Asymptotic eigenvalue distributions of non-commutative polynomials and rational expressions in independent random matrices

Tobias Mai

Saarland University

Workshop "Random Product Matrices"

ZiF Bielefeld - August 25, 2016

Supported by the ERC Advanced Grant "Non-commutative distributions in free probability"

erc

European Research Counci

Contents

(1) Asymptotic eigenvalue distribution of random matrices
(2) A quick introduction to free probability theory
(3) Rational expressions in freely independent variables
(4) Examples

Random matrices and their eigenvalue distributions

Random matrices and their eigenvalue distributions

Definition (Random matrices)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Elements in the complex $*$-algebra

$$
\mathcal{A}_{N}:=M_{N}\left(L^{\infty-}(\Omega, \mathbb{P})\right), \quad \text { where } \quad L^{\infty-}(\Omega, \mathbb{P}):=\bigcap_{1 \leq p<\infty} L^{p}(\Omega, \mathbb{P})
$$

are called random matrices.

Random matrices and their eigenvalue distributions

Definition (Random matrices)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Elements in the complex $*$-algebra

$$
\mathcal{A}_{N}:=M_{N}\left(L^{\infty-}(\Omega, \mathbb{P})\right), \quad \text { where } \quad L^{\infty-}(\Omega, \mathbb{P}):=\bigcap_{1 \leq p<\infty} L^{p}(\Omega, \mathbb{P})
$$

are called random matrices.
Definition (Empirical eigenvalue distribution)
Given $X \in \mathcal{A}_{N}$, the empirical eigenvalue distribution of X is the random probability measure μ_{X} on \mathbb{C} that is given by

$$
\omega \mapsto \mu_{X(\omega)}=\frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_{j}(\omega)},
$$

where $\lambda_{1}(\omega), \ldots, \lambda_{N}(\omega)$ are the eigenvalues of $X(\omega)$ with multiplicities.

Self-adjoint Gaussian random matrices

Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix $X=\left(x_{k, l}\right)_{k, l=1}^{N} \in \mathcal{A}_{N}$, for which

$$
\left\{\Re\left(x_{k, l}\right) \mid 1 \leq k \leq l \leq N\right\} \cup\left\{\Im\left(x_{k, l}\right) \mid 1 \leq k<l \leq N\right\}
$$

are independent Gaussian random variables, such that

$$
\mathbb{E}\left[x_{k, l}\right]=0 \quad \text { and } \quad \mathbb{E}\left[\left|x_{k, l}\right|^{2}\right]=N^{-1} \quad \text { for } 1 \leq k \leq l \leq N .
$$

Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix $X=\left(x_{k, l}\right)_{k, l=1}^{N} \in \mathcal{A}_{N}$, for which

$$
\left\{\Re\left(x_{k, l}\right) \mid 1 \leq k \leq l \leq N\right\} \cup\left\{\Im\left(x_{k, l}\right) \mid 1 \leq k<l \leq N\right\}
$$

are independent Gaussian random variables, such that

$$
\mathbb{E}\left[x_{k, l}\right]=0 \quad \text { and } \quad \mathbb{E}\left[\left|x_{k, l}\right|^{2}\right]=N^{-1} \quad \text { for } 1 \leq k \leq l \leq N .
$$

Example

$$
n=5
$$

Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix $X=\left(x_{k, l}\right)_{k, l=1}^{N} \in \mathcal{A}_{N}$, for which

$$
\left\{\Re\left(x_{k, l}\right) \mid 1 \leq k \leq l \leq N\right\} \cup\left\{\Im\left(x_{k, l}\right) \mid 1 \leq k<l \leq N\right\}
$$

are independent Gaussian random variables, such that

$$
\mathbb{E}\left[x_{k, l}\right]=0 \quad \text { and } \quad \mathbb{E}\left[\left|x_{k, l}\right|^{2}\right]=N^{-1} \quad \text { for } 1 \leq k \leq l \leq N .
$$

Example

$$
n=10
$$

Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix $X=\left(x_{k, l}\right)_{k, l=1}^{N} \in \mathcal{A}_{N}$, for which

$$
\left\{\Re\left(x_{k, l}\right) \mid 1 \leq k \leq l \leq N\right\} \cup\left\{\Im\left(x_{k, l}\right) \mid 1 \leq k<l \leq N\right\}
$$

are independent Gaussian random variables, such that

$$
\mathbb{E}\left[x_{k, l}\right]=0 \quad \text { and } \quad \mathbb{E}\left[\left|x_{k, l}\right|^{2}\right]=N^{-1} \quad \text { for } 1 \leq k \leq l \leq N .
$$

Example

$$
n=100
$$

Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix $X=\left(x_{k, l}\right)_{k, l=1}^{N} \in \mathcal{A}_{N}$, for which

$$
\left\{\Re\left(x_{k, l}\right) \mid 1 \leq k \leq l \leq N\right\} \cup\left\{\Im\left(x_{k, l}\right) \mid 1 \leq k<l \leq N\right\}
$$

are independent Gaussian random variables, such that

$$
\mathbb{E}\left[x_{k, l}\right]=0 \quad \text { and } \quad \mathbb{E}\left[\left|x_{k, l}\right|^{2}\right]=N^{-1} \quad \text { for } 1 \leq k \leq l \leq N .
$$

Example

$$
n=1000
$$

Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix $X=\left(x_{k, l}\right)_{k, l=1}^{N} \in \mathcal{A}_{N}$, for which

$$
\left\{\Re\left(x_{k, l}\right) \mid 1 \leq k \leq l \leq N\right\} \cup\left\{\Im\left(x_{k, l}\right) \mid 1 \leq k<l \leq N\right\}
$$

are independent Gaussian random variables, such that

$$
\mathbb{E}\left[x_{k, l}\right]=0 \quad \text { and } \quad \mathbb{E}\left[\left|x_{k, l}\right|^{2}\right]=N^{-1} \quad \text { for } 1 \leq k \leq l \leq N .
$$

Theorem (Wigner (1955/1958))

Let $\left(X^{(N)}\right)_{N \in \mathbb{N}}$ be a sequence of self-adjoint Gaussian random matrices $X^{(N)} \in \mathcal{A}_{N}$. Then, for all $k \in \mathbb{N}_{0}$, it holds true that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\int_{\mathbb{R}} t^{k} d \mu_{X_{n}}(t)\right]=\int_{\mathbb{R}} t^{k} d \mu_{S}(t)
$$

for the semicircular distribution

$$
d \mu_{S}(t)=\frac{1}{2 \pi} \sqrt{4-t^{2}} 1_{[-2,2]}(t) d t .
$$

Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix $X=\left(x_{k, l}\right)_{k, l=1}^{N} \in \mathcal{A}_{N}$, for which

$$
\left\{\Re\left(x_{k, l}\right) \mid 1 \leq k \leq l \leq N\right\} \cup\left\{\Im\left(x_{k, l}\right) \mid 1 \leq k<l \leq N\right\}
$$

are independent Gaussian random variables, such that

$$
\mathbb{E}\left[x_{k, l}\right]=0 \quad \text { and } \quad \mathbb{E}\left[\left|x_{k, l}\right|^{2}\right]=N^{-1} \quad \text { for } 1 \leq k \leq l \leq N .
$$

