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Asymptotic eigenvalue distribution of random matrices Random matrices and their eigenvalue distributions

Random matrices and their eigenvalue distributions

De�nition (Random matrices)

Let (Ω,F ,P) be a probability space. Elements in the complex ∗-algebra

AN := MN (L∞−(Ω,P)), where L∞−(Ω,P) :=
⋂

1≤p<∞
Lp(Ω,P)

are called random matrices.

De�nition (Empirical eigenvalue distribution)

Given X ∈ AN , the empirical eigenvalue distribution of X is the random
probability measure µX on C that is given by

ω 7→ µX(ω) =
1

N

N∑
j=1

δλj(ω),

where λ1(ω), . . . , λN (ω) are the eigenvalues of X(ω) with multiplicities.
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Asymptotic eigenvalue distribution of random matrices Self-adjoint Gaussian random matrices

Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix
X = (xk,l)

N
k,l=1 ∈ AN , for which

{<(xk,l)| 1 ≤ k ≤ l ≤ N} ∪ {=(xk,l)| 1 ≤ k < l ≤ N}

are independent Gaussian random variables, such that

E[xk,l] = 0 and E[|xk,l|2] = N−1 for 1 ≤ k ≤ l ≤ N.
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Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix
X = (xk,l)

N
k,l=1 ∈ AN , for which

{<(xk,l)| 1 ≤ k ≤ l ≤ N} ∪ {=(xk,l)| 1 ≤ k < l ≤ N}

are independent Gaussian random variables, such that

E[xk,l] = 0 and E[|xk,l|2] = N−1 for 1 ≤ k ≤ l ≤ N.

Example

n = 5
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Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix
X = (xk,l)

N
k,l=1 ∈ AN , for which

{<(xk,l)| 1 ≤ k ≤ l ≤ N} ∪ {=(xk,l)| 1 ≤ k < l ≤ N}
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Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix
X = (xk,l)

N
k,l=1 ∈ AN , for which
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Example
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Asymptotic eigenvalue distribution of random matrices Self-adjoint Gaussian random matrices

Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix
X = (xk,l)

N
k,l=1 ∈ AN , for which

{<(xk,l)| 1 ≤ k ≤ l ≤ N} ∪ {=(xk,l)| 1 ≤ k < l ≤ N}

are independent Gaussian random variables, such that

E[xk,l] = 0 and E[|xk,l|2] = N−1 for 1 ≤ k ≤ l ≤ N.

Theorem (Wigner (1955/1958))

Let (X(N))N∈N be a sequence of self-adjoint Gaussian random matrices
X(N) ∈ AN . Then, for all k ∈ N0, it holds true that

lim
n→∞

E
[ ∫

R
tk dµXn(t)

]
=

∫
R
tk dµS(t)

for the semicircular distribution dµS(t) = 1
2π

√
4− t2 1[−2,2](t) dt.
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Asymptotic eigenvalue distribution of random matrices Self-adjoint Gaussian random matrices

Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix
X = (xk,l)

N
k,l=1 ∈ AN , for which

{<(xk,l)| 1 ≤ k ≤ l ≤ N} ∪ {=(xk,l)| 1 ≤ k < l ≤ N}

are independent Gaussian random variables, such that

E[xk,l] = 0 and E[|xk,l|2] = N−1 for 1 ≤ k ≤ l ≤ N.

Theorem (Wigner (1955/1958) & Arnold (1967))

Let (X(N))N∈N be a sequence of self-adjoint Gaussian random matrices
X(N) ∈ AN . Then, for all k ∈ N0, it holds true that

lim
n→∞

∫
R
tk dµXn(t) =

∫
R
tk dµS(t) almost surely

for the semicircular distribution dµS(t) = 1
2π

√
4− t2 1[−2,2](t) dt.
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Asymptotic eigenvalue distribution of random matrices �Functions� in independent random matrices

�Functions� in independent random matrices

Question

For each N ∈ N, let independent
Gaussian random matrices

X
(N)
1 , . . . , X(N)

n ∈ AN

be given and suppose that f is �some
kind of non-commutative function�.
What can we say about the asymptotic
behavior of the empirical eigenvalue
distribution of

Y (N) := f(X
(N)
1 , . . . , X(N)

n ) ?

