Asymptotic eigenvalue distributions of non-commutative polynomials and rational expressions in independent random matrices

Tobias Mai

Saarland University

Workshop "Random Product Matrices" ZiF Bielefeld – August 25, 2016

Supported by the ERC Advanced Grant "Non-commutative distributions in free probability"

Contents

- Asymptotic eigenvalue distribution of random matrices
- 2 A quick introduction to free probability theory
- Rational expressions in freely independent variables
- 4 Examples

Random matrices and their eigenvalue distributions

Random matrices and their eigenvalue distributions

Definition (Random matrices)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Elements in the complex *-algebra

$$\mathcal{A}_N := M_N(L^{\infty-}(\Omega, \mathbb{P})), \quad ext{where} \quad L^{\infty-}(\Omega, \mathbb{P}) := \bigcap_{1 \leq p < \infty} L^p(\Omega, \mathbb{P})$$

are called random matrices.

Random matrices and their eigenvalue distributions

Definition (Random matrices)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Elements in the complex *-algebra

$$\mathcal{A}_N := M_N(L^{\infty-}(\Omega,\mathbb{P})), \quad ext{where} \quad L^{\infty-}(\Omega,\mathbb{P}) := \bigcap_{1 \leq p < \infty} L^p(\Omega,\mathbb{P})$$

are called random matrices.

Definition (Empirical eigenvalue distribution)

Given $X \in \mathcal{A}_N$, the empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} = \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)},$$

where $\lambda_1(\omega), \ldots, \lambda_N(\omega)$ are the eigenvalues of $X(\omega)$ with multiplicities.

A self-adjoint Gaussian random matrix is a self-adjoint random matrix $X=(x_{k,l})_{k,l=1}^N\in\mathcal{A}_N$, for which

$$\{\Re(x_{k,l})|\ 1 \le k \le l \le N\} \cup \{\Im(x_{k,l})|\ 1 \le k < l \le N\}$$

are independent Gaussian random variables, such that

$$\mathbb{E}[x_{k,l}] = 0 \quad \text{and} \quad \mathbb{E}[|x_{k,l}|^2] = N^{-1} \quad \text{for } 1 \le k \le l \le N.$$

A self-adjoint Gaussian random matrix is a self-adjoint random matrix $X=(x_{k,l})_{k,l=1}^N\in\mathcal{A}_N$, for which

$$\{\Re(x_{k,l})|\ 1 \le k \le l \le N\} \cup \{\Im(x_{k,l})|\ 1 \le k < l \le N\}$$

are independent Gaussian random variables, such that

$$\mathbb{E}[x_{k,l}] = 0 \quad \text{and} \quad \mathbb{E}[|x_{k,l}|^2] = N^{-1} \quad \text{for } 1 \le k \le l \le N.$$

$$n = 5$$

A self-adjoint Gaussian random matrix is a self-adjoint random matrix $X=(x_{k,l})_{k,l=1}^N\in\mathcal{A}_N$, for which

$$\{\Re(x_{k,l})|\ 1 \le k \le l \le N\} \cup \{\Im(x_{k,l})|\ 1 \le k < l \le N\}$$

are independent Gaussian random variables, such that

$$\mathbb{E}[x_{k,l}] = 0 \quad \text{and} \quad \mathbb{E}[|x_{k,l}|^2] = N^{-1} \quad \text{for } 1 \le k \le l \le N.$$

$$n = 10$$

A self-adjoint Gaussian random matrix is a self-adjoint random matrix $X=(x_{k,l})_{k,l=1}^N\in\mathcal{A}_N$, for which

$$\{\Re(x_{k,l})|\ 1 \le k \le l \le N\} \cup \{\Im(x_{k,l})|\ 1 \le k < l \le N\}$$

are independent Gaussian random variables, such that

$$\mathbb{E}[x_{k,l}] = 0 \quad \text{and} \quad \mathbb{E}[|x_{k,l}|^2] = N^{-1} \quad \text{for } 1 \le k \le l \le N.$$

$$n = 100$$

A self-adjoint Gaussian random matrix is a self-adjoint random matrix $X = (x_{k,l})_{k,l=1}^N \in \mathcal{A}_N$, for which

$$\{\Re(x_{k,l})|\ 1 \le k \le l \le N\} \cup \{\Im(x_{k,l})|\ 1 \le k < l \le N\}$$

are independent Gaussian random variables, such that

$$\mathbb{E}[x_{k,l}] = 0 \quad \text{and} \quad \mathbb{E}[|x_{k,l}|^2] = N^{-1} \quad \text{for } 1 \le k \le l \le N.$$

$$n = 1000$$

A self-adjoint Gaussian random matrix is a self-adjoint random matrix $X=(x_{k,l})_{k,l=1}^N\in\mathcal{A}_N$, for which

$$\{\Re(x_{k,l})|\ 1 \le k \le l \le N\} \cup \{\Im(x_{k,l})|\ 1 \le k < l \le N\}$$

are independent Gaussian random variables, such that

$$\mathbb{E}[x_{k,l}] = 0$$
 and $\mathbb{E}[|x_{k,l}|^2] = N^{-1}$ for $1 \le k \le l \le N$.

Theorem (Wigner (1955/1958))

Let $(X^{(N)})_{N\in\mathbb{N}}$ be a sequence of self-adjoint Gaussian random matrices $X^{(N)}\in\mathcal{A}_N$. Then, for all $k\in\mathbb{N}_0$, it holds true that

$$\lim_{n \to \infty} \mathbb{E} \Big[\int_{\mathbb{R}} t^k d\mu_{X_n}(t) \Big] = \int_{\mathbb{R}} t^k d\mu_S(t)$$

for the semicircular distribution $d\mu_S(t) = \frac{1}{2\pi} \sqrt{4 - t^2} \, \mathbb{1}_{[-2,2]}(t) \, dt.$

A self-adjoint Gaussian random matrix is a self-adjoint random matrix $X=(x_{k,l})_{k,l=1}^N\in\mathcal{A}_N$, for which

$$\{\Re(x_{k,l})|\ 1 \le k \le l \le N\} \cup \{\Im(x_{k,l})|\ 1 \le k < l \le N\}$$

are independent Gaussian random variables, such that

$$\mathbb{E}[x_{k,l}] = 0$$
 and $\mathbb{E}[|x_{k,l}|^2] = N^{-1}$ for $1 \le k \le l \le N$.