Theorem (Wigner (1955/1958) \& Arnold (1967))

Let $\left(X^{(N)}\right)_{N \in \mathbb{N}}$ be a sequence of self-adjoint Gaussian random matrices $X^{(N)} \in \mathcal{A}_{N}$. Then, for all $k \in \mathbb{N}_{0}$, it holds true that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} t^{k} d \mu_{X_{n}}(t)=\int_{\mathbb{R}} t^{k} d \mu_{S}(t) \quad \text { almost surely }
$$

for the semicircular distribution

$$
d \mu_{S}(t)=\frac{1}{2 \pi} \sqrt{4-t^{2}} 1_{[-2,2]}(t) d t .
$$

"Functions" in independent random matrices

"Functions" in independent random matrices

Question

For each $N \in \mathbb{N}$, let independent Gaussian random matrices

$$
X_{1}^{(N)}, \ldots, X_{n}^{(N)} \in \mathcal{A}_{N}
$$

be given and suppose that f is "some kind of non-commutative function". What can we say about the asymptotic behavior of the empirical eigenvalue distribution of

$$
Y^{(N)}:=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right) ?
$$

"Functions" in independent random matrices

Question

For each $N \in \mathbb{N}$, let independent Gaussian random matrices

$$
X_{1}^{(N)}, \ldots, X_{n}^{(N)} \in \mathcal{A}_{N}
$$

be given and suppose that f is "some

$$
f(x, y)=x y+y x
$$ kind of non-commutative function". What can we say about the asymptotic behavior of the empirical eigenvalue distribution of

$$
Y^{(N)}:=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right) ?
$$

"Functions" in independent random matrices

Question

For each $N \in \mathbb{N}$, let independent Gaussian random matrices

$$
X_{1}^{(N)}, \ldots, X_{n}^{(N)} \in \mathcal{A}_{N}
$$

be given and suppose that f is "some

$$
f(x, y)=x y+y x
$$ kind of non-commutative function". What can we say about the asymptotic behavior of the empirical eigenvalue distribution of

$$
Y^{(N)}:=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right) ?
$$

$$
f(x, y)=(x+i)^{-1}(x+i y)(x+i)^{-1}
$$

"Functions" in independent random matrices

Question

For each $N \in \mathbb{N}$, let independent Gaussian random matrices

$$
X_{1}^{(N)}, \ldots, X_{n}^{(N)} \in \mathcal{A}_{N}
$$

$$
f(x, y)=x y+y x
$$

$$
Y^{(N)}:=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right) ?
$$

$$
f(x, y)=(x+i)^{-1}(x+i y)(x+i)^{-1}
$$

Non-commutative probability spaces

Non-commutative probability spaces

Definition

A non-commutative probability space (\mathcal{A}, ϕ) consists of

- a complex algebra \mathcal{A} with unit $1_{\mathcal{A}}$ and
- a linear functional $\phi: \mathcal{A} \rightarrow \mathbb{C}$ satisfying $\phi\left(1_{\mathcal{A}}\right)=1$ (expectation).

Elements $X \in \mathcal{A}$ are called non-commutative random variables.

Non-commutative probability spaces

Definition

A non-commutative probability space (\mathcal{A}, ϕ) consists of

- a complex algebra \mathcal{A} with unit $1_{\mathcal{A}}$ and
- a linear functional $\phi: \mathcal{A} \rightarrow \mathbb{C}$ satisfying $\phi\left(1_{\mathcal{A}}\right)=1$ (expectation). Elements $X \in \mathcal{A}$ are called non-commutative random variables.

Example

Non-commutative probability spaces

Definition

A non-commutative probability space (\mathcal{A}, ϕ) consists of

- a complex algebra \mathcal{A} with unit $1_{\mathcal{A}}$ and
- a linear functional $\phi: \mathcal{A} \rightarrow \mathbb{C}$ satisfying $\phi\left(1_{\mathcal{A}}\right)=1$ (expectation).

Elements $X \in \mathcal{A}$ are called non-commutative random variables.

Example

- $\left(L^{\infty}(\Omega, \mathbb{P}), \mathbb{E}\right)$, where $(\Omega, \mathcal{F}, \mathbb{P})$ is a classical probability space and \mathbb{E} the usual expectation that is given by $\mathbb{E}[X]=\int_{\Omega} X(\omega) d \mathbb{P}(\omega)$.

Non-commutative probability spaces

Definition

A non-commutative probability space (\mathcal{A}, ϕ) consists of

- a complex algebra \mathcal{A} with unit $1_{\mathcal{A}}$ and
- a linear functional $\phi: \mathcal{A} \rightarrow \mathbb{C}$ satisfying $\phi\left(1_{\mathcal{A}}\right)=1$ (expectation).

Elements $X \in \mathcal{A}$ are called non-commutative random variables.

Example

- $\left(L^{\infty}(\Omega, \mathbb{P}), \mathbb{E}\right)$, where $(\Omega, \mathcal{F}, \mathbb{P})$ is a classical probability space and \mathbb{E} the usual expectation that is given by $\mathbb{E}[X]=\int_{\Omega} X(\omega) d \mathbb{P}(\omega)$.
- $\left(M_{N}(\mathbb{C}), \operatorname{tr}_{N}\right)$, where tr_{N} is the normalized trace on $M_{N}(\mathbb{C})$.

Non-commutative probability spaces

Definition

A non-commutative probability space (\mathcal{A}, ϕ) consists of

- a complex algebra \mathcal{A} with unit $1_{\mathcal{A}}$ and
- a linear functional $\phi: \mathcal{A} \rightarrow \mathbb{C}$ satisfying $\phi\left(1_{\mathcal{A}}\right)=1$ (expectation).

Elements $X \in \mathcal{A}$ are called non-commutative random variables.

