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Random matrices and their eigenvalue distributions

Definition (Random matrices)

Let (€2, F,P) be a probability space. Elements in the complex *-algebra

Ay = My(L®7(Q,P)), where L (Q,P):= (| LP(Q,P)

1<p<co
are called random matrices.
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Random matrices and their eigenvalue distributions
Random matrices and their eigenvalue distributions

Definition (Random matrices)

Let (€2, F,P) be a probability space. Elements in the complex *-algebra

Ay = My(L®7(Q,P)), where L (Q,P):= (| LP(Q,P)

1<p<co

are called random matrices.

Definition (Empirical eigenvalue distribution)

Given X € Ay, the empirical eigenvalue distribution of X is the random
probability measure pux on C that is given by

W= X (w Z5A (W)

where \1(w), ..., An(w) are the eigenvalues of X (w) with multiplicities.

v
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d

matrices

Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix
X = (:L'k,l)fcvlzl € Ay, for which

{%(wk,lﬂ ISkSZSN}U{%(kaH 1§k<l§N}

are independent Gaussian random variables, such that

E[zg] =0 and E[zg|’]=N"' for 1<k <I1<N.
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Asymptotic eigenvalue distribution of random matrices LTI r matrices

Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix
X = (:L‘k,l);cvlzl € Ay, for which

{R(zp)| 1 <k <T< NPU{S(zk)| 1<k <I< N}
are independent Gaussian random variables, such that

E[zg] =0 and E[zg|’]=N"' for 1<k <I1<N.
Example
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Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix
X = (:L‘k,l);cvlzl € Ay, for which

{R(@e)| 1 <k <T< NPU{S(2r)| 1 <k <I< N}
are independent Gaussian random variables, such that

E[zg] =0 and E[zg|’]=N"' for 1<k <I1<N.
Example
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Asymptotic eigenvalue distribution of random matrices LTI r matrices

Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix
X = (:L‘kJ){ng:l € Ay, for which

{?R(Jﬁklﬂ 1<k<I< N}U{%(xk,l)\ 1<k<I< N}
are independent Gaussian random variables, such that

Elzg)] =0 and Efjzg*]=N"1 for 1<k<I<N.
Example

n = 100

Tobias Mai (Saarland University)

Asymptotic eigenvalue distributions August 25, 2016 4/22



d

Asymptotic eigenvalue distribution of random matrices LTI r matrices

Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix
X = ($k,l){gvl=1 € Ay, for which

{?R(.Z‘kJH 1<k<I< N}U{%(xk,l)\ 1<k<I< N}
are independent Gaussian random variables, such that

E[mw] =0 and E[‘$k,l|2] =N! for1l <k<ZI<N.

Example

n = 1000

v
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Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix
X = (:L‘k,l);cvlzl € Ay, for which

{R(zp)| 1 <k <T< NPU{S(zk)| 1<k <I< N}
are independent Gaussian random variables, such that

E[zg] =0 and E[zg|’]=N"' for 1<k <I1<N.
Theorem (Wigner (1955/1958))

Let (X)) yen be a sequence of self-adjoint Gaussian random matrices
X®M) e Ay. Then, for all k € Ny, it holds true that

lim E[ /R t* duxn(t)} = /R t* dps (t)

for the semicircular distribution  dus(t) = 5=v/4 — 2 Li_o9)(2) dt.
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Asymptotic eigenvalue distribution of random matrices LTI ian rand matrices

Self-adjoint Gaussian random matrices

A self-adjoint Gaussian random matrix is a self-adjoint random matrix
X = (:L‘k,l);cvlzl € Ay, for which

{R(zp)| 1 <k <T< NPU{S(zk)| 1<k <I< N}
are independent Gaussian random variables, such that

E[zg] =0 and E[zg|’]=N"' for 1<k <I1<N.