Theorem (Wigner (1955/1958) & Arnold (1967))

Let $(X^{(N)})_{N\in\mathbb{N}}$ be a sequence of self-adjoint Gaussian random matrices $X^{(N)}\in\mathcal{A}_N$. Then, for all $k\in\mathbb{N}_0$, it holds true that

$$\lim_{n o\infty}\int_{\mathbb{R}}t^k\,d\mu_{X_n}(t)=\int_{\mathbb{R}}t^k\,d\mu_S(t)$$
 almost surely

for the semicircular distribution $d\mu_S(t) = \frac{1}{2\pi} \sqrt{4-t^2} \, \mathbf{1}_{[-2,2]}(t) \, dt.$

Question

For each $N \in \mathbb{N}$, let independent Gaussian random matrices

$$X_1^{(N)},\ldots,X_n^{(N)}\in\mathcal{A}_N$$

be given and suppose that f is "some kind of non-commutative function". What can we say about the asymptotic behavior of the empirical eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)})$$
?

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

Question

For each $N \in \mathbb{N}$, let independent Gaussian random matrices

$$X_1^{(N)},\ldots,X_n^{(N)}\in\mathcal{A}_N$$

be given and suppose that f is "some kind of non-commutative function". What can we say about the asymptotic behavior of the empirical eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}) ?$$

Question

For each $N \in \mathbb{N}$, let independent Gaussian random matrices

$$X_1^{(N)}, \dots, X_n^{(N)} \in \mathcal{A}_N$$

be given and suppose that f is "some kind of non-commutative function". What can we say about the asymptotic behavior of the empirical eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}) ?$$

$$f(x,y) = (x+i)^{-1}(x+iy)(x+i)^{-1}$$

Tobias Mai (Saarland University)

Question

For each $N \in \mathbb{N}$, let independent Gaussian random matrices

$$X_1^{(N)}, \dots, X_n^{(N)} \in \mathcal{A}_N$$

be given and suppose that f is "some kind of non-commutative function". What can we say about the asymptotic behavior of the empirical eigenvalue distribution of

$$Y^{(N)} := f(X_1^{(N)}, \dots, X_n^{(N)}) ?$$

$$f(x,y) = xy + yx$$

→ Free Probability!

 $f(x,y) = (x+i)^{-1}(x+iy)(x+i)^{-1}$

Definition

A non-commutative probability space (\mathcal{A},ϕ) consists of

- ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
- ullet a linear functional $\phi:\mathcal{A}\to\mathbb{C}$ satisfying $\phi(1_{\mathcal{A}})=1$ (expectation).

Elements $X \in \mathcal{A}$ are called non-commutative random variables.

Definition

A non-commutative probability space (\mathcal{A},ϕ) consists of

- ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
- ullet a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ satisfying $\phi(1_{\mathcal{A}}) = 1$ (expectation).

Elements $X \in \mathcal{A}$ are called non-commutative random variables.

Definition

A non-commutative probability space (\mathcal{A},ϕ) consists of

- ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
- ullet a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ satisfying $\phi(1_{\mathcal{A}}) = 1$ (expectation).

Elements $X \in \mathcal{A}$ are called non-commutative random variables.

Example

• $(L^{\infty}(\Omega, \mathbb{P}), \mathbb{E})$, where $(\Omega, \mathcal{F}, \mathbb{P})$ is a classical probability space and \mathbb{E} the usual expectation that is given by $\mathbb{E}[X] = \int_{\Omega} X(\omega) \, d\mathbb{P}(\omega)$.

Definition

A non-commutative probability space (\mathcal{A},ϕ) consists of

- ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
- ullet a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ satisfying $\phi(1_{\mathcal{A}}) = 1$ (expectation).

Elements $X \in \mathcal{A}$ are called non-commutative random variables.

- $(L^{\infty}(\Omega, \mathbb{P}), \mathbb{E})$, where $(\Omega, \mathcal{F}, \mathbb{P})$ is a classical probability space and \mathbb{E} the usual expectation that is given by $\mathbb{E}[X] = \int_{\Omega} X(\omega) \, d\mathbb{P}(\omega)$.
- $(M_N(\mathbb{C}), \operatorname{tr}_N)$, where tr_N is the normalized trace on $M_N(\mathbb{C})$.

Definition

A non-commutative probability space (\mathcal{A},ϕ) consists of

- ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
- a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ satisfying $\phi(1_{\mathcal{A}}) = 1$ (expectation).

Elements $X \in \mathcal{A}$ are called non-commutative random variables.

- $(L^{\infty}(\Omega, \mathbb{P}), \mathbb{E})$, where $(\Omega, \mathcal{F}, \mathbb{P})$ is a classical probability space and \mathbb{E} the usual expectation that is given by $\mathbb{E}[X] = \int_{\Omega} X(\omega) \, d\mathbb{P}(\omega)$.
- $(M_N(\mathbb{C}), \operatorname{tr}_N)$, where tr_N is the normalized trace on $M_N(\mathbb{C})$.
- ullet (\mathcal{A}_N,ϕ_N) , with $\mathcal{A}_N=M_N(L^{\infty-}(\Omega,\mathbb{P}))$ and expectation given by

$$\phi_N(X) := \mathbb{E}[\operatorname{tr}_N(X)] = \int_{\Omega} \operatorname{tr}_N(X(\omega)) d\mathbb{P}(\omega).$$

Definition

Let (\mathcal{A},ϕ) be a non-commutative probability space.