Example

- $\left(L^{\infty}(\Omega, \mathbb{P}), \mathbb{E}\right)$, where $(\Omega, \mathcal{F}, \mathbb{P})$ is a classical probability space and \mathbb{E} the usual expectation that is given by $\mathbb{E}[X]=\int_{\Omega} X(\omega) d \mathbb{P}(\omega)$.
- $\left(M_{N}(\mathbb{C}), \operatorname{tr}_{N}\right)$, where tr_{N} is the normalized trace on $M_{N}(\mathbb{C})$.
- $\left(\mathcal{A}_{N}, \phi_{N}\right)$, with $\mathcal{A}_{N}=M_{N}\left(L^{\infty-}(\Omega, \mathbb{P})\right)$ and expectation given by

$$
\phi_{N}(X):=\mathbb{E}\left[\operatorname{tr}_{N}(X)\right]=\int_{\Omega} \operatorname{tr}_{N}(X(\omega)) d \mathbb{P}(\omega)
$$

Free independence

Free independence

Definition

Let (\mathcal{A}, ϕ) be a non-commutative probability space.
(i) Unital subalgebras $\left(\mathcal{A}_{i}\right)_{i \in I}$ of \mathcal{A} are called freely independent (or just free), if

$$
\phi\left(a_{1} \cdots a_{k}\right)=0
$$

holds, whenever
$a_{j} \in \mathcal{A}_{i(j)}$ with $i(j) \in I$ for all $j=1, \ldots, k$,
$\phi\left(a_{j}\right)=0$ for $j=1, \ldots, k$,
$i(1) \neq i(2), i(2) \neq i(3), \ldots, i(k-1) \neq i(k)$.

Free independence

Definition

Let (\mathcal{A}, ϕ) be a non-commutative probability space.
(i) Unital subalgebras $\left(\mathcal{A}_{i}\right)_{i \in I}$ of \mathcal{A} are called freely independent (or just free), if

$$
\phi\left(a_{1} \cdots a_{k}\right)=0
$$

holds, whenever

$$
\begin{aligned}
& a_{j} \in \mathcal{A}_{i(j)} \text { with } i(j) \in I \text { for all } j=1, \ldots, k, \\
& \phi\left(a_{j}\right)=0 \text { for } j=1, \ldots, k, \\
& i(1) \neq i(2), i(2) \neq i(3), \ldots, i(k-1) \neq i(k) .
\end{aligned}
$$

(ii) Elements $\left(X_{i}\right)_{i \in I}$ of \mathcal{A} are called freely independent (or just free), if the algebras $\left(\mathcal{A}_{i}\right)_{i \in I}$ with $\mathcal{A}_{i}:=\operatorname{alg}\left\{1_{\mathcal{A}}, X_{i}\right\}$ for any $i \in I$ are freely independent.

Free independence

Definition

Let (\mathcal{A}, ϕ) be a non-commutative probability space.
(i) Unital subalgebras $\left(\mathcal{A}_{i}\right)_{i \in I}$ of \mathcal{A} are called freely independent (or just free), if

$$
\phi\left(a_{1} \cdots a_{k}\right)=0
$$

holds, whenever

$$
\begin{aligned}
& a_{j} \in \mathcal{A}_{i(j)} \text { with } i(j) \in I \text { for all } j=1, \ldots, k, \\
& \phi\left(a_{j}\right)=0 \text { for } j=1, \ldots, k, \\
& i(1) \neq i(2), i(2) \neq i(3), \ldots, i(k-1) \neq i(k) .
\end{aligned}
$$

(ii) Elements $\left(X_{i}\right)_{i \in I}$ of \mathcal{A} are called freely independent (or just free), if the algebras $\left(\mathcal{A}_{i}\right)_{i \in I}$ with $\mathcal{A}_{i}:=\operatorname{alg}\left\{1_{\mathcal{A}}, X_{i}\right\}$ for any $i \in I$ are freely independent.

Free probability theory is a highly non-commutative analogue of classical probability theory.

Asymptotic freeness of random matrices

Asymptotic freeness of random matrices
We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991))

For all $N \in \mathbb{N}$, realize independent self-adjoint Gaussian random matrices $X_{1}^{(N)}, \ldots, X_{n}^{(N)} \in \mathcal{A}_{N}$. Then, for all $P \in \mathbb{C}\left\langle x_{1}, \ldots, x_{n}\right\rangle$,

$$
\lim _{N \rightarrow \infty} \mathbb{E}\left[\operatorname{tr}_{N}\left(P\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)\right)\right]=\phi\left(P\left(S_{1}, \ldots, S_{n}\right)\right)
$$

for freely independent semicircular elements S_{1}, \ldots, S_{n} in some non-commutative probability space (\mathcal{A}, ϕ).

Asymptotic freeness of random matrices
We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991), Hiai \& Petz (2000))

For all $N \in \mathbb{N}$, realize independent self-adjoint Gaussian random matrices $X_{1}^{(N)}, \ldots, X_{n}^{(N)} \in \mathcal{A}_{N}$. Then, for all $P \in \mathbb{C}\left\langle x_{1}, \ldots, x_{n}\right\rangle$,

$$
\lim _{N \rightarrow \infty} \operatorname{tr}_{N}\left(P\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)\right)=\phi\left(P\left(S_{1}, \ldots, S_{n}\right)\right) \quad \text { almost surely }
$$

for freely independent semicircular elements S_{1}, \ldots, S_{n} in some non-commutative probability space (\mathcal{A}, ϕ).

Asymptotic freeness of random matrices

We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991), Hiai \& Petz (2000))

For all $N \in \mathbb{N}$, realize independent self-adjoint Gaussian random matrices $X_{1}^{(N)}, \ldots, X_{n}^{(N)} \in \mathcal{A}_{N}$. Then, for all $P \in \mathbb{C}\left\langle x_{1}, \ldots, x_{n}\right\rangle$,

$$
\lim _{N \rightarrow \infty} \operatorname{tr}_{N}\left(P\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)\right)=\phi\left(P\left(S_{1}, \ldots, S_{n}\right)\right) \quad \text { almost surely }
$$

for freely independent semicircular elements S_{1}, \ldots, S_{n} in some non-commutative probability space (\mathcal{A}, ϕ).

This means: Asymptotic freeness relates

- the limiting eigenvalue distribution of $Y^{(N)}=P\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)$ and
- the distribution of $Y=P\left(S_{1}, \ldots, S_{n}\right)$ for freely independent semicircular elements S_{1}, \ldots, S_{n}.

Back to our question ...

Back to our question ...

$$
\text { Case 1: self-adjoint functions } Y^{(N)}=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)
$$

Back to our question ...

Case 1: self-adjoint functions $Y^{(N)}=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)$

- Non-commutative polynomials

Back to our question ...

Case 1: self-adjoint functions $Y^{(N)}=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)$

- Non-commutative polynomials $\checkmark \quad$ [Voiculescu (1991)]

Back to our question ...

Case 1: self-adjoint functions $Y^{(N)}=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)$

- Non-commutative polynomials $\checkmark \quad$ [Voiculescu (1991)]
- Non-commutative rational expressions

Back to our question ...

