Products of free random variables

Vladislav Kargin

Binghamton University

August 2016

Lyapunov exponents for random matrices

Let $X_{t}, t=1,2, \ldots$ be a stationary sequence of identically distributed $n \times n$ random matrices and

$$
\Pi_{n}=X_{n} \ldots X_{1}
$$

Assume that the matrices do not belong to a subgroup and $E \log ^{+}\left\|X_{i}\right\|<\infty$.

- Then the following limits exist and equal each other:

where v is an arbitrary unit vector.
be eigenvalues of $\Pi_{n}^{*} \Pi_{n}$. Then limits

Lyapunov exponents for random matrices

Let $X_{t}, t=1,2, \ldots$ be a stationary sequence of identically distributed $n \times n$ random matrices and

$$
\Pi_{n}=X_{n} \ldots X_{1} .
$$

Assume that the matrices do not belong to a subgroup and $E \log ^{+}\left\|X_{i}\right\|<\infty$.

- Then the following limits exist and equal each other:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\Pi_{n}\right\|=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\left\|\Pi_{n} v\right\|\right),
$$

where v is an arbitrary unit vector.

Lyapunov exponents for random matrices

Let $X_{t}, t=1,2, \ldots$ be a stationary sequence of identically distributed $n \times n$ random matrices and

$$
\Pi_{n}=X_{n} \ldots X_{1} .
$$

Assume that the matrices do not belong to a subgroup and $E \log ^{+}\left\|X_{i}\right\|<\infty$.

- Then the following limits exist and equal each other:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\Pi_{n}\right\|=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\left\|\Pi_{n} v\right\|\right)
$$

where v is an arbitrary unit vector.

- Let $\lambda_{1}^{(n)} \geq \lambda_{2}^{(n)} \geq \ldots$ be eigenvalues of $\Pi_{n}^{*} \Pi_{n}$. Then limits

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \lambda_{k}^{(n)}
$$

exist for each k and are called Lyapunov exponents of X_{i}.

X_{i} are independent random 400 by 400 Gaussian matrices.

Norm of the product of free operators

Theorem If X_{1}, X_{2}, \ldots is a sequence of free identically-distributed bounded operators from a non-commutative W^{*}-probability space (\mathcal{A}, E), and $\Pi_{n}=X_{n} \ldots X_{1}$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\Pi_{n}^{*} \Pi_{n}\right\|=\log E\left(X_{1}^{*} X_{1}\right)
$$

Proof \#1 (direct)

Define

$$
\psi(z)=E\left(\frac{z X_{1}^{*} X_{1}}{1-z X_{1}^{*} X_{1}}\right) \text { and } \psi_{n}(z)=E\left(\frac{z \Pi_{n}^{*} \Pi_{n}}{1-z \Pi_{n}^{*} \Pi_{n}}\right) .
$$

Let $\psi^{(-1)}(z)$ and $\psi_{n}^{(-1)}(z)$ be functional inverses of $\psi(z)$ and $\psi_{n}(z)$, respectively.
Then $\left\|\Pi_{n}^{*} \Pi_{n}\right\|$ is related to the smallest positive critical value of $\log \psi_{n}^{(-1)}(x)$.

This critical value can be studied by using identity

Proof \#1 (direct)

Define

$$
\psi(z)=E\left(\frac{z X_{1}^{*} X_{1}}{1-z X_{1}^{*} X_{1}}\right) \text { and } \psi_{n}(z)=E\left(\frac{z \Pi_{n}^{*} \Pi_{n}}{1-z \Pi_{n}^{*} \Pi_{n}}\right) .
$$

Let $\psi^{(-1)}(z)$ and $\psi_{n}^{(-1)}(z)$ be functional inverses of $\psi(z)$ and $\psi_{n}(z)$, respectively.
Then $\left\|\Pi_{n}^{*} \Pi_{n}\right\|$ is related to the smallest positive critical value of $\log \psi_{n}^{(-1)}(x)$.

This critical value can be studied by using identity

Proof \#1 (direct)

Define

$$
\psi(z)=E\left(\frac{z X_{1}^{*} X_{1}}{1-z X_{1}^{*} X_{1}}\right) \text { and } \psi_{n}(z)=E\left(\frac{z \Pi_{n}^{*} \Pi_{n}}{1-z \Pi_{n}^{*} \Pi_{n}}\right) .
$$

Let $\psi^{(-1)}(z)$ and $\psi_{n}^{(-1)}(z)$ be functional inverses of $\psi(z)$ and $\psi_{n}(z)$, respectively.
Then $\left\|\Pi_{n}^{*} \Pi_{n}\right\|$ is related to the smallest positive critical value of $\log \psi_{n}^{(-1)}(x)$.

