log \left(1-x \frac{(t-1)(t+1)^{s}}{t^{r+1}}\right) d t
$$

where the path $\gamma_{2 \pi /(r+1)}$ and the branch of the logarithm are defined as in the preceeding Theorem.
Moreover, the density behaves like $x^{-r /(r+1)}$ as $x \rightarrow 0+$ and it vanishes like a square root as $x \rightarrow x^{*}-$. Hence, only the boundary behavior at the origin depends on the number of matrices involved in the product.

Results - Densities

Figure: Plot of $\mu_{7,3}$ on its entire support.

Results - Densities

Figure: Plot of $\mu_{7,3}$ in the neighborhood of the right endpoint of its support.

Results - Densities

Remark. The special case $s=0$ gives a new representation for the densities of the Fuss-Catalan distributions of order $r>1$

$$
\frac{d \mu_{r, 0}}{d x}(x)=\frac{1}{2 \pi^{2} x} \Re \int_{\gamma_{2 \pi /(r+1)}} \log \left(1-x \frac{t-1}{t^{r+1}}\right) d t,
$$

where $0<x<\frac{(r+1)^{r+1}}{r^{r}}$.

Results - Densities

Remark. The special case $s=0$ gives a new representation for the densities of the Fuss-Catalan distributions of order $r>1$

$$
\frac{d \mu_{r, 0}}{d x}(x)=\frac{1}{2 \pi^{2} x} \Re \int_{\gamma_{2 \pi /(r+1)}} \log \left(1-x \frac{t-1}{t^{r+1}}\right) d t
$$

where $0<x<\frac{(r+1)^{r+1}}{r^{r}}$.

Thank You