Case 1: self-adjoint functions $Y^{(N)}=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)$

- Non-commutative polynomials $\checkmark \quad$ [Voiculescu (1991)]
- Non-commutative rational expressions $\checkmark \quad$ [Cébron \& Yin (2016)]

Back to our question ...

Case 1: self-adjoint functions $Y^{(N)}=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)$

- Non-commutative polynomials $\checkmark \quad$ [Voiculescu (1991)]
- Non-commutative rational expressions $\checkmark \quad$ [Cébron \& Yin (2016)]

Case 2: non-self-adjoint functions $Y^{(N)}=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)$

Back to our question ...

Case 1: self-adjoint functions $Y^{(N)}=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)$

- Non-commutative polynomials $\checkmark \quad$ [Voiculescu (1991)]
- Non-commutative rational expressions $\checkmark \quad$ [Cébron \& Yin (2016)]

Case 2: non-self-adjoint functions $Y^{(N)}=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)$

- Non-commutative polynomials
- Non-commutative rational expressions

Back to our question ...

Case 1: self-adjoint functions $Y^{(N)}=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)$

- Non-commutative polynomials $\checkmark \quad$ [Voiculescu (1991)]
- Non-commutative rational expressions $\checkmark \quad$ [Cébron \& Yin (2016)]

Case 2: non-self-adjoint functions $Y^{(N)}=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)$

- Non-commutative polynomials ?
- Non-commutative rational expressions ? ? ?
... but conjectured to be given by the Brown measure!

Back to our question ...

Case 1: self-adjoint functions $Y^{(N)}=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)$

- Non-commutative polynomials $\checkmark \quad$ [Voiculescu (1991)]
- Non-commutative rational expressions $\checkmark \quad$ [Cébron \& Yin (2016)]

Case 2: non-self-adjoint functions $Y^{(N)}=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)$

- Non-commutative polynomials ?
- Non-commutative rational expressions ? ? ?
... but conjectured to be given by the Brown measure!
Goal
For the limiting object $Y:=f\left(X_{1}, \ldots, X_{n}\right)$, we want to compute
- its analytic distribution in Case 1, [Belinschi, M., Speicher (2013)]

Back to our question ...

Case 1: self-adjoint functions $Y^{(N)}=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)$

- Non-commutative polynomials $\checkmark \quad$ [Voiculescu (1991)]
- Non-commutative rational expressions $\checkmark \quad$ [Cébron \& Yin (2016)]

Case 2: non-self-adjoint functions $Y^{(N)}=f\left(X_{1}^{(N)}, \ldots, X_{n}^{(N)}\right)$

- Non-commutative polynomials ?
- Non-commutative rational expressions ? ? ?
... but conjectured to be given by the Brown measure!
Goal
For the limiting object $Y:=f\left(X_{1}, \ldots, X_{n}\right)$, we want to compute
- its analytic distribution in Case 1, [Belinschi, M., Speicher (2013)]
- its Brown measure in Case 2. [Belinschi, Sniady, Speicher (2015)] [Helton, M., Speicher (2015)]

C^{*}-probability spaces and analytic distributions

C^{*}-probability spaces and analytic distributions

Definition

A non-commutative probability space (\mathcal{A}, ϕ) is called C^{*}-probability space, if \mathcal{A} is a unital C^{*}-algebra and ϕ a state on \mathcal{A}.
C^{*}-probability spaces and analytic distributions

Definition

A non-commutative probability space (\mathcal{A}, ϕ) is called C^{*}-probability space, if \mathcal{A} is a unital C^{*}-algebra and ϕ a state on \mathcal{A}.

Definition ("analytic distribution")
Let (\mathcal{A}, ϕ) be a C^{*}-probability space. The (analytic) distribution of $X=X^{*} \in \mathcal{A}$ is the unique Borel probability measure μ_{X} on \mathbb{R} such that

$$
\phi\left(X^{k}\right)=\int_{\mathbb{R}} t^{k} d \mu_{X}(t) \quad \text { for all } k \in \mathbb{N}_{0}
$$

C^{*}-probability spaces and analytic distributions

Definition

A non-commutative probability space (\mathcal{A}, ϕ) is called C^{*}-probability space, if \mathcal{A} is a unital C^{*}-algebra and ϕ a state on \mathcal{A}.

Definition ("analytic distribution")
Let (\mathcal{A}, ϕ) be a C^{*}-probability space. The (analytic) distribution of $X=X^{*} \in \mathcal{A}$ is the unique Borel probability measure μ_{X} on \mathbb{R} such that

$$
\phi\left(X^{k}\right)=\int_{\mathbb{R}} t^{k} d \mu_{X}(t) \quad \text { for all } k \in \mathbb{N}_{0}
$$

Example

For any $X=X^{*} \in M_{N}(\mathbb{C})$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{N}$, we have that

$$
\mu_{X}=\frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_{j}}, \quad \text { since } \quad \operatorname{tr}_{N}\left(X^{k}\right)=\frac{1}{N} \sum_{j=1}^{N} \lambda_{j}^{k}=\int_{\mathbb{R}} t^{k} d \mu_{X}(t)
$$

Cauchy-Stieltjes transforms of analytic distributions

Cauchy-Stieltjes transforms of analytic distributions

Definition

Let (\mathcal{A}, ϕ) be a C^{*}-probability space. For $X=X^{*} \in \mathcal{A}$, the holomorphic function

$$
G_{X}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}, z \mapsto \phi\left((z-X)^{-1}\right)=\int_{\mathbb{R}} \frac{1}{z-t} d \mu_{X}(t)
$$

is called the Cauchy transform of X.

Cauchy-Stieltjes transforms of analytic distributions

Definition

Let (\mathcal{A}, ϕ) be a C^{*}-probability space. For $X=X^{*} \in \mathcal{A}$, the holomorphic function

$$
G_{X}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}, z \mapsto \phi\left((z-X)^{-1}\right)=\int_{\mathbb{R}} \frac{1}{z-t} d \mu_{X}(t)
$$

is called the Cauchy transform of X.

Theorem (Stieltjes inversion formula)

For each $\varepsilon>0$, consider the absolutely continuous measure $\mu_{X, \varepsilon}$ given by

$$
d \mu_{X, \varepsilon}(t)=\frac{-1}{\pi} \Im\left(G_{X}(t+i \varepsilon)\right) d t
$$

Then $\mu_{X, \varepsilon} \rightarrow \mu_{X}$ weakly as $\varepsilon \searrow 0$.

W^{*}-probability spaces and Brown measures

W^{*}-probability spaces and Brown measures

Definition

A non-commutative probability space (\mathcal{A}, ϕ) is called tracial W^{*}-probability space, if \mathcal{A} is a von Neumann algebra and ϕ a faithful normal tracial state on \mathcal{A}.
W^{*}-probability spaces and Brown measures

Definition

A non-commutative probability space (\mathcal{A}, ϕ) is called tracial W^{*}-probability space, if \mathcal{A} is a von Neumann algebra and ϕ a faithful normal tracial state on \mathcal{A}.