(i) Unital subalgebras $(A_i)_{i\in I}$ of A are called freely independent (or just free), if

$$\phi(a_1\cdots a_k)=0$$

holds, whenever

- $a_j \in \mathcal{A}_{i(j)}$ with $i(j) \in I$ for all $j = 1, \dots, k$,
- $\phi(a_j) = 0 \text{ for } j = 1, \dots, k,$
- $i(1) \neq i(2), i(2) \neq i(3), \ldots, i(k-1) \neq i(k)$

Definition

Let (\mathcal{A},ϕ) be a non-commutative probability space.

(i) Unital subalgebras $(A_i)_{i\in I}$ of A are called freely independent (or just free), if

$$\phi(a_1\cdots a_k)=0$$

holds, whenever

- $a_j \in \mathcal{A}_{i(j)}$ with $i(j) \in I$ for all $j = 1, \dots, k$,
- $\phi(a_j) = 0 \text{ for } j = 1, \dots, k,$
- $i(1) \neq i(2), i(2) \neq i(3), \ldots, i(k-1) \neq i(k).$
- (ii) Elements $(X_i)_{i\in I}$ of $\mathcal A$ are called freely independent (or just free), if the algebras $(\mathcal A_i)_{i\in I}$ with $\mathcal A_i:=\operatorname{alg}\{1_{\mathcal A},X_i\}$ for any $i\in I$ are freely independent.

Definition

Let (\mathcal{A},ϕ) be a non-commutative probability space.

(i) Unital subalgebras $(A_i)_{i\in I}$ of A are called freely independent (or just free), if

$$\phi(a_1\cdots a_k)=0$$

holds, whenever

- $a_j \in \mathcal{A}_{i(j)}$ with $i(j) \in I$ for all $j = 1, \dots, k$,
- $\phi(a_j) = 0 \text{ for } j = 1, \dots, k,$
- $i(1) \neq i(2), i(2) \neq i(3), \ldots, i(k-1) \neq i(k).$
- (ii) Elements $(X_i)_{i\in I}$ of $\mathcal A$ are called freely independent (or just free), if the algebras $(\mathcal A_i)_{i\in I}$ with $\mathcal A_i:=\operatorname{alg}\{1_{\mathcal A},X_i\}$ for any $i\in I$ are freely independent.

Free probability theory is a highly non-commutative analogue of classical probability theory.

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト □ ■ り 9 0 0

We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991))

For all $N\in\mathbb{N}$, realize independent self-adjoint Gaussian random matrices $X_1^{(N)},\ldots,X_n^{(N)}\in\mathcal{A}_N$. Then, for all $P\in\mathbb{C}\langle x_1,\ldots,x_n\rangle$,

$$\lim_{N\to\infty} \mathbb{E}[\operatorname{tr}_N(P(X_1^{(N)},\ldots,X_n^{(N)}))] = \phi(P(S_1,\ldots,S_n))$$

for freely independent semicircular elements S_1, \ldots, S_n in some non-commutative probability space (\mathcal{A}, ϕ) .

We have the following multivariate version of Wigner's semicircle law.

For all $N\in\mathbb{N}$, realize independent self-adjoint Gaussian random matrices $X_1^{(N)},\ldots,X_n^{(N)}\in\mathcal{A}_N$. Then, for all $P\in\mathbb{C}\langle x_1,\ldots,x_n\rangle$,

$$\lim_{N o \infty} \operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)})) = \phi(P(S_1, \dots, S_n))$$
 almost surely

for freely independent semicircular elements S_1, \ldots, S_n in some non-commutative probability space (\mathcal{A}, ϕ) .

We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991), Hiai & Petz (2000))

For all $N \in \mathbb{N}$, realize independent self-adjoint Gaussian random matrices $X_1^{(N)}, \dots, X_n^{(N)} \in \mathcal{A}_N$. Then, for all $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$,

$$\lim_{N o\infty} \mathrm{tr}_N(P(X_1^{(N)},\dots,X_n^{(N)})) = \phi(P(S_1,\dots,S_n))$$
 almost surely

for freely independent semicircular elements S_1, \ldots, S_n in some non-commutative probability space (\mathcal{A}, ϕ) .

This means: Asymptotic freeness relates

- ullet the limiting eigenvalue distribution of $Y^{(N)}=P(X_1^{(N)},\dots,X_n^{(N)})$ and
- the distribution of $Y = P(S_1, \ldots, S_n)$ for freely independent semicircular elements S_1, \ldots, S_n .

◆ロト ◆部 ▶ ◆草 ▶ ◆草 ▶ ■ めのの

Case 1: self-adjoint functions
$$Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$$

Case 1: self-adjoint functions
$$Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$$

Non-commutative polynomials

Case 1: self-adjoint functions
$$Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$$

Non-commutative polynomials
√ [Voiculescu (1991)]

Case 1: self-adjoint functions
$$Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$$

- Non-commutative polynomials
 √ [Voiculescu (1991)]
- Non-commutative rational expressions

Case 1: self-adjoint functions
$$Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$$

- Non-commutative polynomials √ [Voiculescu (1991)]
- Non-commutative rational expressions ✓ [Cébron & Yin (2016)]

Case 1: self-adjoint functions
$$Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$$

- Non-commutative polynomials √ [Voiculescu (1991)]
- Non-commutative rational expressions √ [Cébron & Yin (2016)]

Case 2: non-self-adjoint functions
$$Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$$

Case 1: self-adjoint functions
$$Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$$

- Non-commutative polynomials √ [Voiculescu (1991)]
- Non-commutative rational expressions √ [Cébron & Yin (2016)]

Case 2: non-self-adjoint functions
$$Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$$

- Non-commutative polynomials
- Non-commutative rational expressions

Case 1: self-adjoint functions
$$Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$$

- Non-commutative polynomials ✓ [Voiculescu (1991)]
- Non-commutative rational expressions √ [Cébron & Yin (2016)]

Case 2: non-self-adjoint functions
$$Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$$

- Non-commutative polynomials
- Non-commutative rational expressions ? ? ?
- ... but conjectured to be given by the Brown measure!