Theorem (Wigner (1955/1958) & Arnold (1967))

Let (X)) yen be a sequence of self-adjoint Gaussian random matrices
X®M) e Ay. Then, for all k € Ny, it holds true that

lim [ t*dux, (t) = / t* dus(t) almost surely
R

n—oo R

for the semicircular distribution  dus(t) = 5=v/4 — 2 Li_o9)(2) dt.
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“Functions’ in independent random matrices

Question

For each N € N, let independent
Gaussian random matrices

xM XM e Ay

be given and suppose that f is “some
kind of non-commutative function”.
What can we say about the asymptotic
behavior of the empirical eigenvalue
distribution of

Y = p(x™ L x Ny

n
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“Functions’ in independent random matrices

Question

For each N € N, let independent
Gaussian random matrices

xM XM e Ay

be given and suppose that f is “some
kind of non-commutative function”.
What can we say about the asymptotic
behavior of the empirical eigenvalue
distribution of

YV = p(x™ L x(My 2

n
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“Functions’ in independent random matrices

Question
For each N € N, let independent
Gaussian random matrices
N
Xf )7 cee 7X'r(LN) € AN oL HHHHHN | HHHHHH
be given and suppose that f is “some flz,y) =2y +yx

kind of non-commutative function”.
What can we say about the asymptotic
behavior of the empirical eigenvalue
distribution of

Y = p(x™ L x Ny

n

fla,y) = (x+i)" e +iy) (e +i)~"
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“Functions’ in independent random matrices

Question

For each N € N, let independent
Gaussian random matrices

xM XM e Ay

be given and suppose that f is “some flz,y) =2y +yx
kind of non-commutative function”.
What can we say about the asymptotic
behavior of the empirical eigenvalue
distribution of

Y = p(x™ L x Ny

~»  Free Probability! flz,y) = (x+i) Yz +iy)(z+i)~!
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A quick introduction to free probability theory Non-commutative probability spaces

Non-commutative probability spaces

Definition

A non-commutative probability space (A, ¢) consists of
@ a complex algebra A with unit 14 and

@ a linear functional ¢ : A — C satisfying ¢(14) = 1 (expectation).
Elements X € A are called non-commutative random variables.
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Non-commutative probability spaces

Definition

A non-commutative probability space (A, ¢) consists of
@ a complex algebra A with unit 14 and

@ a linear functional ¢ : A — C satisfying ¢(14) = 1 (expectation).
Elements X € A are called non-commutative random variables.

Example

= = = = Y

Tobias Mai (Saarland University)

Asymptotic eigenvalue distributions August 25, 2016 6 /22



A quick introduction to free probability theory Non-commutative probability spaces

Non-commutative probability spaces

Definition

A non-commutative probability space (A, ¢) consists of
@ a complex algebra A with unit 14 and

@ a linear functional ¢ : A — C satisfying ¢(14) = 1 (expectation).
Elements X € A are called non-commutative random variables.

Example

o (L>(Q,P),E), where (22, F,P) is a classical probability space and E
the usual expectation that is given by E[X] = [, X (w) dP(w).

v
= = = = Tyt
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A quick introduction to free probability theory Non-commutative probability spaces

Non-commutative probability spaces

Definition

A non-commutative probability space (A, ¢) consists of
@ a complex algebra A with unit 14 and

@ a linear functional ¢ : A — C satisfying ¢(14) = 1 (expectation).
Elements X € A are called non-commutative random variables.

Example

o (L>(Q,P),E), where (2, F,P) is a cIassicaI probability space and E
the usual expectation that is given by E[X fQ

o (My(C),try), where try is the normallzed trace on MN((C).

v
= = = = Tyt
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A quick introduction to free probability theory Non-commutative probability spaces

Non-commutative probability spaces

Definition

A non-commutative probability space (A, ¢) consists of
@ a complex algebra A with unit 14 and

@ a linear functional ¢ : A — C satisfying ¢(14) = 1 (expectation).
Elements X € A are called non-commutative random variables.

Example

o (L>(Q,P),E), where (2, F,P) is a cIassicaI probability space and E
the usual expectation that is given by E[X fQ

o (Mn(C),try), where try is the normallzed trace on MN((C).
o (An,¢n), with Ay = My (L~ (€2, P)) and expectation given by

b (X) = Eltry (X)) = / trn (X () dP(w).

v
— = = — TYT
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A quick introduction to free probability theory Free independence

Free independence
Definition
Let (A, ¢) be a non-commutative probability space.

(1) Unital subalgebras (A;);er of A are called freely independent (or just
free), if
¢(a1...ak) =0
holds, whenever
aj € A;jy with i(j) € I forall j =1,... kK,
¢(a;) =0for j=1,...,k,
i(1) #i(2), i(2) #i(3), ..., i(k—1) #i(k).
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A quick introduction to free probability theory Free independence

Free independence
Definition
Let (A, ¢) be a non-commutative probability space.