Definition (Brown measure)

Let (\mathcal{A}, ϕ) be a tracial W^{*}-probability space. The Brown measure of $X \in \mathcal{A}$ is defined (in distributional sense) by

$$
\mu=\frac{2}{\pi} \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} \log (\Delta(X-z)),
$$

where Δ denotes the Fuglede-Kadison determinant, i.e.

$$
\Delta(X):=\lim _{\varepsilon \nless 0} \exp \left(\frac{1}{2} \phi\left(\log \left(X X^{*}+\varepsilon^{2}\right)\right)\right)
$$

regularized Cauchy transforms

regularized Cauchy transforms

Theorem ([Larsen (1999)], [Belinschi, Sniady, Speicher (2015)])
Let (\mathcal{A}, ϕ) be a tracial W^{*}-probability space and let $X \in \mathcal{A}$ be given. For each $\varepsilon>0$, consider the regularized Brown measure $\mu_{X, \varepsilon}$ given by

$$
d \mu_{X, \varepsilon}(z)=\frac{1}{\pi} \frac{\partial}{\partial \bar{z}} G_{X, \varepsilon}(z) d \lambda^{2}(z)
$$

where $G_{X, \varepsilon}$ denotes the regularized Cauchy transforms of X,

$$
G_{X, \varepsilon}(z)=\phi\left((z-X)^{*}\left((z-X)(z-X)^{*}+\varepsilon^{2}\right)^{-1}\right) .
$$

Then $\mu_{X, \varepsilon} \rightarrow \mu_{X}$ weakly as $\varepsilon \searrow 0$.

regularized Cauchy transforms

Theorem ([Larsen (1999)], [Belinschi, Sniady, Speicher (2015)])
Let (\mathcal{A}, ϕ) be a tracial W^{*}-probability space and let $X \in \mathcal{A}$ be given. For each $\varepsilon>0$, consider the regularized Brown measure $\mu_{X, \varepsilon}$ given by

$$
d \mu_{X, \varepsilon}(z)=\frac{1}{\pi} \frac{\partial}{\partial \bar{z}} G_{X, \varepsilon}(z) d \lambda^{2}(z),
$$

where $G_{X, \varepsilon}$ denotes the regularized Cauchy transforms of X,

$$
G_{X, \varepsilon}(z)=\phi\left((z-X)^{*}\left((z-X)(z-X)^{*}+\varepsilon^{2}\right)^{-1}\right) .
$$

Then $\mu_{X, \varepsilon} \rightarrow \mu_{X}$ weakly as $\varepsilon \searrow 0$.
hermitian reduction method [Janik, Nowak, Papp, Zahed (1997)]

$$
G_{X, \varepsilon}(z)=\left[G_{\mathbb{X}}\left(\left[\begin{array}{cc}
i \varepsilon & z \\
\bar{z} & i \varepsilon
\end{array}\right]\right)\right]_{2,1} \text { where } \mathbb{X}:=\left[\begin{array}{cc}
0 & X \\
X^{*} & 0
\end{array}\right] \in M_{2}(\mathcal{A})
$$

Operator-valued free probability

Operator-valued free probability

free probability theory (\mathcal{A}, ϕ)

Operator-valued free probability

free probability theory (\mathcal{A}, ϕ)	
\mathcal{A} unital algebra	
$\mathbb{C} 1_{\mathcal{A}} \subseteq \mathcal{A}$	
$\phi: \mathcal{A} \rightarrow \mathbb{C}$ expectation, satisfying	
\qquad $\left.\mathbb{C}_{\mathcal{A}}\right)=1$.	
$G_{X}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$,	
$z \mapsto \phi\left((z-X)^{-1}\right)$	

Operator-valued free probability

free probability theory (\mathcal{A}, ϕ)	operator-valued free probability theory $(\mathcal{A}, \mathbb{E}, \mathcal{B})$
\mathcal{A} unital algebra	
$\mathbb{C} 1_{\mathcal{A}} \subseteq \mathcal{A}$	
$\phi: \mathcal{A} \rightarrow \mathbb{C}$ expectation, satisfying	
$\qquad$$\phi\left(1_{\mathcal{A}}\right)=1$.	
$\mathbb{C}^{ \pm}=\{z \in \mathbb{C} \mid \pm \Im(z)>0\}$	
$G_{X}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$,	
$z \mapsto \phi\left((z-X)^{-1}\right)$	

Operator-valued free probability

free probability theory (\mathcal{A}, ϕ)	operator-valued free probability theory $(\mathcal{A}, \mathbb{E}, \mathcal{B})$
\mathcal{A} unital algebra	\mathcal{A} unital algebra
$\mathbb{C} 1_{\mathcal{A}} \subseteq \mathcal{A}$	
$\phi: \mathcal{A} \rightarrow \mathbb{C}$ expectation, satisfying	
\qquad $\left.\mathbb{C}_{\mathcal{A}}\right)=1$. $G_{X}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$, $z \mapsto \phi\left((z-X)^{-1}\right)$	

Operator-valued free probability

free probability theory (\mathcal{A}, ϕ)	operator-valued free probability theory $(\mathcal{A}, \mathbb{E}, \mathcal{B})$
\mathcal{A} unital algebra	\mathcal{A} unital algebra
$\mathbb{C} 1_{\mathcal{A}} \subseteq \mathcal{A}$	$\mathcal{B} \subseteq \mathcal{A}$ unital subalgebra
$\phi: \mathcal{A} \rightarrow \mathbb{C}$ expectation, satisfying	
$\qquad$$\phi\left(1_{\mathcal{A}}\right)=1$.	
$\mathbb{C}^{ \pm}=\{z \in \mathbb{C} \mid \pm \Im(z)>0\}$	
$G_{X}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$,	
$z \mapsto \phi\left((z-X)^{-1}\right)$	

Operator-valued free probability

free probability theory (\mathcal{A}, ϕ)	operator-valued free probability theory $(\mathcal{A}, \mathbb{E}, \mathcal{B})$
\mathcal{A} unital algebra	\mathcal{A} unital algebra
$\mathbb{C} 1_{\mathcal{A}} \subseteq \mathcal{A}$	$\mathcal{B} \subseteq \mathcal{A}$ unital subalgebra
$\phi: \mathcal{A} \rightarrow \mathbb{C}$ expectation, satisfying	$\mathbb{E}: \mathcal{A} \rightarrow \mathcal{B}$ conditional expecta- tion, satisfying • $\mathbb{E}[b]=b$ for all $b \in \mathcal{B}$. $\qquad\left(1_{\mathcal{A}}\right)=1$.
• $\left[b_{1} X b_{2}\right]=b_{1} \mathbb{E}[X] b_{2}$ for all $X \in \mathcal{A}$ and $b_{1}, b_{2} \in \mathcal{B}$.	
$\mathbb{C}^{ \pm}=\{z \in \mathbb{C} \mid \pm \Im(z)>0\}$	
$G_{X}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$,	
$z \mapsto \phi\left((z-X)^{-1}\right)$	