Case 1: self-adjoint functions
$$Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$$

- Non-commutative rational expressions ✓ [Cébron & Yin (2016)]

Case 2: non-self-adjoint functions
$$Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$$

- Non-commutative polynomials ?
- Non-commutative rational expressions ? ? ?
- ... but conjectured to be given by the Brown measure!

Goal

For the limiting object $Y:=f(X_1,\ldots,X_n)$, we want to compute

• its analytic distribution in Case 1, [Belinschi, M., Speicher (2013)]

Case 1: self-adjoint functions
$$Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$$

- Non-commutative rational expressions ✓ [Cébron & Yin (2016)]

Case 2: non-self-adjoint functions
$$Y^{(N)} = f(X_1^{(N)}, \dots, X_n^{(N)})$$

- Non-commutative polynomials ?
- Non-commutative rational expressions ? ? ?

... but conjectured to be given by the Brown measure!

Goal

For the limiting object $Y := f(X_1, \dots, X_n)$, we want to compute

- its analytic distribution in Case 1, [Belinschi, M., Speicher (2013)]
- its Brown measure in Case 2. [Belinschi, Sniady, Speicher (2015)] [Helton, M., Speicher (2015)]

C^st -probability spaces and analytic distributions

C^st -probability spaces and analytic distributions

Definition

A non-commutative probability space (\mathcal{A}, ϕ) is called C^* -probability space, if \mathcal{A} is a unital C^* -algebra and ϕ a state on \mathcal{A} .

C^* -probability spaces and analytic distributions

Definition

A non-commutative probability space (\mathcal{A},ϕ) is called C^* -probability space, if \mathcal{A} is a unital C^* -algebra and ϕ a state on \mathcal{A} .

Definition ("analytic distribution")

Let (\mathcal{A},ϕ) be a C^* -probability space. The (analytic) distribution of $X=X^*\in\mathcal{A}$ is the unique Borel probability measure μ_X on $\mathbb R$ such that

$$\phi(X^k) = \int_{\mathbb{T}} t^k d\mu_X(t) \qquad \text{for all } k \in \mathbb{N}_0.$$

C^* -probability spaces and analytic distributions

Definition

A non-commutative probability space (\mathcal{A}, ϕ) is called C^* -probability space, if \mathcal{A} is a unital C^* -algebra and ϕ a state on \mathcal{A} .

Definition ("analytic distribution")

Let (\mathcal{A},ϕ) be a C^* -probability space. The (analytic) distribution of $X=X^*\in\mathcal{A}$ is the unique Borel probability measure μ_X on $\mathbb R$ such that

$$\phi(X^k) = \int_{\mathbb{D}} t^k d\mu_X(t) \qquad \text{for all } k \in \mathbb{N}_0.$$

Example

For any $X=X^*\in M_N(\mathbb{C})$ with eigenvalues $\lambda_1,\ldots,\lambda_N$, we have that

$$\mu_X = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_j}, \qquad \text{since} \qquad \operatorname{tr}_N(X^k) = \frac{1}{N} \sum_{i=1}^N \lambda_j^k = \int_{\mathbb{R}} t^k \, d\mu_X(t).$$

Cauchy-Stieltjes transforms of analytic distributions

Cauchy-Stieltjes transforms of analytic distributions

Definition

Let (\mathcal{A},ϕ) be a C^* -probability space. For $X=X^*\in\mathcal{A}$, the holomorphic function

$$G_X: \mathbb{C}^+ \to \mathbb{C}^-, \ z \mapsto \phi((z-X)^{-1}) = \int_{\mathbb{R}} \frac{1}{z-t} d\mu_X(t)$$

is called the Cauchy transform of X.

Cauchy-Stieltjes transforms of analytic distributions

Definition

Let (\mathcal{A},ϕ) be a C^* -probability space. For $X=X^*\in\mathcal{A}$, the holomorphic function

$$G_X: \mathbb{C}^+ \to \mathbb{C}^-, \ z \mapsto \phi((z-X)^{-1}) = \int_{\mathbb{R}} \frac{1}{z-t} d\mu_X(t)$$

is called the Cauchy transform of X.

Theorem (Stieltjes inversion formula)

For each $\varepsilon>0$, consider the absolutely continuous measure $\mu_{X,\varepsilon}$ given by

$$d\mu_{X,\varepsilon}(t) = \frac{-1}{\pi} \Im(G_X(t+i\varepsilon)) dt.$$

Then $\mu_{X,\varepsilon} \to \mu_X$ weakly as $\varepsilon \searrow 0$.

(ロ) (部) (注) (注) 注 り(0)

W^* -probability spaces and Brown measures

W^st -probability spaces and Brown measures

Definition

A non-commutative probability space (\mathcal{A}, ϕ) is called tracial W^* -probability space, if \mathcal{A} is a von Neumann algebra and ϕ a faithful normal tracial state on \mathcal{A} .

W^st -probability spaces and Brown measures

Definition

A non-commutative probability space (\mathcal{A},ϕ) is called tracial W^* -probability space, if \mathcal{A} is a von Neumann algebra and ϕ a faithful normal tracial state on \mathcal{A} .

Definition (Brown measure)

Let (A, ϕ) be a tracial W^* -probability space. The Brown measure of $X \in \mathcal{A}$ is defined (in distributional sense) by

$$\mu = \frac{2}{\pi} \frac{\partial}{\partial z} \frac{\partial}{\partial \overline{z}} \log(\Delta(X - z)),$$

where Δ denotes the Fuglede-Kadison determinant, i.e.

$$\Delta(X) := \lim_{\varepsilon \searrow 0} \exp\left(\frac{1}{2}\phi(\log(XX^* + \varepsilon^2))\right)$$

Tobias Mai (Saarland University)

regularized Cauchy transforms

regularized Cauchy transforms

Theorem ([Larsen (1999)], [Belinschi, Sniady, Speicher (2015)])