 Free Probability!
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0.35

f(x, y) = xy + yx
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0.4
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f(x, y) = (x+ i)−1(x+ iy)(x+ i)−1
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A quick introduction to free probability theory Non-commutative probability spaces

Non-commutative probability spaces

De�nition

A non-commutative probability space (A, φ) consists of

a complex algebra A with unit 1A and

a linear functional φ : A → C satisfying φ(1A) = 1 (expectation).

Elements X ∈ A are called non-commutative random variables.

Example

(L∞(Ω,P),E), where (Ω,F ,P) is a classical probability space and E
the usual expectation that is given by E[X] =

∫
ΩX(ω) dP(ω).

(MN (C), trN ), where trN is the normalized trace on MN (C).

(AN , φN ), with AN = MN (L∞−(Ω,P)) and expectation given by

φN (X) := E[trN (X)] =

∫
Ω

trN (X(ω)) dP(ω).
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A quick introduction to free probability theory Free independence

Free independence

De�nition

Let (A, φ) be a non-commutative probability space.

(i) Unital subalgebras (Ai)i∈I of A are called freely independent (or just
free), if

φ(a1 · · · ak) = 0

holds, whenever
I aj ∈ Ai(j) with i(j) ∈ I for all j = 1, . . . , k,
I φ(aj) = 0 for j = 1, . . . , k,
I i(1) 6= i(2), i(2) 6= i(3), . . . , i(k − 1) 6= i(k).

(ii) Elements (Xi)i∈I of A are called freely independent (or just free), if
the algebras (Ai)i∈I with Ai := alg{1A, Xi} for any i ∈ I are freely
independent.

Free probability theory is a highly non-commutative

analogue of classical probability theory.
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A quick introduction to free probability theory Asymptotic freeness

Asymptotic freeness of random matrices

This means: Asymptotic freeness relates

the limiting eigenvalue distribution of Y (N) = P (X
(N)
1 , . . . , X

(N)
n ) and

the distribution of Y = P (S1, . . . , Sn) for freely independent
semicircular elements S1, . . . , Sn.
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Asymptotic freeness of random matrices

We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991))

For all N ∈ N, realize independent self-adjoint Gaussian random matrices

X
(N)
1 , . . . , X

(N)
n ∈ AN . Then, for all P ∈ C〈x1, . . . , xn〉,

lim
N→∞

E[trN (P (X
(N)
1 , . . . , X(N)

n ))] = φ(P (S1, . . . , Sn))

for freely independent semicircular elements S1, . . . , Sn in some
non-commutative probability space (A, φ).
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Asymptotic freeness of random matrices

We have the following multivariate version of Wigner's semicircle law.
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(N)
1 , . . . , X

(N)
n ) and

the distribution of Y = P (S1, . . . , Sn) for freely independent
semicircular elements S1, . . . , Sn.
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Non-commutative polynomials

?

Non-commutative rational expressions

? ? ?

... but conjectured to be given by the Brown measure!

Goal

For the limiting object Y := f(X1, . . . , Xn), we want to compute

its analytic distribution in Case 1, [Belinschi, M., Speicher (2013)]

its Brown measure in Case 2. [Belinschi, Sniady, Speicher (2015)]
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A quick introduction to free probability theory C∗-probability spaces and analytic distributions

C∗-probability spaces and analytic distributions

De�nition

A non-commutative probability space (A, φ) is called C∗-probability space,
if A is a unital C∗-algebra and φ a state on A.

De�nition (�analytic distribution�)

Let (A, φ) be a C∗-probability space. The (analytic) distribution of
X = X∗ ∈ A is the unique Borel probability measure µX on R such that

φ(Xk) =

∫
R
tk dµX(t) for all k ∈ N0.

Example

For any X = X∗ ∈MN (C) with eigenvalues λ1, . . . , λN , we have that

µX =
1

N

N∑
j=1

δλj , since trN (Xk) =
1

N

N∑
j=1

λkj =

∫
R
tk dµX(t).
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A quick introduction to free probability theory C∗-probability spaces and analytic distributions

Cauchy-Stieltjes transforms of analytic distributions

De�nition

Let (A, φ) be a C∗-probability space. For X = X∗ ∈ A, the holomorphic
function

GX : C+ → C−, z 7→ φ
(
(z −X)−1

)
=

∫
R

1

z − t
dµX(t)

is called the Cauchy transform of X.