Operator-valued free probability

free probability theory (\mathcal{A}, ϕ)	operator-valued free probability theory $(\mathcal{A}, \mathbb{E}, \mathcal{B})$
\mathcal{A} unital algebra	\mathcal{A} unital algebra
$\mathbb{C} 1_{\mathcal{A}} \subseteq \mathcal{A}$	$\mathcal{B} \subseteq \mathcal{A}$ unital subalgebra
$\phi: \mathcal{A} \rightarrow \mathbb{C}$ expectation, satisfying	$\mathbb{E}: \mathcal{A} \rightarrow \mathcal{B}$ conditional expecta- tion, satisfying $\phi\left(1_{\mathcal{A}}\right)=1$.
	• $[b]=b$ for all $b \in \mathcal{B}$. $\mathbb{C}^{ \pm}=\left\{b_{1} X b_{2}\right]=b_{1} \mathbb{E}[X] b_{2}$ and $b_{1}, b_{2} \in \mathcal{B}$.
$G_{X}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$,	$\mathbb{H}^{ \pm}(\mathcal{B})=\{b \in \mathcal{B} \mid \pm \Im(b)>0\}$, where all $\Im(b):=\frac{b-b^{*}}{2 i}$.
$z \mapsto \phi\left((z-X)^{-1}\right)$	

Operator-valued free probability

free probability theory (\mathcal{A}, ϕ)	operator-valued free probability theory $(\mathcal{A}, \mathbb{E}, \mathcal{B})$
\mathcal{A} unital algebra	\mathcal{A} unital algebra
$\mathbb{C} 1_{\mathcal{A}} \subseteq \mathcal{A}$	$\mathcal{B} \subseteq \mathcal{A}$ unital subalgebra
$\phi: \mathcal{A} \rightarrow \mathbb{C}$ expectation, satisfying $\phi\left(1_{\mathcal{A}}\right)=1 .$	$\mathbb{E}: \mathcal{A} \rightarrow \mathcal{B}$ conditional expectation, satisfying - $\mathbb{E}[b]=b$ for all $b \in \mathcal{B}$. - $\mathbb{E}\left[b_{1} X b_{2}\right]=b_{1} \mathbb{E}[X] b_{2}$ for all $X \in \mathcal{A}$ and $b_{1}, b_{2} \in \mathcal{B}$.
$\mathbb{C}^{ \pm}=\{z \in \mathbb{C} \mid \pm \Im(z)>0\}$	$\mathbb{H}^{ \pm}(\mathcal{B})=\{b \in \mathcal{B} \mid \pm \Im(b)>0\}$ where $\Im(b):=\frac{b-b^{*}}{2 i}$.
$\begin{aligned} G_{X}: \mathbb{C}^{+} & \rightarrow \mathbb{C}^{-}, \\ z & \mapsto \phi\left((z-X)^{-1}\right) \end{aligned}$	$\begin{aligned} G_{X}: \mathbb{H}^{+}(\mathcal{B}) & \rightarrow \mathbb{H}^{-}(\mathcal{B}), \\ b & \mapsto \mathbb{E}\left[(b-X)^{-1}\right] \end{aligned}$

What actually are non-commutative rational expressions?

What actually are non-commutative rational expressions?

Definition

A (non-commutative) rational expression r in n formal variables x_{1}, \ldots, x_{n} is a syntactically valid combination of

- scalars $\lambda \in \mathbb{C}$ and the variables x_{1}, \ldots, x_{n},
- the arithmetic operations $+, \cdot,{ }^{-1}$, and
- parentheses (,).

What actually are non-commutative rational expressions?

Definition

A (non-commutative) rational expression r in n formal variables x_{1}, \ldots, x_{n} is a syntactically valid combination of

- scalars $\lambda \in \mathbb{C}$ and the variables x_{1}, \ldots, x_{n},
- the arithmetic operations $+, \cdot,{ }^{-1}$, and
- parentheses (,).

Example

- $r\left(x_{1}, x_{2}\right)=\left(x_{1} \cdot x_{2}-4\right)^{-1} \cdot x_{1} \cdot\left(x_{2} \cdot x_{1}-4\right)^{-1}$
- $r\left(x_{1}, x_{2}\right)=\left(i-x_{1}\right)^{-1} \cdot x_{2}+x_{1} \cdot\left(i-x_{2}\right)^{-1}$
- $r\left(x_{1}, x_{2}\right)=\left(x_{1} \cdot x_{2}-x_{2} \cdot x_{1}\right)^{-1}$

What actually are non-commutative rational expressions?

Definition

A (non-commutative) rational expression r in n formal variables x_{1}, \ldots, x_{n} is a syntactically valid combination of

- scalars $\lambda \in \mathbb{C}$ and the variables x_{1}, \ldots, x_{n},
- the arithmetic operations $+, \cdot,{ }^{-1}$, and
- parentheses (,).

Example

- $r\left(x_{1}, x_{2}\right)=\left(x_{1} \cdot x_{2}-4\right)^{-1} \cdot x_{1} \cdot\left(x_{2} \cdot x_{1}-4\right)^{-1}$
- $r\left(x_{1}, x_{2}\right)=\left(i-x_{1}\right)^{-1} \cdot x_{2}+x_{1} \cdot\left(i-x_{2}\right)^{-1}$
- $r\left(x_{1}, x_{2}\right)=\left(x_{1} \cdot x_{2}-x_{2} \cdot x_{1}\right)^{-1}$
- $r_{1}\left(x_{1}, x_{2}\right)=0^{-1}, \quad r_{2}\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{1}\right)^{-1}$

Self-adjoint formal linear representations

Self-adjoint formal linear representations

Definition (Helton, M., Speicher (2015))

Let \mathbb{r} be a self-adjoint $k \times k$ matrix of non-commutative rational expressions in formal variables x_{1}, \ldots, x_{n}. A self-adjoint formal linear representation $\rho=(Q, v)$ of \mathbb{r} consists of

- an affine linear pencil $Q=Q^{(0)}+Q^{(1)} x_{1}+\cdots+Q^{(n)} x_{n}$ with self-adjoint matrices $Q^{(0)}, Q^{(1)}, \ldots, Q^{(n)} \in M_{N}(\mathbb{C})$,
- a matrix $v \in M_{N \times k}(\mathbb{C})$,
and satisfies the following property:
For any unital complex $*$-algebra \mathcal{A} and each $X \in \mathcal{A}_{\mathrm{sa}}^{n}$, for which $\mathbb{r}(X)$ is defined, $Q(X)$ is invertible in $M_{N}(\mathcal{A})$ and $\mathbb{r}(X)=-v^{*} Q(X)^{-1} v$ holds.