This critical value can be studied by using identity

$$
\log \psi_{n}^{(-1)}(x)=(n-1) \log \left[\frac{1+z}{z}\right]+n \log \left[\psi^{(-1)}(x)\right] .
$$

Proof \#2

Suppose the distribution of X coincides with that of a polynomial of degree m in free group generators.

Then we can use freeness and Haagerup's inequality:

$$
\begin{aligned}
{\left[E\left(X_{1}^{*} X_{1}\right)\right]^{n} } & =E\left(\Pi_{n}^{*} \Pi_{n}\right) \leq\left\|\Pi_{n}^{*} \Pi_{n}\right\| \\
& \leq \operatorname{Cnm} E\left(\Pi_{n}^{*} \Pi_{n}\right)=\operatorname{Cnm}\left[E\left(X_{1}^{*} X_{1}\right)\right]^{n} .
\end{aligned}
$$

(Haagerup's inequality is about the left-regular representation of the group algebra of the free group.

In a simplest form it says that if an element of the algebra is a product
of no more than n generators (or their inverses), then its operator
norm is bounded by its Frobenius norm multiplied by n.)

Proof \#2

Suppose the distribution of X coincides with that of a polynomial of degree m in free group generators.

Then we can use freeness and Haagerup's inequality:

$$
\begin{aligned}
{\left[E\left(X_{1}^{*} X_{1}\right)\right]^{n} } & =E\left(\Pi_{n}^{*} \Pi_{n}\right) \leq\left\|\Pi_{n}^{*} \Pi_{n}\right\| \\
& \leq \operatorname{Cnm} E\left(\Pi_{n}^{*} \Pi_{n}\right)=\operatorname{Cnm}\left[E\left(X_{1}^{*} X_{1}\right)\right]^{n} .
\end{aligned}
$$

(Haagerup's inequality is about the left-regular representation of the group algebra of the free group.

In a simplest form it says that if an element of the algebra is a product
of no more than n generators (or their inverses), then its operator
norm is bounded by its Frobenius norm multiplied by n.)

Proof \#2

Suppose the distribution of X coincides with that of a polynomial of degree m in free group generators.

Then we can use freeness and Haagerup's inequality:

$$
\begin{aligned}
{\left[E\left(X_{1}^{*} X_{1}\right)\right]^{n} } & =E\left(\Pi_{n}^{*} \Pi_{n}\right) \leq\left\|\Pi_{n}^{*} \Pi_{n}\right\| \\
& \leq \operatorname{CnmE}\left(\Pi_{n}^{*} \Pi_{n}\right)=\operatorname{Cnm}\left[E\left(X_{1}^{*} X_{1}\right)\right]^{n} .
\end{aligned}
$$

(Haagerup's inequality is about the left-regular representation of the group algebra of the free group.

In a simplest form it says that if an element of the algebra is a product of no more than n generators (or their inverses), then its operator norm is bounded by its Frobenius norm multiplied by n.)

What about

$$
\frac{\left\|\Pi_{n}^{*} \Pi_{n}\right\|}{\left\|\Pi_{n}^{*} \Pi_{n}\right\|_{2}} \equiv \frac{\left\|\Pi_{n}^{*} \Pi_{n}\right\|}{E\left(\Pi_{n}^{*} \Pi_{n}\right)} ?
$$

According to Haagerup's inequality, this ratio is $O(n)$.

Theorem

$$
\lim _{n \rightarrow \infty} \frac{\left\|\Pi_{n}^{*} \Pi_{n}\right\|}{E\left(\Pi_{n}^{*} \Pi_{n}\right)}=e V n
$$

where

$$
V=\frac{E\left(X_{1}^{*} X_{1}\right)^{2}}{\left(E X_{1}^{*} X_{1}\right)^{2}}-1
$$

and $e=2.7 \ldots$ is the base of natural logarithms.

What about

$$
\frac{\left\|\Pi_{n}^{*} \Pi_{n}\right\|}{\left\|\Pi_{n}^{*} \Pi_{n}\right\|_{2}} \equiv \frac{\left\|\Pi_{n}^{*} \Pi_{n}\right\|}{E\left(\Pi_{n}^{*} \Pi_{n}\right)} ?
$$

According to Haagerup's inequality, this ratio is $O(n)$.
Theorem

where

What about

$$
\frac{\left\|\Pi_{n}^{*} \Pi_{n}\right\|}{\left\|\Pi_{n}^{*} \Pi_{n}\right\|_{2}} \equiv \frac{\left\|\Pi_{n}^{*} \Pi_{n}\right\|}{E\left(\Pi_{n}^{*} \Pi_{n}\right)} ?
$$