Let (\mathcal{A},ϕ) be a tracial W^* -probability space and let $X\in\mathcal{A}$ be given. For each $\varepsilon>0$, consider the regularized Brown measure $\mu_{X,\varepsilon}$ given by

$$d\mu_{X,\varepsilon}(z) = \frac{1}{\pi} \frac{\partial}{\partial \overline{z}} G_{X,\varepsilon}(z) d\lambda^2(z),$$

where $G_{X,arepsilon}$ denotes the regularized Cauchy transforms of X,

$$G_{X,\varepsilon}(z) = \phi((z-X)^*((z-X)(z-X)^* + \varepsilon^2)^{-1}).$$

Then $\mu_{X,\varepsilon} \to \mu_X$ weakly as $\varepsilon \searrow 0$.

regularized Cauchy transforms

Theorem ([Larsen (1999)], [Belinschi, Sniady, Speicher (2015)])

Let (\mathcal{A},ϕ) be a tracial W^* -probability space and let $X\in\mathcal{A}$ be given. For each $\varepsilon>0$, consider the regularized Brown measure $\mu_{X,\varepsilon}$ given by

$$d\mu_{X,\varepsilon}(z) = \frac{1}{\pi} \frac{\partial}{\partial \overline{z}} G_{X,\varepsilon}(z) d\lambda^2(z),$$

where $G_{X,arepsilon}$ denotes the regularized Cauchy transforms of X,

$$G_{X,\varepsilon}(z) = \phi((z-X)^*((z-X)(z-X)^* + \varepsilon^2)^{-1}).$$

Then $\mu_{X,\varepsilon} \to \mu_X$ weakly as $\varepsilon \searrow 0$.

hermitian reduction method [Janik, Nowak, Papp, Zahed (1997)]

$$G_{X,\varepsilon}(z) = \left\lceil G_{\mathbb{X}} \left(\begin{bmatrix} i\varepsilon & z \\ \overline{z} & i\varepsilon \end{bmatrix} \right) \right\rceil_{2,1} \quad \text{where} \quad \mathbb{X} := \begin{bmatrix} 0 & X \\ X^* & 0 \end{bmatrix} \in M_2(\mathcal{A})$$

free probability theory (\mathcal{A},ϕ)	

free probability theory (\mathcal{A},ϕ)	
${\cal A}$ unital algebra	
$\mathbb{C}1_{\mathcal{A}}\subseteq\mathcal{A}$	
$\phi:\mathcal{A} o\mathbb{C}$ expectation, satisfying $\phi(1_{\mathcal{A}})=1.$	
$\mathbb{C}^{\pm} = \{ z \in \mathbb{C} \ \pm \Im(z) > 0 \}$	
$G_X: \mathbb{C}^+ \to \mathbb{C}^-,$	
$z \mapsto \phi((z-X)^{-1})$	

free probability theory (\mathcal{A},ϕ)	operator-valued free probability theory $(\mathcal{A}, \mathbb{E}, \mathcal{B})$
${\cal A}$ unital algebra	
$\mathbb{C}1_{\mathcal{A}}\subseteq\mathcal{A}$	
$\phi:\mathcal{A} o\mathbb{C}$ expectation, satisfying $\phi(1_{\mathcal{A}})=1.$	
$\mathbb{C}^{\pm} = \{ z \in \mathbb{C} \ \pm \Im(z) > 0 \}$	
$G_X: \mathbb{C}^+ \to \mathbb{C}^-,$	
$z \mapsto \phi((z-X)^{-1})$	

free probability theory (\mathcal{A},ϕ)	operator-valued free probability theory $(\mathcal{A}, \mathbb{E}, \mathcal{B})$
${\cal A}$ unital algebra	${\cal A}$ unital algebra
$\mathbb{C}1_{\mathcal{A}}\subseteq\mathcal{A}$	
$\phi:\mathcal{A} o\mathbb{C}$ expectation, satisfying $\phi(1_{\mathcal{A}})=1.$	
$\mathbb{C}^{\pm} = \{ z \in \mathbb{C} \pm \Im(z) > 0 \}$	
$G_X: \mathbb{C}^+ \to \mathbb{C}^-,$	
$z \mapsto \phi((z-X)^{-1})$	

free probability theory (\mathcal{A},ϕ)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
${\cal A}$ unital algebra	${\cal A}$ unital algebra
$\mathbb{C}1_{\mathcal{A}}\subseteq\mathcal{A}$	$\mathcal{B}\subseteq\mathcal{A}$ unital subalgebra
$\phi:\mathcal{A} o\mathbb{C}$ expectation, satisfying $\phi(1_{\mathcal{A}})=1.$	
$\mathbb{C}^{\pm} = \{ z \in \mathbb{C} \ \pm \Im(z) > 0 \}$	
$G_X: \mathbb{C}^+ \to \mathbb{C}^-,$	
$z \mapsto \phi((z-X)^{-1})$	

free probability theory (\mathcal{A},ϕ)	operator-valued free probability theory $(\mathcal{A}, \mathbb{E}, \mathcal{B})$
${\cal A}$ unital algebra ${\Bbb C}1_{\cal A}\subseteq {\cal A}$ $\phi:{\cal A} o{\Bbb C}$ expectation, satisfying $\phi(1_{\cal A})=1.$	\mathcal{A} unital algebra $\mathcal{B}\subseteq\mathcal{A}$ unital subalgebra $\mathbb{E}:\mathcal{A}\to\mathcal{B}$ conditional expectation, satisfying \bullet $\mathbb{E}[b]=b$ for all $b\in\mathcal{B}$. \bullet $\mathbb{E}[b_1Xb_2]=b_1\mathbb{E}[X]b_2$ for all $X\in\mathcal{A}$ and $b_1,b_2\in\mathcal{B}$.
$\mathbb{C}^{\pm} = \{ z \in \mathbb{C} \pm \Im(z) > 0 \}$ $G_X : \mathbb{C}^+ \to \mathbb{C}^-,$ $z \mapsto \phi((z - X)^{-1})$	