Self-adjoint formal linear representations

Definition (Helton, M., Speicher (2015))

Let \mathbb{r} be a self-adjoint $k \times k$ matrix of non-commutative rational expressions in formal variables x_{1}, \ldots, x_{n}. A self-adjoint formal linear representation $\rho=(Q, v)$ of r consists of

- an affine linear pencil $Q=Q^{(0)}+Q^{(1)} x_{1}+\cdots+Q^{(n)} x_{n}$ with self-adjoint matrices $Q^{(0)}, Q^{(1)}, \ldots, Q^{(n)} \in M_{N}(\mathbb{C})$,
- a matrix $v \in M_{N \times k}(\mathbb{C})$,
and satisfies the following property:
For any unital complex $*$-algebra \mathcal{A} and each $X \in \mathcal{A}_{\mathrm{sa}}^{n}$, for which $\mathbb{r}(X)$ is defined, $Q(X)$ is invertible in $M_{N}(\mathcal{A})$ and $\mathfrak{r}(X)=-v^{*} Q(X)^{-1} v$ holds.

Theorem (Helton, M., Speicher (2015))
Each self-adjoint matrix r of non-commutative rational expressions admits a self-adjoint formal linear representation $\rho=(Q, v)$.

The history of linearization

The history of linearization

From free probability theory

- Haagerup and Thorbjørnsen (2005)
- Haagerup, Schultz, and Thorbjørnsen (2006)
- Anderson (2012)

The history of linearization

From free probability theory ...

- Haagerup and Thorbjørnsen (2005)
- Haagerup, Schultz, and Thorbjørnsen (2006)
- Anderson (2012)
... back to the famous ancestors.
- recognizable rational series: Schützenberger (1961)
- linear representations: Cohn (1985); Cohn and Reutenauer (1994); Malcolmson (1978)
- descriptor realizations: Kalman (1963); Helton, McCullough, and Vinnikov (2006)

The history of linearization

From free probability theory ...

- Haagerup and Thorbjørnsen (2005)
- Haagerup, Schultz, and Thorbjørnsen (2006)
- Anderson (2012)
... back to the famous ancestors.
- recognizable rational series: Schützenberger (1961)
- linear representations: Cohn (1985); Cohn and Reutenauer (1994); Malcolmson (1978)
- descriptor realizations: Kalman (1963); Helton, McCullough, and Vinnikov (2006)
- ...
\curvearrowright Linearization even works for non-commutative rational expressions!

Linearization meets operator-valued free probability

Linearization meets operator-valued free probability

Theorem

Given a self-adjoint $k \times k$ matrix \mathbb{r} of non-commutative rational expression in x_{1}, \ldots, x_{n}, we chose any self-adjoint formal linear representation $\rho=(Q, v)$ of size $N \times N$. Then, for any C^{*}-probability space (\mathcal{A}, ϕ) and any $X=\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{A}_{\mathrm{sa}}^{n}$, for which $\mathbb{r}(X)$ is defined, we have that

$$
G_{\mathrm{r}(X)}(Z)=\lim _{\varepsilon \searrow 0}\left[G_{\hat{\mathrm{r}}(X)}\left(\Lambda_{\varepsilon}(Z)\right)\right]_{1,1} \quad \text { with } \quad \hat{\mathbb{r}}(X):=\left(\begin{array}{cc}
0 & v^{*} \\
v & Q(X)
\end{array}\right)
$$

holds with $\Lambda_{\varepsilon}(Z):=\left(\begin{array}{cc}Z & 0 \\ 0 & i \varepsilon 1_{N}\end{array}\right) \in \mathbb{H}^{+}\left(M_{N+k}(\mathbb{C})\right)$ for $Z \in \mathbb{H}^{+}\left(M_{k}(\mathbb{C})\right)$.

Linearization meets operator-valued free probability

Theorem

Given a self-adjoint $k \times k$ matrix \mathbb{r} of non-commutative rational expression in x_{1}, \ldots, x_{n}, we chose any self-adjoint formal linear representation $\rho=(Q, v)$ of size $N \times N$. Then, for any C^{*}-probability space (\mathcal{A}, ϕ) and any $X=\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{A}_{\mathrm{sa}}^{n}$, for which $\mathbb{r}(X)$ is defined, we have that

$$
G_{\mathrm{r}(X)}(Z)=\lim _{\varepsilon \searrow 0}\left[G_{\hat{\mathrm{r}}(X)}\left(\Lambda_{\varepsilon}(Z)\right)\right]_{1,1} \quad \text { with } \quad \hat{\mathbb{r}}(X):=\left(\begin{array}{cc}
0 & v^{*} \\
v & Q(X)
\end{array}\right)
$$

holds with $\Lambda_{\varepsilon}(Z):=\left(\begin{array}{cc}Z & 0 \\ 0 & i \varepsilon 1_{N}\end{array}\right) \in \mathbb{H}^{+}\left(M_{N+k}(\mathbb{C})\right)$ for $Z \in \mathbb{H}^{+}\left(M_{k}(\mathbb{C})\right)$.

Remark

We have $\hat{\mathbb{r}}(X)=b_{0}+b_{1} X_{1}+\cdots+b_{n} X_{n}$ and $b_{1} X_{1}, \ldots, b_{n} X_{n}$ are freely independent in $\left(M_{N+k}(\mathcal{A}), \operatorname{id}_{M_{N+k}(\mathbb{C})} \otimes \phi, M_{N+k}(\mathbb{C})\right)$.