According to Haagerup's inequality, this ratio is $O(n)$.
Theorem

$$
\lim _{n \rightarrow \infty} \frac{\left\|\Pi_{n}^{*} \Pi_{n}\right\|}{E\left(\Pi_{n}^{*} \Pi_{n}\right)}=e V n
$$

where

What about

$$
\frac{\left\|\Pi_{n}^{*} \Pi_{n}\right\|}{\left\|\Pi_{n}^{*} \Pi_{n}\right\|_{2}} \equiv \frac{\left\|\Pi_{n}^{*} \Pi_{n}\right\|}{E\left(\Pi_{n}^{*} \Pi_{n}\right)} ?
$$

According to Haagerup's inequality, this ratio is $O(n)$.
Theorem

$$
\lim _{n \rightarrow \infty} \frac{\left\|\Pi_{n}^{*} \Pi_{n}\right\|}{E\left(\Pi_{n}^{*} \Pi_{n}\right)}=e V n
$$

where

$$
V=\frac{E\left(X_{1}^{*} X_{1}\right)^{2}}{\left(E X_{1}^{*} X_{1}\right)^{2}}-1
$$

and $e=2.7 \ldots$ is the base of natural logarithms.

This result is not readily seen in the simulations of random matrix products.

Question

Does the formula

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|\Pi_{n}^{*} \Pi_{n}\right\|=\log E\left(X_{1}^{*} X_{1}\right)
$$

hold for block variables X_{i} which are free with amalgamation? Example: Products of

$$
X_{i}=\left[\begin{array}{cc}
A_{i} & A_{i} \\
A_{i}^{t} & B_{i}
\end{array}\right]
$$

The prediction here is

$$
\frac{1}{2} \log \left(\frac{1}{2} \operatorname{TrE} X_{1}^{*} X_{1}\right) .
$$

Matrix-valued analogue of Haagerup's inequality

Let G be a free group with finitely many free generators, let H be a Hilbert space and let f be a function supported on $E_{k}(G)$ with values in $B(H)$.
$E_{k}(G)$ is the span of the group elements which are products of no more than k generators or their inverses.

What can we say about $\|\lambda(f)\|_{B\left(H \otimes 1_{2}(G)\right)}$?

Buchholz theorem (1999)

(1)

$$
\|\lambda(f)\|_{B\left(H \otimes 1_{2}(G)\right)} \geq \max \left\{\left\|(f(p q))_{(p, q) \in E_{i}(G) \times E_{k-i}(G)}\right\|_{x_{i}}: 0 \leq i \leq k\right\},
$$

(2)
$\|\lambda(f)\|_{B\left(H \otimes l_{2}(G)\right)} \leq(k+1) \max \left\{\left\|(f(p q))_{(p, q) \in E_{i}(G) \times E_{k-i}(G)}\right\| X_{i}: 0 \leq i \leq k\right\}$,
where $\|\cdot\|_{X_{i}}$ is the operator norm in the space $B\left(\bigoplus_{q \in E_{k-i}(G)} H, \bigoplus_{p \in E_{i}(G)} H\right)$.

Dependent variables

Does the limit of $n^{-1} \log \left(\left\|\Pi_{n}\right\|\right)$ exists for dependent block matrices?
The pictures are for products of

$$
X_{i}=\left[\begin{array}{cc}
A_{i} & -B_{i-1} \\
B_{i} & A_{i}^{t}
\end{array}\right]
$$

Lyapunov exponents

Let ν_{n} be the spectral probability measure of $n^{-1} \log \Pi_{n}^{*} \Pi_{n}$.
Definition \#1: The distribution of Lyapunov exponents is defined as the following limit:

$$
\nu:=\lim _{n \rightarrow \infty} \nu_{n},
$$

if it exists.

Definition \#2

Integrated Lyapunov exponent function:

$$
\widetilde{\Lambda}(t)=\lim _{n} \frac{1}{n} \sup _{P_{t} \in \mathcal{A}} \log \operatorname{det}\left(\Pi_{n} P_{t}\right)
$$

where P_{t} is a projection of dimension t.

Definition \#3

$$
\Lambda(t)=\lim _{n} \frac{1}{n} \log \operatorname{det}\left(\Pi_{n} P_{t}\right)
$$

where P_{t} is a projection of dimension t, which is free of all X_{i}.

Definition \#2

Integrated Lyapunov exponent function:

$$
\widetilde{\Lambda}(t)=\lim _{n} \frac{1}{n} \sup _{P_{t} \in \mathcal{A}} \log \operatorname{det}\left(\Pi_{n} P_{t}\right)
$$

where P_{t} is a projection of dimension t.