(i) Unital subalgebras (A;);cr of A are called freely independent (or just
free), if

holds, whenever
aj € A;jy with i(j) € I forall j =1,... kK,
¢(a;) =0for j=1,...,k,
i(1) #i(2), i(2) #4(3), ..., i(k—1) #i(k).
(i) Elements (X;);er of A are called freely independent (or just free), if

the algebras (A;);er with A; := alg{14, X;} for any i € I are freely
independent.
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A quick introduction to free probability theory Free independence

Free independence
Definition
Let (A, ¢) be a non-commutative probability space.

(i) Unital subalgebras (A;);cr of A are called freely independent (or just
free), if

holds, whenever
aj € A;jy with i(j) € I forall j =1,... kK,
¢(a;) =0for j=1,...,k,
i(1) #i(2), i(2) #4(3), ..., i(k—1) #i(k).
(i) Elements (X;);er of A are called freely independent (or just free), if

the algebras (A;);er with A; := alg{14, X;} for any i € I are freely
independent.

Free probability theory is a highly non-commutative
analogue of classical probability theory.
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Asymptotic freeness of random matrices
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Asymptotic freeness of random matrices
We have the following multivariate version of Wigner's semicircle law.
Theorem (Voiculescu (1991))

For all N € N, realize independent self-adjoint Gaussian random matrices
XM

,...,X7(1N) € Ayn. Then, for all P € C{xy,...,x,),

]\}EHWE[trN(P(X§N)7 00C 7X1(1N)))] = ¢(P(Sl7 ooog Sn))
for freely independent semicircular elements S, .

., Sy in some
non-commutative probability space (A, ¢).
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Asymptotic freeness of random matrices

We have the following multivariate version of Wigner's semicircle law.
Theorem (Voiculescu (1991), Hiai & Petz (2000))

For all N € N, realize independent self-adjoint Gaussian random matrices
XfN), .. ,X,(lN) € Ayn. Then, for all P € C{xy,...,x,),

Jim ey (PO, X)) = 6(P(Sh,- ., )
—00

almost surely

for freely independent semicircular elements S, .

., Sy in some
non-commutative probability space (A, ¢).
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Asymptotic freeness of random matrices

We have the following multivariate version of Wigner's semicircle law.

Theorem (Voiculescu (1991), Hiai & Petz (2000))

For all N € N, realize independent self-adjoint Gaussian random matrices
X{N), .. ,X,(lN) € Ayn. Then, for all P € C{xy,...,x,),

lim trN(P(XfN), XYY = g(P(S, ..., S,))  almost surely

N—o0

for freely independent semicircular elements Si,..., S, in some
non-commutative probability space (A, ¢).

This means: Asymptotic freeness relates

n

@ the distribution of Y = P(S1,...,Sy) for freely independent
semicircular elements S1,...,.5,.

@ the limiting eigenvalue distribution of Y (V) = P(XfN), . ,X(N)) and

Tobias Mai (Saarland University) Asymptotic eigenvalue distributions August 25, 2016 8 /22
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A quick introduction to free probability theory

Back to our question ...

Case 1: self-adjoint functions Y (V) = f(Xl(N), . ,X,(LN))
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A quick introduction to free probability theory

Back to our question ...

Case 1: self-adjoint functions Y (V) = f(XfN), . ,X,(LN))

@ Non-commutative polynomials
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A quick introduction to free probability theory

Back to our question ...

Case 1: self-adjoint functions Y (V) = f(X{N), . ,X,(LN))

o Non-commutative polynomials v [Voiculescu (1991)]
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Back to our question ...
Case 1: self-adjoint functions YY) = f(XfN), . ,Xr(LN))

o Non-commutative polynomials v [Voiculescu (1991)]

@ Non-commutative rational expressions
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Ll (A
Back to our question ...
Case 1: self-adjoint functions YY) = f(XfN), . ,XT(LN))

o Non-commutative polynomials v [Voiculescu (1991)]

@ Non-commutative rational expressions v [Cébron & Yin (2016)]
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Back to our question ...
Case 1: self-adjoint functions YY) = f(XfN), . ,XT(LN))

o Non-commutative polynomials v [Voiculescu (1991)]

@ Non-commutative rational expressions v [Cébron & Yin (2016)]

v

Case 2: non-self-adjoint functions Y¥) = f(x™ _  xM)
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Back to our question ...
Case 1: self-adjoint functions YY) = f(XfN), . ,X,(lN))

o Non-commutative polynomials v [Voiculescu (1991)]