free probability theory (\mathcal{A},ϕ)	operator-valued free probability theory $(\mathcal{A}, \mathbb{E}, \mathcal{B})$
${\cal A}$ unital algebra	${\cal A}$ unital algebra
$\mathbb{C}1_{\mathcal{A}}\subseteq\mathcal{A}$	$\mathcal{B}\subseteq\mathcal{A}$ unital subalgebra
	$\mathbb{E}:\mathcal{A} ightarrow\mathcal{B}$ conditional expecta-
$\phi:\mathcal{A} o\mathbb{C}$ expectation, satisfying	tion, satisfying
$\phi(1_{\mathcal{A}}) = 1.$	• $\mathbb{E}[b]=b$ for all $b\in\mathcal{B}$. • $\mathbb{E}[b_1Xb_2]=b_1\mathbb{E}[X]b_2$ for all $X\in\mathcal{A}$ and $b_1,b_2\in\mathcal{B}$.
$\mathbb{C}^{\pm} = \{z \in \mathbb{C} \ \pm \Im(z) > 0\}$	$\mathbb{H}^{\pm}(\mathcal{B}) = \{b \in \mathcal{B} \pm \Im(b) > 0\},$ where $\Im(b) := \frac{b - b^*}{2i}$.
$G_X: \mathbb{C}^+ \to \mathbb{C}^-,$	
$z \mapsto \phi((z-X)^{-1})$	

free probability theory (\mathcal{A},ϕ)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
${\cal A}$ unital algebra	${\cal A}$ unital algebra
$\mathbb{C}1_{\mathcal{A}}\subseteq\mathcal{A}$	$\mathcal{B}\subseteq\mathcal{A}$ unital subalgebra
$\phi:\mathcal{A} o\mathbb{C}$ expectation, satisfying $\phi(1_{\mathcal{A}})=1.$	$\mathbb{E}:\mathcal{A} o\mathcal{B}$ conditional expectation, satisfying $\bullet \ \mathbb{E}[b]=b \ \text{for all} \ b\in\mathcal{B}.$ $\bullet \ \mathbb{E}[b_1Xb_2]=b_1\mathbb{E}[X]b_2 \ \text{for all} \ X\in\mathcal{A} \ \text{and} \ b_1,b_2\in\mathcal{B}.$
$\mathbb{C}^{\pm} = \{ z \in \mathbb{C} \pm \Im(z) > 0 \}$ $G_X : \mathbb{C}^+ \to \mathbb{C}^-,$ $z \mapsto \phi((z - X)^{-1})$	$\mathbb{H}^{\pm}(\mathcal{B}) = \{b \in \mathcal{B} \pm \Im(b) > 0\},$ where $\Im(b) := \frac{b-b^*}{2i}.$ $G_X : \mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^-(\mathcal{B}),$ $b \mapsto \mathbb{E}[(b-X)^{-1}]$

Definition

A (non-commutative) rational expression r in n formal variables x_1,\ldots,x_n is a syntactically valid combination of

- scalars $\lambda \in \mathbb{C}$ and the variables x_1, \ldots, x_n ,
- ullet the arithmetic operations $+,\cdot,^{-1}$, and
- parentheses (,).

Definition

A (non-commutative) rational expression r in n formal variables x_1, \ldots, x_n is a syntactically valid combination of

- scalars $\lambda \in \mathbb{C}$ and the variables x_1, \ldots, x_n
- ullet the arithmetic operations $+,\cdot,^{-1}$, and
- ullet parentheses (,).

Example

$$\bullet$$
 $r(x_1, x_2) = (x_1 \cdot x_2 - 4)^{-1} \cdot x_1 \cdot (x_2 \cdot x_1 - 4)^{-1}$

$$\bullet$$
 $r(x_1, x_2) = (i - x_1)^{-1} \cdot x_2 + x_1 \cdot (i - x_2)^{-1}$

$$\bullet$$
 $r(x_1, x_2) = (x_1 \cdot x_2 - x_2 \cdot x_1)^{-1}$

Definition

A (non-commutative) rational expression r in n formal variables x_1,\ldots,x_n is a syntactically valid combination of

- scalars $\lambda \in \mathbb{C}$ and the variables x_1, \ldots, x_n
- ullet the arithmetic operations $+,\cdot,^{-1}$, and
- ullet parentheses (,).

Example

$$\bullet$$
 $r(x_1, x_2) = (x_1 \cdot x_2 - 4)^{-1} \cdot x_1 \cdot (x_2 \cdot x_1 - 4)^{-1}$

$$\bullet$$
 $r(x_1, x_2) = (i - x_1)^{-1} \cdot x_2 + x_1 \cdot (i - x_2)^{-1}$

$$\bullet$$
 $r(x_1, x_2) = (x_1 \cdot x_2 - x_2 \cdot x_1)^{-1}$

•
$$r_1(x_1, x_2) = 0^{-1}$$
, $r_2(x_1, x_2) = (x_1 - x_1)^{-1}$

4 D > 4 D >

Self-adjoint formal linear representations

Self-adjoint formal linear representations

Definition (Helton, M., Speicher (2015))

Let $\mathbb r$ be a self-adjoint $k \times k$ matrix of non-commutative rational expressions in formal variables x_1, \dots, x_n . A self-adjoint formal linear representation $\rho = (Q, v)$ of $\mathbb r$ consists of

- an affine linear pencil $Q=Q^{(0)}+Q^{(1)}x_1+\cdots+Q^{(n)}x_n$ with self-adjoint matrices $Q^{(0)},Q^{(1)},\ldots,Q^{(n)}\in M_N(\mathbb{C})$,
- ullet a matrix $v \in M_{N \times k}(\mathbb{C})$,

and satisfies the following property:

For any unital complex *-algebra $\mathcal A$ and each $X\in\mathcal A^n_{\operatorname{sa}}$, for which $\operatorname{r}(X)$ is defined, Q(X) is invertible in $M_N(\mathcal A)$ and $\operatorname{r}(X)=-v^*Q(X)^{-1}v$ holds.