Definition \#3

$$
\Lambda(t)=\lim _{n} \frac{1}{n} \log \operatorname{det}\left(\Pi_{n} P_{t}\right)
$$

where P_{t} is a projection of dimension t, which is free of all X_{i}.

Theorem The limit

$$
\Lambda(t)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \operatorname{det}\left(\Pi_{n} P_{t}\right)
$$

exists for each t.
Theorem Let X_{i} be invertible. Then

where $0 \leq t \leq 1$, and $\theta(t)$ satisfies the equation:

Theorem The limit

$$
\Lambda(t)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \operatorname{det}\left(\Pi_{n} P_{t}\right)
$$

exists for each t.
Theorem Let X_{i} be invertible. Then

$$
f(t):=\frac{d}{d t} \Lambda(t)=\frac{1}{2} \log \left[\frac{t}{1-t} \theta(t)\right],
$$

where $0 \leq t \leq 1$, and $\theta(t)$ satisfies the equation:

$$
E\left[\frac{1}{\theta(t)+X_{1}^{*} X_{1}}\right]=(1-t) \frac{1}{\theta(t)}
$$

Relation with S-transform

Theorem. Let X_{i} be identically distributed free bounded invertible operators. Then the marginal Lyapunov exponent of $\left\{X_{i}\right\}$

$$
f_{X}(t)=-\frac{1}{2} \log \left[S_{X_{1}^{*} X_{1}}(-t)\right]
$$

where $S(t)$ denotes the S-transform.
Corollary If X is bounded then the largest Lyapunov exponent equals $\frac{1}{2} \log E\left(X^{*} X\right)$.

Corollary: Let X and Y be free, invertible, and bounded. Then

$$
f_{X Y}(t)=f_{X}(t)+f_{Y}(t) .
$$

Corollary If X is bounded and invertible, then

Relation with S-transform

Theorem. Let X_{i} be identically distributed free bounded invertible operators. Then the marginal Lyapunov exponent of $\left\{X_{i}\right\}$

$$
f_{X}(t)=-\frac{1}{2} \log \left[S_{X_{1}^{*} X_{1}}(-t)\right]
$$

where $S(t)$ denotes the S-transform.
Corollary If X is bounded then the largest Lyapunov exponent equals $\frac{1}{2} \log E\left(X^{*} X\right)$.

Corollary. Let X and Y be free, invertible, and bounded. Then

$$
f_{X Y}(t)=f_{X}(t)+f_{Y}(t) .
$$

Corollary If X is bounded and invertible, then

Relation with S-transform

Theorem. Let X_{i} be identically distributed free bounded invertible operators. Then the marginal Lyapunov exponent of $\left\{X_{i}\right\}$

$$
f_{X}(t)=-\frac{1}{2} \log \left[S_{X_{1}^{*} X_{1}}(-t)\right]
$$

where $S(t)$ denotes the S-transform.
Corollary If X is bounded then the largest Lyapunov exponent equals $\frac{1}{2} \log E\left(X^{*} X\right)$.

Corollary. Let X and Y be free, invertible, and bounded. Then

$$
f_{X Y}(t)=f_{X}(t)+f_{Y}(t)
$$

Corollary If X is bounded and invertible, then

Relation with S-transform

Theorem. Let X_{i} be identically distributed free bounded invertible operators. Then the marginal Lyapunov exponent of $\left\{X_{i}\right\}$

$$
f_{X}(t)=-\frac{1}{2} \log \left[S_{X_{1}^{*} X_{1}}(-t)\right]
$$

where $S(t)$ denotes the S-transform.
Corollary If X is bounded then the largest Lyapunov exponent equals $\frac{1}{2} \log E\left(X^{*} X\right)$.

Corollary. Let X and Y be free, invertible, and bounded. Then

$$
f_{X Y}(t)=f_{X}(t)+f_{Y}(t)
$$

Corollary If X is bounded and invertible, then

$$
\operatorname{det}(X)=\exp \left\{-\frac{1}{2} \int_{0}^{1} \log S_{X^{*} X}(-t) d t\right\}
$$

Example: if $X^{*} X$ has free Poisson (= Marchenko-Pastur) distribution with parameter $\lambda \geq 1$, then

$$
f_{X}(t)=\frac{1}{2} \log (\lambda-t)
$$

(Newman's triangle law is a particular case when $\lambda=1$.)

Theorem (Tucci 2010) The distribution of $\left(\Pi_{n}^{*} \Pi_{n}\right)^{1 / n}$ converges to a limit ν.