@ Non-commutative rational expressions v [Cébron & Yin (2016)]

v

Case 2: non-self-adjoint functions Y¥) = f(x™ _  xM)
@ Non-commutative polynomials

@ Non-commutative rational expressions
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Back to our question ...
Case 1: self-adjoint functions YY) = f(XfN), . ,X,(lN))

o Non-commutative polynomials v [Voiculescu (1991)]

@ Non-commutative rational expressions v [Cébron & Yin (2016)]

v

Case 2: non-self-adjoint functions Y¥) = f(x™ _  xM)
e Non-commutative polynomials 7

o Non-commutative rational expressions 7 7 7

... but conjectured to be given by the Brown measure!
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Back to our question ...

Case 1: self-adjoint functions YY) = f(XfN), - ,X,(lN))
o Non-commutative polynomials v [Voiculescu (1991)]

@ Non-commutative rational expressions v [Cébron & Yin (2016)]

v

Case 2: non-self-adjoint functions Y¥) = f(x™ _  xM)

e Non-commutative polynomials 7

o Non-commutative rational expressions 7 7 7

... but conjectured to be given by the Brown measure!

Goal
For the limiting object Y := f(X1,...,X,,), we want to compute
@ its analytic distribution in Case 1,  [Belinschi, M., Speicher (2013)]

= i - - = et
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Back to our question ...

Case 1: self-adjoint functions YY) = f(XfN), - ,X,(LN))

o Non-commutative polynomials v [Voiculescu (1991)]

@ Non-commutative rational expressions v [Cébron & Yin (2016)]

v

Case 2: non-self-adjoint functions Y¥) = f(x™ _  xM)
e Non-commutative polynomials 7

o Non-commutative rational expressions 7 7 7
... but conjectured to be given by the Brown measure!

Goal
For the limiting object Y := f(X1,...,X,,), we want to compute
@ its analytic distribution in Case 1,  [Belinschi, M., Speicher (2013)]

@ its Brown measure in Case 2.  [Belinschi, Sniady, Speicher (2015)]
[Helton, M., Speicher (2015)]

= et
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A quick introduction to free probability theory C*-probability spaces and analytic distributions

C*-probability spaces and analytic distributions
Definition

A non-commutative probability space (A, ¢) is called C*-probability space,
if Ais a unital C*-algebra and ¢ a state on A.
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A quick introduction to free probability theory C*-probability spaces and analytic distributions

C*-probability spaces and analytic distributions
Definition

A non-commutative probability space (A, ¢) is called C*-probability space,
if Ais a unital C*-algebra and ¢ a state on A.

Definition (“analytic distribution”)

Let (A, ¢) be a C*-probability space. The (analytic) distribution of
X = X* € Ais the unique Borel probability measure pux on R such that

H(XF) = / R dpx (t) for all k& € Np.
R
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A quick introduction to free probability theory C*-probability spaces and analytic distributions

C*-probability spaces and analytic distributions
Definition

A non-commutative probability space (A, ¢) is called C*-probability space,

if Ais a unital C*-algebra and ¢ a state on A.

Definition (“analytic distribution”)

Let (A, ¢) be a C*-probability space. The (analytic) distribution of
X = X* € Ais the unique Borel probability measure pux on R such that

H(XF) = / R dpx (t) for all k& € Np.
R

Example
For any X = X* € My(C) with eigenvalues A1, ..., Ax, we have that

N N
1 ) 1
BX = % E Oxo since trN(Xk =~ E ;“— /Rtkd,ux( ).
j=1 j=1

v
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Cauchy-Stieltjes transforms of analytic distributions
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A quick introduction to free probability theory C*-probability spaces and analytic distributions

Cauchy-Stieltjes transforms of analytic distributions

Definition
Let (A, ¢) be a C*-probability space. For X = X* € A, the holomorphic
function

1
z—t

Gx: CT=C7, 2= ¢((z— X)) :/R dpx (1)

is called the Cauchy transform of X.

Tobias Mai (Saarland University) Asymptotic eigenvalue distributions August 25, 2016 11 / 22



C*-probability spaces and analytic distributions
Cauchy-Stieltjes transforms of analytic distributions
Definition

Let (A, ¢) be a C*-probability space. For X = X* € A, the holomorphic
function

Gx: Ct = C, Z’_)¢((Z_X)_1):/Rzitdux(t)

is called the Cauchy transform of X.