Self-adjoint formal linear representations

Definition (Helton, M., Speicher (2015))

Let \mathbb{r} be a self-adjoint $k \times k$ matrix of non-commutative rational expressions in formal variables x_1, \ldots, x_n . A self-adjoint formal linear representation $\rho = (Q, v)$ of \mathbb{r} consists of

- an affine linear pencil $Q=Q^{(0)}+Q^{(1)}x_1+\cdots+Q^{(n)}x_n$ with self-adjoint matrices $Q^{(0)},Q^{(1)},\ldots,Q^{(n)}\in M_N(\mathbb{C})$,
- ullet a matrix $v\in M_{N imes k}(\mathbb{C})$,

and satisfies the following property:

For any unital complex *-algebra $\mathcal A$ and each $X\in\mathcal A^n_{\operatorname{sa}}$, for which $\operatorname{r}(X)$ is defined, Q(X) is invertible in $M_N(\mathcal A)$ and $\operatorname{r}(X)=-v^*Q(X)^{-1}v$ holds.

Theorem (Helton, M., Speicher (2015))

Each self-adjoint matrix ${\mathbb T}$ of non-commutative rational expressions admits a self-adjoint formal linear representation $\rho=(Q,v)$.

From free probability theory ...

- Haagerup and Thorbjørnsen (2005)
- Haagerup, Schultz, and Thorbjørnsen (2006)
- Anderson (2012)

From free probability theory ...

- Haagerup and Thorbjørnsen (2005)
- Haagerup, Schultz, and Thorbjørnsen (2006)
- Anderson (2012)

.. back to the famous ancestors.

- recognizable rational series: Schützenberger (1961)
- linear representations: Cohn (1985); Cohn and Reutenauer (1994);
 Malcolmson (1978)
- descriptor realizations: Kalman (1963); Helton, McCullough, and Vinnikov (2006)
- ...

From free probability theory ...

- Haagerup and Thorbjørnsen (2005)
- Haagerup, Schultz, and Thorbjørnsen (2006)
- Anderson (2012)

... back to the famous ancestors.

- recognizable rational series: Schützenberger (1961)
- linear representations: Cohn (1985); Cohn and Reutenauer (1994);
 Malcolmson (1978)
- descriptor realizations: Kalman (1963); Helton, McCullough, and Vinnikov (2006)
- ...
- \sim Linearization even works for non-commutative rational expressions!

Linearization meets operator-valued free probability

Linearization meets operator-valued free probability

Theorem

Given a self-adjoint $k \times k$ matrix $\mathbb r$ of non-commutative rational expression in x_1,\ldots,x_n , we chose any self-adjoint formal linear representation $\rho=(Q,v)$ of size $N\times N$. Then, for any C^* -probability space $(\mathcal A,\phi)$ and any $X=(X_1,\ldots,X_n)\in\mathcal A^n_{\operatorname{sa}}$, for which $\mathbb r(X)$ is defined, we have that

$$G_{\mathbb{P}(X)}(Z) = \lim_{\varepsilon \searrow 0} \left[G_{\hat{\mathbb{P}}(X)}(\Lambda_{\varepsilon}(Z)) \right]_{1,1} \quad \text{with} \quad \hat{\mathbb{P}}(X) := \begin{pmatrix} 0 & v^* \\ v & Q(X) \end{pmatrix}$$

$$\text{holds with } \Lambda_{\varepsilon}(Z) := \begin{pmatrix} Z & 0 \\ 0 & i\varepsilon 1_N \end{pmatrix} \in \mathbb{H}^+(M_{N+k}(\mathbb{C})) \text{ for } Z \in \mathbb{H}^+(M_k(\mathbb{C})).$$

Linearization meets operator-valued free probability

Theorem

Given a self-adjoint $k \times k$ matrix $\mathbb r$ of non-commutative rational expression in x_1,\dots,x_n , we chose any self-adjoint formal linear representation $\rho=(Q,v)$ of size $N\times N$. Then, for any C^* -probability space $(\mathcal A,\phi)$ and any $X=(X_1,\dots,X_n)\in\mathcal A^n_{\operatorname{Sa}}$, for which $\mathbb r(X)$ is defined, we have that

$$G_{\mathbb{r}(X)}(Z) = \lim_{\varepsilon \searrow 0} \left[G_{\hat{\mathbb{r}}(X)}(\Lambda_{\varepsilon}(Z)) \right]_{1,1} \quad \text{with} \quad \hat{\mathbb{r}}(X) := \begin{pmatrix} 0 & v^* \\ v & Q(X) \end{pmatrix}$$

holds with
$$\Lambda_{\varepsilon}(Z):=\begin{pmatrix} Z & 0 \\ 0 & i\varepsilon 1_N \end{pmatrix}\in \mathbb{H}^+(M_{N+k}(\mathbb{C}))$$
 for $Z\in \mathbb{H}^+(M_k(\mathbb{C}))$.

Remark

We have $\hat{\mathbf{r}}(X) = b_0 + b_1 X_1 + \dots + b_n X_n$ and $b_1 X_1, \dots, b_n X_n$ are freely independent in $(M_{N+k}(\mathcal{A}), \mathrm{id}_{M_{N+k}(\mathbb{C})} \otimes \phi, M_{N+k}(\mathbb{C}))$.

How to calculate the free additive convolution

Theorem (Belinschi, M., Speicher, 2013)

Assume that $(\mathcal{A}, \mathbb{E}, \mathcal{B})$ is an operator-valued C^* -probability space.

If $X,Y\in\mathcal{A}$ are free with respect to \mathbb{E} , then there exists a unique pair of (Fréchet-)holomorphic maps $\omega_1,\omega_2:\ \mathbb{H}^+(\mathcal{B})\to\mathbb{H}^+(\mathcal{B})$, such that

$$G_X(\omega_1(b)) = G_Y(\omega_2(b)) = G_{X+Y}(b), \quad b \in \mathbb{H}^+(\mathcal{B}).$$

How to calculate the free additive convolution

Theorem (Belinschi, M., Speicher, 2013)

Assume that $(\mathcal{A}, \mathbb{E}, \mathcal{B})$ is an operator-valued C^* -probability space.