Theorem (Tucci) If X_{i} are invertible then the limit distribution ν is supported on $\left[\left(\left\|X_{i}^{-1}\right\|_{2}\right)^{-1},\left\|X_{i}\right\|_{2}\right]$ and has the distribution function that satisfies $F\left(1 / \sqrt{S_{X * X}(t-1)}\right)=t$.

This is essentially the same formula as for Lyapunov's exponents defined earlier!

Theorem (Tucci 2010) The distribution of $\left(\Pi_{n}^{*} \Pi_{n}\right)^{1 / n}$ converges to a limit ν.

Theorem (Tucci) If X_{i} are invertible then the limit distribution ν is supported on $\left[\left(\left\|X_{i}^{-1}\right\|_{2}\right)^{-1},\left\|X_{i}\right\|_{2}\right]$ and has the distribution function that satisfies $F\left(1 / \sqrt{S_{X^{*} X}(t-1)}\right)=t$.

This is essentially the same formula as for Lyapunov's exponents defined earlier!

Theorem (Tucci 2010) The distribution of $\left(\Pi_{n}^{*} \Pi_{n}\right)^{1 / n}$ converges to a limit ν.

Theorem (Tucci) If X_{i} are invertible then the limit distribution ν is supported on $\left[\left(\left\|X_{i}^{-1}\right\|_{2}\right)^{-1},\left\|X_{i}\right\|_{2}\right]$ and has the distribution function that satisfies $F\left(1 / \sqrt{S_{X^{*} X}(t-1)}\right)=t$.

This is essentially the same formula as for Lyapunov's exponents defined earlier!

Haagerup and Möller (2013) extended Tucci's result to unbounded X_{i} and gave a different proof.

The proof is based on identities

valid for every self-adjoint Y, and

obtained by substituting $t=z+1, Y=\Pi_{n}^{*} \Pi_{n}$ and using multiplicativity of $S(z)$.

Haagerup and Möller (2013) extended Tucci's result to unbounded X_{i} and gave a different proof.

The proof is based on identities

$$
z+1=\mathbb{E}\left[\left(1-\frac{z}{z+1} S_{Y}(z) Y\right)^{-1}\right]
$$

valid for every self-adjoint Y, and

obtained by substituting $t=z+1, Y=\Pi_{n}^{*} \Pi_{n}$ and using multiplicativity of $S(z)$.

Haagerup and Möller (2013) extended Tucci's result to unbounded X_{i} and gave a different proof.

The proof is based on identities

$$
z+1=\mathbb{E}\left[\left(1-\frac{z}{z+1} S_{Y}(z) Y\right)^{-1}\right]
$$

valid for every self-adjoint Y, and

$$
t=\int_{0}^{\infty}\left(1+\frac{1-t}{t} S_{X^{*} X}(t-1)^{n} y^{n}\right)^{-1} d \nu_{n}(y)
$$

obtained by substituting $t=z+1, Y=\Pi_{n}^{*} \Pi_{n}$ and using multiplicativity of $S(z)$.

For R-diagonal free operators X_{i}, the limit distribution of $\left(\Pi_{n}^{*} \Pi_{n}\right)^{1 / n}$ is the same as the limit distribution of $\left(\left(X^{*}\right)^{n} X^{n}\right)^{1 / n}$
and the same as the transformation of the Brown measure of X (i.e. analogue of eigenvalue distribution) under the map $z>|z|^{2}$.

For R-diagonal free operators X_{i}, the limit distribution of $\left(\Pi_{n}^{*} \Pi_{n}\right)^{1 / n}$ is the same as the limit distribution of $\left(\left(X^{*}\right)^{n} X^{n}\right)^{1 / n}$
and the same as the transformation of the Brown measure of X (i.e. analogue of eigenvalue distribution) under the map $z>|z|^{2}$.

Open questions

What if X_{i} are not identically distributed?
Are the measure of $\left(\Pi_{n}^{*} \Pi_{n}\right)^{1 / n}$ related to the Brown measure of Π_{n} for non- R diagonal free operators.

How can any of these results be extended to the case of block - free matrices?

Open questions

What if X_{i} are not identically distributed?
Are the measure of $\left(\Pi_{n}^{*} \Pi_{n}\right)^{1 / n}$ related to the Brown measure of Π_{n} for non- R diagonal free operators.

How can any of these results be extended to the case of block - free matrices?

Open questions

What if X_{i} are not identically distributed?
Are the measure of $\left(\Pi_{n}^{*} \Pi_{n}\right)^{1 / n}$ related to the Brown measure of Π_{n} for non- R diagonal free operators.

How can any of these results be extended to the case of block - free matrices?