Theorem (Stieltjes inversion formula)

For each € > 0, consider the absolutely continuous measure p1x . given by

—1
dpxo(t) = —S(Gx(t +ie)) dt.

Then pux . — px weakly as e N\, 0.

v
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W*-probability spaces and Brown measures
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A quick introduction to free probability theory W *-probability spaces and Brown measures

W*-probability spaces and Brown measures

Definition
A non-commutative probability space (A, ¢) is called tracial W*-probability
space, if A is a von Neumann algebra and ¢ a faithful normal tracial state

on A.

August 25, 2016 12 / 22
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A quick introduction to free probability theory W *-probability spaces and Brown measures

W*-probability spaces and Brown measures

Definition
A non-commutative probability space (A, ¢) is called tracial W*-probability
space, if A is a von Neumann algebra and ¢ a faithful normal tracial state

on A y

Definition (Brown measure)

Let (A, ¢) be a tracial W*-probability space. The Brown measure of
X € Ais defined (in distributional sense) by

20 0
M—;&&l g(A(X — 2)),

where A denotes the Fuglede-Kadison determinant, i.e.

A(X) := h\r“%exp( d(log(XX* +¢ )))

v
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A quick introduction to free probability theory W *-probability spaces and Brown measures

regularized Cauchy transforms

Theorem ([Larsen (1999)], [Belinschi, Sniady, Speicher (2015)])

Let (A, ¢) be a tracial W*-probability space and let X € A be given. For
each € > 0, consider the regularized Brown measure pix . given by

10
dpx.e(z) = ;%GX,E(Z) dN*(z),

where G x . denotes the regularized Cauchy transforms of X,

Gxe(2) = d((z = X)*((z = X)(z = X)* + &) 7).

Then px . — px weakly as € N\, 0.

Tobias Mai (Saarland University) Asymptotic eigenvalue distributions August 25, 2016 13 /22



A quick introduction to free probability theory W *-probability spaces and Brown measures

regularized Cauchy transforms

Theorem ([Larsen (1999)], [Belinschi, Sniady, Speicher (2015)])

Let (A, ¢) be a tracial W*-probability space and let X € A be given. For
each € > 0, consider the regularized Brown measure pix . given by

10
dpx.e(z) = ;%GX,E(Z) dN*(z),

where G x . denotes the regularized Cauchy transforms of X,
Gxe(2) = ¢((z = X)*((z = X)(z — X)* +2) 7).

Then px . — px weakly as € N\, 0.

hermitian reduction method  [Janik, Nowak, Papp, Zahed (1997)]

ovio=[o( [t ), e - [2 ] s
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Operator-valued free probability

free probability theory (A, ¢)

Tobias Mai (Saarland University) Asymptotic eigenvalue distributions



Operator-valued free probability theory
Operator-valued free probability

free probability theory (A, ¢)

A unital algebra
CilyCcA

¢ : A — C expectation, satisfying

P(la) = 1.

Ct={zeC| £3(2) >0}
Gx: CTSC,
2= ¢((z = X)™)
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Operator-valued free probability theory
Operator-valued free probability

operator-valued free probability

free probability theory (A, ¢) theory (A, E, B)

A unital algebra
CilyCcA

¢ : A — C expectation, satisfying

P(1a) =1.

Ct={zeC| £3(2) >0}
Gx: CTSC,
2= ¢((z = X)™)
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Operator-valued free probability

free probability theory (A, ¢)

operator-valued free probability
theory (A,E,B)

A unital algebra

A unital algebra

CilyCcA

¢ : A — C expectation, satisfying

P(la) = 1.

Ct={zeC| £3(2) >0}

Gx: CT = C,
2oz - X))
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Operator-valued free probability theory
Operator-valued free probability

free probability theory (A, ¢)

operator-valued free probability
theory (A,E,B)

A unital algebra

A unital algebra

CilyCcA

B C A unital subalgebra

¢ : A — C expectation, satisfying

P(1a) = 1.

Ct={zeC| £3(z) >0}

Gx: CT = C,
2 o((z-X)
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Operator-valued free probability theory
Operator-valued free probability

free probability theory (A, ¢) :ﬁ:;f;()(;v?éu;c)l free probability

A unital algebra A unital algebra
CilyCcA B C A unital subalgebra
E : A — B conditional expecta-
¢ : A — C expectation, satisfying || tion, satisfying
6(10) = 1. o E[b] =b for all b € B.
(] E[lebQ] = blE[X]bQ for all
X eAand by, by € B.