How to calculate the free additive convolution

Theorem (Belinschi, M., Speicher, 2013)

Assume that $(\mathcal{A}, \mathbb{E}, \mathcal{B})$ is an operator-valued C^{*}-probability space.
If $X, Y \in \mathcal{A}$ are free with respect to \mathbb{E}, then there exists a unique pair of (Fréchet-)holomorphic maps $\omega_{1}, \omega_{2}: \mathbb{H}^{+}(\mathcal{B}) \rightarrow \mathbb{H}^{+}(\mathcal{B})$, such that

$$
G_{X}\left(\omega_{1}(b)\right)=G_{Y}\left(\omega_{2}(b)\right)=G_{X+Y}(b), \quad b \in \mathbb{H}^{+}(\mathcal{B}) .
$$

How to calculate the free additive convolution

Theorem (Belinschi, M., Speicher, 2013)

Assume that $(\mathcal{A}, \mathbb{E}, \mathcal{B})$ is an operator-valued C^{*}-probability space.
If $X, Y \in \mathcal{A}$ are free with respect to \mathbb{E}, then there exists a unique pair of (Fréchet-)holomorphic maps $\omega_{1}, \omega_{2}: \mathbb{H}^{+}(\mathcal{B}) \rightarrow \mathbb{H}^{+}(\mathcal{B})$, such that

$$
G_{X}\left(\omega_{1}(b)\right)=G_{Y}\left(\omega_{2}(b)\right)=G_{X+Y}(b), \quad b \in \mathbb{H}^{+}(\mathcal{B}) .
$$

Moreover, ω_{1} and ω_{2} can easily be calculated via the following fixed point iterations on $\mathbb{H}^{+}(\mathcal{B})$

$$
\begin{array}{rlr}
w \mapsto h_{Y}\left(b+h_{X}(w)\right)+b & & \text { for } \omega_{1}(b) \\
w \mapsto h_{X}\left(b+h_{Y}(w)\right)+b & & \text { for } \omega_{2}(b)
\end{array}
$$

where we put $h_{X}(b):=G_{X}(b)^{-1}-b$ and $h_{Y}(b):=G_{Y}(b)^{-1}-b$, respectively.

Example I - Distributions

$$
p\left(x_{1}, x_{2}\right):=x_{1} x_{2}+x_{2} x_{1}
$$

$$
\rho=\left(\left(\begin{array}{cccc}
0 & x_{1} & x_{2} & -1 \\
x_{1} & 0 & -1 & 0 \\
x_{2} & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right)
$$

Example I - Distributions

$$
p\left(x_{1}, x_{2}\right):=x_{1} x_{2}+x_{2} x_{1}
$$

$$
\rho=\left(\left(\begin{array}{cccc}
0 & x_{1} & x_{2} & -1 \\
x_{1} & 0 & -1 & 0 \\
x_{2} & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right)
$$

Eigenvalues of $p\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are independent self-adjoint Gaussian random matrices of size 1000×1000...

Example I - Distributions

$$
p\left(x_{1}, x_{2}\right):=x_{1} x_{2}+x_{2} x_{1}
$$

$$
\rho=\left(\left(\begin{array}{cccc}
0 & x_{1} & x_{2} & -1 \\
x_{1} & 0 & -1 & 0 \\
x_{2} & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right)
$$

Eigenvalues of $p\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are independent self-adjoint Gaussian random matrices of size 1000×1000...
... compared to the distribution of $p\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are freely independent semicircular elements.

Example II - Distributions

$$
r\left(x_{1}, x_{2}\right):=\left(4-x_{1}\right)^{-1}+\left(4-x_{1}\right)^{-1} x_{2}\left(\left(4-x_{1}\right)-x_{2}\left(4-x_{1}\right)^{-1} x_{2}\right)^{-1} x_{2}\left(4-x_{1}\right)^{-1}
$$

$$
\left.\rho=\left(\begin{array}{cc}
-1+\frac{1}{4} x_{1} & \frac{1}{4} x_{2} \\
\frac{1}{4} x_{2} & -1+\frac{1}{4} x_{1}
\end{array}\right),\binom{\frac{1}{2}}{0}\right)
$$

Example II - Distributions

$$
r\left(x_{1}, x_{2}\right):=\left(4-x_{1}\right)^{-1}+\left(4-x_{1}\right)^{-1} x_{2}\left(\left(4-x_{1}\right)-x_{2}\left(4-x_{1}\right)^{-1} x_{2}\right)^{-1} x_{2}\left(4-x_{1}\right)^{-1}
$$

$$
\rho=\left(\left(\begin{array}{cc}
-1+\frac{1}{4} x_{1} & \frac{1}{4} x_{2} \\
\frac{1}{4} x_{2} & -1+\frac{1}{4} x_{1}
\end{array}\right),\binom{\frac{1}{2}}{0}\right)
$$

Eigenvalues of $r\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are independent self-adjoint Gaussian random matrices of size 1000×1000...

Example II - Distributions

$$
r\left(x_{1}, x_{2}\right):=\left(4-x_{1}\right)^{-1}+\left(4-x_{1}\right)^{-1} x_{2}\left(\left(4-x_{1}\right)-x_{2}\left(4-x_{1}\right)^{-1} x_{2}\right)^{-1} x_{2}\left(4-x_{1}\right)^{-1}
$$

$$
\rho=\left(\left(\begin{array}{cc}
-1+\frac{1}{4} x_{1} & \frac{1}{4} x_{2} \\
\frac{1}{4} x_{2} & -1+\frac{1}{4} x_{1}
\end{array}\right),\binom{\frac{1}{2}}{0}\right)
$$

Eigenvalues of $r\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are independent self-adjoint Gaussian random matrices of size 1000×1000...
... compared to the distribution of $r\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are freely independent semicircular elements.

Example III - Brown measures

$$
r\left(x_{1}, x_{2}\right):=\left(x_{1}+i\right)^{-1}\left(x_{1}+i x_{2}\right)\left(x_{1}+i\right)^{-1}
$$

Example III - Brown measures

$$
r\left(x_{1}, x_{2}\right):=\left(x_{1}+i\right)^{-1}\left(x_{1}+i x_{2}\right)\left(x_{1}+i\right)^{-1}
$$

Eigenvalues of $r\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are independent self-adjoint Gaussian random matrices of size 1000×1000

Example III - Brown measures

$$
r\left(x_{1}, x_{2}\right):=\left(x_{1}+i\right)^{-1}\left(x_{1}+i x_{2}\right)\left(x_{1}+i\right)^{-1}
$$

Eigenvalues of $r\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are independent self-adjoint Gaussian random matrices of size 1000×1000.
... compared to the Brown measure of $r\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are freely independent semicircular elements.

Example III - Brown measures

$$
r\left(x_{1}, x_{2}\right):=\left(x_{1}+i\right)^{-1}\left(x_{1}+i x_{2}\right)\left(x_{1}+i\right)^{-1}
$$

Eigenvalues of $r\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are independent random matrices of size $1000 \times 1000, X_{1}$ Gaussian and X_{2} Wishart

... compared to the Brown measure of $r\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are freely independent elements, X_{1} semicircular and X_{2} free Poisson.

Example III - Brown measures

$$
r\left(x_{1}, x_{2}\right):=\left(x_{1}+i\right)^{-1}\left(x_{1}+i x_{2}\right)\left(x_{1}+i\right)^{-1}
$$

Eigenvalues of $r\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are independent random matrices of size $1000 \times 1000, X_{1}$ Gaussian and X_{2} Wishart
... compared to the Brown measure of $r\left(X_{1}, X_{2}\right)$, where X_{1}, X_{2} are freely independent elements, X_{1} semicircular and X_{2} free Poisson.

Thank you!