If $X,Y\in\mathcal{A}$ are free with respect to \mathbb{E} , then there exists a unique pair of (Fréchet-)holomorphic maps $\omega_1, \omega_2 : \mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^+(\mathcal{B})$, such that

$$G_X(\omega_1(b)) = G_Y(\omega_2(b)) = G_{X+Y}(b), \quad b \in \mathbb{H}^+(\mathcal{B}).$$

Moreover, ω_1 and ω_2 can easily be calculated via the following fixed point iterations on $\mathbb{H}^+(\mathcal{B})$

$$w \mapsto h_Y(b + h_X(w)) + b$$
 for $\omega_1(b)$
 $w \mapsto h_X(b + h_Y(w)) + b$ for $\omega_2(b)$

where we put $h_X(b) := G_X(b)^{-1} - b$ and $h_Y(b) := G_Y(b)^{-1} - b$, respectively.

Example I – Distributions

$$p(x_1, x_2) := x_1 x_2 + x_2 x_1$$

$$\rho = \left(\begin{pmatrix} 0 & x_1 & x_2 & -1 \\ x_1 & 0 & -1 & 0 \\ x_2 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right)$$

Example I – Distributions

$$p(x_1, x_2) := x_1 x_2 + x_2 x_1$$

$$\rho = \left(\begin{pmatrix} 0 & x_1 & x_2 & -1 \\ x_1 & 0 & -1 & 0 \\ x_2 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right)$$

Eigenvalues of $p(X_1,X_2)$, where X_1,X_2 are independent self-adjoint Gaussian random matrices of size 1000×1000 ...

Example I – Distributions

$$p(x_1, x_2) := x_1 x_2 + x_2 x_1$$

$$\rho = \left(\begin{pmatrix} 0 & x_1 & x_2 & -1 \\ x_1 & 0 & -1 & 0 \\ x_2 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right)$$

Eigenvalues of $p(X_1,X_2)$, where X_1,X_2 are independent self-adjoint Gaussian random matrices of size 1000×1000 ...

 \dots compared to the distribution of $p(X_1,X_2)$, where X_1,X_2 are freely independent semicircular elements.

Example II – Distributions

$$r(x_1, x_2) := (4 - x_1)^{-1} + (4 - x_1)^{-1} x_2 ((4 - x_1) - x_2 (4 - x_1)^{-1} x_2)^{-1} x_2 (4 - x_1)^{-1}$$

$$\rho = \left(\begin{pmatrix} -1 + \frac{1}{4}x_1 & \frac{1}{4}x_2 \\ \frac{1}{4}x_2 & -1 + \frac{1}{4}x_1 \end{pmatrix}, \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} \right)$$

Example II – Distributions

$$r(x_1, x_2) := (4 - x_1)^{-1} + (4 - x_1)^{-1} x_2 ((4 - x_1) - x_2 (4 - x_1)^{-1} x_2)^{-1} x_2 (4 - x_1)^{-1}$$

$$\rho = \left(\begin{pmatrix} -1 + \frac{1}{4}x_1 & \frac{1}{4}x_2 \\ \frac{1}{4}x_2 & -1 + \frac{1}{4}x_1 \end{pmatrix}, \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} \right)$$

Eigenvalues of $r(X_1, X_2)$, where X_1, X_2 are independent self-adjoint Gaussian random matrices of size 1000×1000 ...

Example II – Distributions

$$r(x_1, x_2) := (4 - x_1)^{-1} + (4 - x_1)^{-1} x_2 ((4 - x_1) - x_2 (4 - x_1)^{-1} x_2)^{-1} x_2 (4 - x_1)^{-1}$$

$$\rho = \left(\begin{pmatrix} -1 + \frac{1}{4}x_1 & \frac{1}{4}x_2 \\ \frac{1}{4}x_2 & -1 + \frac{1}{4}x_1 \end{pmatrix}, \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} \right)$$

Eigenvalues of $r(X_1,X_2)$, where X_1,X_2 are independent self-adjoint Gaussian random matrices of size 1000×1000 ...

... compared to the distribution of $r(X_1, X_2)$, where X_1, X_2 are freely independent semicircular elements.

$$r(x_1, x_2) := (x_1 + i)^{-1}(x_1 + ix_2)(x_1 + i)^{-1}$$

$$r(x_1, x_2) := (x_1 + i)^{-1}(x_1 + ix_2)(x_1 + i)^{-1}$$

Eigenvalues of $r(X_1,X_2)$, where X_1,X_2 are independent self-adjoint Gaussian random matrices of size $1000\times 1000\ldots$

$$r(x_1, x_2) := (x_1 + i)^{-1}(x_1 + ix_2)(x_1 + i)^{-1}$$

Eigenvalues of $r(X_1,X_2)$, where X_1,X_2 are independent self-adjoint Gaussian random matrices of size $1000\times 1000\ldots$

... compared to the Brown measure of $r(X_1,X_2)$, where X_1,X_2 are freely independent semicircular elements.

$$r(x_1, x_2) := (x_1 + i)^{-1}(x_1 + ix_2)(x_1 + i)^{-1}$$

Eigenvalues of $r(X_1,X_2)$, where X_1,X_2 are independent random matrices of size 1000×1000 , X_1 Gaussian and X_2 Wishart ...

 \dots compared to the Brown measure of $r(X_1,X_2),$ where X_1,X_2 are freely independent elements, X_1 semicircular and X_2 free Poisson.

$$r(x_1, x_2) := (x_1 + i)^{-1}(x_1 + ix_2)(x_1 + i)^{-1}$$

Eigenvalues of $r(X_1,X_2)$, where X_1,X_2 are independent random matrices of size $1000\times 1000,\,X_1$ Gaussian and X_2 Wishart ...

... compared to the Brown measure of $r(X_1,X_2)$, where X_1,X_2 are freely independent elements, X_1 semicircular and X_2 free Poisson.

Thank you!