Ct={zeC| £3(z) >0}
Gx: CTSC,
2= ¢((z = X))
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Operator-valued free probability theory
Operator-valued free probability

operator-valued free probability
theory (A,E,B)
A unital algebra A unital algebra
CilyCcA B C A unital subalgebra
E : A — B conditional expecta-
¢ : A — C expectation, satisfying || tion, satisfying
o E[b] =0 forallbe B.
¢(la) = 1. o

(] E[lebQ] = blE[X]bQ for all

X eAand by, by € B.

free probability theory (A, ¢)

H*(B) = {b € B;* + S(b) > 0},

where () := bgi :

Ct={zeC| £3(z) >0}
Gx: CTSC,
2= ¢((z = X))
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Operator-valued free probability theory
Operator-valued free probability

free probability theory (A, ¢)

operator-valued free probability
theory (A,E,B)

A unital algebra

A unital algebra

CilyCcA

B C A unital subalgebra

¢ : A — C expectation, satisfying

Pp(la) =1.

E : A — B conditional expecta-
tion, satisfying
o E[b] =b for all b € B.
o E[b1 Xbo] = 01 E[X]by for all
X eAand by, by € B.

Ct={zeC| £3(z) >0}

H*¥(B) = {b c B
where () := bgf*.

£3(b) > 01,

Gx: Ct=>C,
2z d((z=X)7h)

Gx: H"(B) — H (B),

Tobias Mai (Saarland University)

Asymptotic eigenvalue distributions

August 25, 2016 14 / 22



Rational expressions in freely independent variables

What actually are non-commutative rational expressions?
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What actually are non-commutative rational expressions?
What actually are non-commutative rational expressions?

Definition
A (non-commutative) rational expression 7 in n formal variables x, ..
is a syntactically valid combination of

@ scalars A € C and the variables x1, ..., z,,

-5 Tn

@ the arithmetic operations +, -, !, and
@ parentheses (, ).

Tobias Mai (Saarland University)

Asymptotic eigenvalue distributions August 25, 2016 15 / 22




What actually are non-commutative rational expressions?
What actually are non-commutative rational expressions?

Definition
A (non-commutative) rational expression r in n formal variables z1,
is a syntactically valid combination of

@ scalars A € C and the variables x1, ..., z,,

@ the arithmetic operations +, -, !, and

@ parentheses (, ).

o o @pp

Example
o r(z1,m2) = (21 22 —4)"L 21 (22 21 —4)7!

o T‘(.’El,l‘Q) = (Z = 1‘1)_1 - To + 27 - (Z = 1‘2)_1
o r(z1,72) = (21 -T2 — T2 - 1)}
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What actually are non-commutative rational expressions?

Definition
A (non-commutative) rational expression r in n formal variables z1, ..
is a syntactically valid combination of

@ scalars A € C and the variables x1, ..., z,,

@ the arithmetic operations +, -, !, and

@ parentheses (, ).

o o @pp

Example
o r(z1,m2) = (21 22 —4)"L 21 (22 21 —4)7!
o r(z1,m2) = (i—x1) 2o+ 21 (i — 22) 7
o r(z1,72) = (21 -T2 — T2 - 1)}

o ri(z1,22) =071, ro(wr,x2) = (1 — 1)t
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Rational expressions in freely independent variables

Self-adjoint formal linear representations
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Rational expressions in freely independent variables Linearizations

Self-adjoint formal linear representations

Definition (Helton, M., Speicher (2015))

Let r be a self-adjoint k x k matrix of non-commutative rational
expressions in formal variables z1, ..., x,. A self-adjoint formal linear
representation p = (@, v) of r consists of

@ an affine linear pencil Q = Q(O) +QWzy + - + QMg, with

self-adjoint matrices Q©, QM) ... . QM ¢ MN((C)

@ a matrix v € My« (C),
and satisfies the following property:
For any unital complex x-algebra A and each X € A7, for which r(X) is
defined, Q(X) is invertible in My (A) and v(X) = —v*Q(X) v holds.
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Rational expressions in freely independent variables Linearizations

Self-adjoint formal linear representations

Definition (Helton, M., Speicher (2015))

Let r be a self-adjoint k x k matrix of non-commutative rational
expressions in formal variables z1, ..., x,. A self-adjoint formal linear
representation p = (@, v) of r consists of
e an affine linear pencil Q = Q) + QWzx; + - + Q™ z,, with
self-adjoint matrices Q. QM ... Q™ e My(C),
@ a matrix v € My« (C),

and satisfies the following property:
For any unital complex x-algebra A and each X € A7, for which r(X) is

sa’

defined, Q(X) is invertible in My (A) and v(X) = —v*Q(X) v holds.