Theorem (Stieltjes inversion formula)

For each ε > 0, consider the absolutely continuous measure µX,ε given by

dµX,ε(t) =
−1

π
=(GX(t+ iε)) dt.

Then µX,ε → µX weakly as ε↘ 0.
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A quick introduction to free probability theory W∗-probability spaces and Brown measures

W ∗-probability spaces and Brown measures

De�nition

A non-commutative probability space (A, φ) is called tracial W ∗-probability
space, if A is a von Neumann algebra and φ a faithful normal tracial state
on A.

De�nition (Brown measure)

Let (A, φ) be a tracial W ∗-probability space. The Brown measure of
X ∈ A is de�ned (in distributional sense) by

µ =
2

π

∂

∂z

∂

∂z
log(∆(X − z)),

where ∆ denotes the Fuglede-Kadison determinant, i.e.

∆(X) := lim
ε↘0

exp
(1

2
φ(log(XX∗ + ε2))

)
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A quick introduction to free probability theory W∗-probability spaces and Brown measures

regularized Cauchy transforms

Theorem ([Larsen (1999)], [Belinschi, Sniady, Speicher (2015)])

Let (A, φ) be a tracial W ∗-probability space and let X ∈ A be given. For
each ε > 0, consider the regularized Brown measure µX,ε given by

dµX,ε(z) =
1

π

∂

∂z
GX,ε(z) dλ

2(z),

where GX,ε denotes the regularized Cauchy transforms of X,

GX,ε(z) = φ
(
(z −X)∗

(
(z −X)(z −X)∗ + ε2

)−1)
.

Then µX,ε → µX weakly as ε↘ 0.

hermitian reduction method [Janik, Nowak, Papp, Zahed (1997)]

GX,ε(z) =

[
GX

([
iε z
z iε

])]
2,1

where X :=

[
0 X
X∗ 0

]
∈M2(A)
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A quick introduction to free probability theory Operator-valued free probability theory

Operator-valued free probability

free probability theory (A, φ)
operator-valued free probability

theory (A,E,B)

A unital algebra A unital algebra

C1A ⊆ A B ⊆ A unital subalgebra

φ : A → C expectation, satisfying

φ(1A) = 1.

E : A → B conditional expecta-
tion, satisfying

E[b] = b for all b ∈ B.
E[b1Xb2] = b1E[X]b2 for all
X ∈ A and b1, b2 ∈ B.

C± = {z ∈ C| ± =(z) > 0} H±(B) = {b ∈ B| ± =(b) > 0},
where =(b) := b−b∗

2i .

GX : C+ → C−,
z 7→ φ((z −X)−1)

GX : H+(B)→ H−(B),

b 7→ E[(b−X)−1]
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Rational expressions in freely independent variables What actually are non-commutative rational expressions?

What actually are non-commutative rational expressions?

De�nition

A (non-commutative) rational expression r in n formal variables x1, . . . , xn
is a syntactically valid combination of

scalars λ ∈ C and the variables x1, . . . , xn,

the arithmetic operations +, ·,−1, and

parentheses (, ).

Example

r(x1, x2) = (x1 · x2 − 4)−1 · x1 · (x2 · x1 − 4)−1

r(x1, x2) = (i− x1)−1 · x2 + x1 · (i− x2)−1

r(x1, x2) = (x1 · x2 − x2 · x1)−1

r1(x1, x2) = 0−1, r2(x1, x2) = (x1 − x1)−1
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Rational expressions in freely independent variables Linearizations

Self-adjoint formal linear representations

De�nition (Helton, M., Speicher (2015))

Let r be a self-adjoint k × k matrix of non-commutative rational
expressions in formal variables x1, . . . , xn. A self-adjoint formal linear
representation ρ = (Q, v) of r consists of

an a�ne linear pencil Q = Q(0) +Q(1)x1 + · · ·+Q(n)xn with
self-adjoint matrices Q(0), Q(1), . . . , Q(n) ∈MN (C),

a matrix v ∈MN×k(C),

and satis�es the following property:
For any unital complex ∗-algebra A and each X ∈ Ansa, for which r(X) is
de�ned, Q(X) is invertible in MN (A) and r(X) = −v∗Q(X)−1v holds.