Theorem (Helton, M., Speicher (2015))

Each self-adjoint matrix r of non-commutative rational expressions admits
a self-adjoint formal linear representation p = (Q,v).

v
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Rational expressions in freely independent variables

The history of linearization

bias Mai (Saarland University)



The history of linearization

From free probability theory ...
@ Haagerup and Thorbjgrnsen (2005)
@ Haagerup, Schultz, and Thorbjgrnsen (2006)
@ Anderson (2012)
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The history of linearization

From free probability theory ...
@ Haagerup and Thorbjgrnsen (2005)
@ Haagerup, Schultz, and Thorbjgrnsen (2006)
@ Anderson (2012)

... back to the famous ancestors.
@ recognizable rational series: Schiitzenberger (1961)

o linear representations: Cohn (1985); Cohn and Reutenauer (1994);
Malcolmson (1978)

@ descriptor realizations: Kalman (1963); Helton, McCullough, and
Vinnikov (2006)
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The history of linearization

From free probability theory ...
@ Haagerup and Thorbjgrnsen (2005)
@ Haagerup, Schultz, and Thorbjgrnsen (2006)
@ Anderson (2012)

... back to the famous ancestors.
@ recognizable rational series: Schiitzenberger (1961)

o linear representations: Cohn (1985); Cohn and Reutenauer (1994);
Malcolmson (1978)

@ descriptor realizations: Kalman (1963); Helton, McCullough, and
Vinnikov (2006)

~ Linearization even works for non-commutative rational expressions!
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Rational expressions in freely independent variables

Linearization meets operator-valued free probability
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Linearization meets operator-valued free probability

Theorem

Given a self-adjoint k x k matrix r of non-commutative rational expression
in x1,...,x,, we chose any self-adjoint formal linear representation

p = (Q,v) of size N x N. Then, for any C*-probability space (A, ¢) and
any X = (Xy,...,X,) € A, for which r(X) is defined, we have that

GE(X)(Z) = ;1\1‘% [Gfr(X)(AE(Z))] 1,1 with ﬁ‘(X) = (S Q?;())

Z 0
0 iElN

holds with A.(Z) := (

) € H+ (My4+1(C)) for Z € H*(Mj(C)).

v
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Linearization meets operator-valued free probability

Theorem

Given a self-adjoint k x k matrix r of non-commutative rational expression
in x1,...,x,, we chose any self-adjoint formal linear representation

p = (Q,v) of size N x N. Then, for any C*-probability space (A, ¢) and
any X = (Xy,...,X,) € A, for which r(X) is defined, we have that

Grx)(2) = lim [Gex)(A=(2))] ;- with £(X) = (S Qq();()>
Z 0

holds with A.(Z) := <0 il
N

) € H+ (My4+1(C)) for Z € H*(Mj(C)).

v

Remark

We have (X)) = by + 01 X1 + - - - + b, X, and b1 X, ..., b, X, are freely
independent in (Mpy+x(A),idyy,, ) ®9, Mn+£(C)).

v
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How to calculate the free additive convolution
How to calculate the free additive convolution

Theorem (Belinschi, M., Speicher, 2013)

Assume that (A, E, B) is an operator-valued C*-probability space.

If X,Y € A are free with respect to [, then there exists a unique pair of
(Fréchet-)holomorphic maps wy,wy : HT(B) — H(B), such that

Gx(w1(b)) = Gy (wa(b)) = Gxyy(b), beH"(B).

v
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Rational expressions in freely independent variables How to calculate the free additive convolution

How to calculate the free additive convolution
Theorem (Belinschi, M., Speicher, 2013)

Assume that (A, E, B) is an operator-valued C*-probability space.

If X,Y € A are free with respect to [, then there exists a unique pair of
(Fréchet-)holomorphic maps wy,wy : HT(B) — H(B), such that

Gx(w1(b)) = Gy (wa(b)) = Gxyy(b), beH"(B).

Moreover, wy and wy can easily be calculated via the following fixed point
iterations on H™(B)

w— hy(b+hx(w))+b  for wi(b)
wr—>hX(b+hy(w))+b for o.)g(b)

where we put hx (b) := Gx(b)~! — b and hy (b) := Gy (b)~! — b,
respectively.
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Example | — Distributions

p(x1,22) := z122 + T221 J
0 =z =z -1 0
_ z7 0 =1 0 0
P=\ 2 -1 0 oo
-1 0 0 0 1
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Example | — Distributions

p(x1,22) := z122 + T221

N

]

Eigenvalues of p(X;, X2), where
X1, X5 are independent self-adjoint
Gaussian random matrices of size

1000 x 1000 ...

Tobias Mai (Saarland University)

0 x1 x9 -1
rxw 0 -1 0
s —1 0 0 |’
-1 0 0 0

_ o O O

|l

I
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Example | — Distributions

p(x1,22) := z122 + T221

N

_ o O O
N——

(a0 -1 0
P=\ 2z -1 0o ol
0

-1 0 0

0.35 T
Eigenvalues of p(X;, X2), where sl f\
X1, X5 are independent self-adjoint 7[
Gaussian random matrices of size o \
1000 x 1000 ... oz f

0.15
.. compared to the distribution of
p(X1, X2), where X1, X, are freely .
independent semicircular elements. 005

-5 0 5
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Example Il — Distributions

r(z1,20) = (4—x1) "' + (4 - xl)flxg((4 —z1) —x2(4 — xl)_lxg)_lzz(4 —x)7! J

o= -1+ ;11.%1 }Img %
‘—111'2 -1+ %11‘1 "\ 0
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Example Il — Distributions

r(z1,20) = (4—x1) "' + (4 - xl)flxg((4 —z1) —x2(4 — xl)flmg)_lxg(él —x)7! J

p= -1+ %:El %1562 %
4—111‘2 -1+ %11‘1 "\ 0

Eigenvalues of r(X7, X3), where
X1, X5 are independent self-adjoint
Gaussian random matrices of size
1000 x 1000 ... at

: 7 HHHHHD{WH%

0.1 0.2 03 0.4

0.7
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Example Il — Distributions

r(z1,20) = (4—x1) "' + (4 - xl)flxg((4 —z1) —x2(4 — xl)flmg)_lxg(él —x)7! J

p= -1+ %:L‘l %1502 %
4—111‘2 -1+ %11‘1 "\ 0

Eigenvalues of r(X7, X3), where Sl o~
X1, X5 are independent self-adjoint \
Gaussian random matrices of size °f \
1000 x 1000 ... at

. compared to the distribution of
r(X1, X2), where X7, X5 are freely
independent semicircular elements. i

0.1 0.2 03 0.4 05 0.6 0.7
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Example Il — Brown measures

r(21,x2) = (21 +4) " (21 + iz2)(xy 4+ 4) )
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Examples

Example Il — Brown measures

(.’131 + ?:)_1(.’)31 + iwz)(w1 + i)_l

r(z1,2)

Eigenvalues of (X1, X2), where X1, X2 are

independent self-adjoint Gaussian random matrices of size

1000 x 1000 ...

—
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Examples

Example Il — Brown measures

22 /22

August 25, 2016

. compared to the Brown measure of (X1, X3), where

X1, X2 are freely independent semicircular elements.

(.’El + i)_l(l‘l + iwg)(1‘1 aF i)_l

s
c
K]
=
=
£
=
E
=
-
@
Iu
[
>
<
[
i)
7
L
2
=}
2
[-%
£
>
z
<

r(z1,2)

independent self-adjoint Gaussian random matrices of size
Tobias Mai (Saarland University)

Eigenvalues of (X1, X2), where X1, X2 are
1000 x 1000 ...




Example Il — Brown measures

r(z1,z2) := (1 + i)_l(xl +izg)(x1 + i)_l |

Eigenvalues of (X1, X2), where X1, X2 are ... compared to the Brown measure of (X1, X2), where
independent random matrices of size 1000 x 1000, X X1, X2 are freely independent elements, X semicircular
Gaussian and X5 Wishart ... and X5 free Poisson.
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Example Il — Brown measures

r(z1,z2) := (1 + i)_l(xl +izg)(x1 + i)_l |

Eigenvalues of (X1, X2), where X1, X2 are ... compared to the Brown measure of (X1, X2), where
independent random matrices of size 1000 x 1000, X X1, X2 are freely independent elements, X semicircular
Gaussian and X5 Wishart ... and X5 free Poisson.

Thank youl
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