Theorem (Helton, M., Speicher (2015))

Each self-adjoint matrix r of non-commutative rational expressions admits
a self-adjoint formal linear representation ρ = (Q, v).
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Rational expressions in freely independent variables Linearizations

The history of linearization

From free probability theory ...

Haagerup and Thorbjørnsen (2005)

Haagerup, Schultz, and Thorbjørnsen (2006)

Anderson (2012)

... back to the famous ancestors.

recognizable rational series: Schützenberger (1961)

linear representations: Cohn (1985); Cohn and Reutenauer (1994);
Malcolmson (1978)

descriptor realizations: Kalman (1963); Helton, McCullough, and
Vinnikov (2006)

...

y Linearization even works for non-commutative rational expressions!
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Rational expressions in freely independent variables Linearizations

Linearization meets operator-valued free probability

Theorem

Given a self-adjoint k × k matrix r of non-commutative rational expression
in x1, . . . , xn, we chose any self-adjoint formal linear representation
ρ = (Q, v) of size N ×N . Then, for any C∗-probability space (A, φ) and
any X = (X1, . . . , Xn) ∈ Ansa, for which r(X) is de�ned, we have that

G
r(X)(Z) = lim

ε↘0

[
G

r̂(X)(Λε(Z))
]
1,1

with r̂(X) :=

(
0 v∗

v Q(X)

)

holds with Λε(Z) :=

(
Z 0
0 iε1N

)
∈ H+(MN+k(C)) for Z ∈ H+(Mk(C)).

Remark

We have r̂(X) = b0 + b1X1 + · · ·+ bnXn and b1X1, . . . , bnXn are freely
independent in (MN+k(A), idMN+k(C)⊗φ,MN+k(C)).
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Rational expressions in freely independent variables How to calculate the free additive convolution

How to calculate the free additive convolution

Theorem (Belinschi, M., Speicher, 2013)

Assume that (A,E,B) is an operator-valued C∗-probability space.

If X,Y ∈ A are free with respect to E, then there exists a unique pair of
(Fréchet-)holomorphic maps ω1, ω2 : H+(B)→ H+(B), such that

GX(ω1(b)) = GY (ω2(b)) = GX+Y (b), b ∈ H+(B).

Moreover, ω1 and ω2 can easily be calculated via the following �xed point
iterations on H+(B)

w 7→ hY (b+ hX(w)) + b for ω1(b)

w 7→ hX(b+ hY (w)) + b for ω2(b)

where we put hX(b) := GX(b)−1 − b and hY (b) := GY (b)−1 − b,
respectively.
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Examples

Example I � Distributions

p(x1, x2) := x1x2 + x2x1

ρ =

(
0 x1 x2 −1
x1 0 −1 0
x2 −1 0 0
−1 0 0 0

 ,


0
0
0
1


)

Eigenvalues of p(X1, X2), where

X1, X2 are independent self-adjoint

Gaussian random matrices of size

1000× 1000 ...

... compared to the distribution of

p(X1, X2), where X1, X2 are freely

independent semicircular elements.

-5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
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Examples

Example II � Distributions

r(x1, x2) := (4− x1)
−1 + (4− x1)

−1x2

(
(4− x1)− x2(4− x1)

−1x2

)−1
x2(4− x1)

−1

ρ =

((
−1 + 1

4x1
1
4x2

1
4x2 −1 + 1

4x1

)
,

(
1
2
0

))

Eigenvalues of r(X1, X2), where

X1, X2 are independent self-adjoint

Gaussian random matrices of size

1000× 1000 ...

... compared to the distribution of

r(X1, X2), where X1, X2 are freely

independent semicircular elements.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7
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Examples

Example III � Brown measures

r(x1, x2) := (x1 + i)−1(x1 + ix2)(x1 + i)−1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Thank you!
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Eigenvalues of r(X1, X2), where X1, X2 are
independent self-adjoint Gaussian random matrices of size
1000 × 1000 ...

Thank you!
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... compared to the Brown measure of r(X1, X2), where
X1, X2 are freely independent semicircular elements.
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