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Lyapunov exponents for random matrices
Let Xt , t = 1,2, . . . be a stationary sequence of identically distributed
n × n random matrices and

Πn = Xn...X1.

Assume that the matrices do not belong to a subgroup and
E log+ ‖Xi‖ <∞.

• Then the following limits exist and equal each other:

lim
n→∞

1
n

log ‖Πn‖ = lim
n→∞

1
n

log (‖Πnv‖) ,

where v is an arbitrary unit vector.

• Let λ(n)1 ≥ λ(n)2 ≥ ... be eigenvalues of Π∗nΠn. Then limits

lim
n→∞

1
n

logλ(n)k

exist for each k and are called Lyapunov exponents of Xi .



Lyapunov exponents for random matrices
Let Xt , t = 1,2, . . . be a stationary sequence of identically distributed
n × n random matrices and

Πn = Xn...X1.

Assume that the matrices do not belong to a subgroup and
E log+ ‖Xi‖ <∞.

• Then the following limits exist and equal each other:

lim
n→∞

1
n

log ‖Πn‖ = lim
n→∞

1
n

log (‖Πnv‖) ,

where v is an arbitrary unit vector.

• Let λ(n)1 ≥ λ(n)2 ≥ ... be eigenvalues of Π∗nΠn. Then limits

lim
n→∞

1
n

logλ(n)k

exist for each k and are called Lyapunov exponents of Xi .



Lyapunov exponents for random matrices
Let Xt , t = 1,2, . . . be a stationary sequence of identically distributed
n × n random matrices and

Πn = Xn...X1.

Assume that the matrices do not belong to a subgroup and
E log+ ‖Xi‖ <∞.

• Then the following limits exist and equal each other:

lim
n→∞

1
n

log ‖Πn‖ = lim
n→∞

1
n

log (‖Πnv‖) ,

where v is an arbitrary unit vector.

• Let λ(n)1 ≥ λ(n)2 ≥ ... be eigenvalues of Π∗nΠn. Then limits

lim
n→∞

1
n

logλ(n)k

exist for each k and are called Lyapunov exponents of Xi .



Xi are independent random 400 by 400 Gaussian matrices.



Norm of the product of free operators

Theorem If X1,X2, . . . is a sequence of free identically-distributed
bounded operators from a non-commutative W ∗-probability space
(A,E), and Πn = Xn . . .X1, then

lim
n→∞

1
n

log ‖Π∗nΠn‖ = log E (X ∗1 X1) .



Proof #1 (direct)

Define

ψ (z) = E
(

zX ∗1 X1

1− zX ∗1 X1

)
and ψn (z) = E

(
zΠ∗nΠn

1− zΠ∗nΠn

)
.

Let ψ(−1) (z) and ψ(−1)
n (z) be functional inverses of ψ (z) and ψn (z) ,

respectively.
Then ‖Π∗nΠn‖ is related to the smallest positive critical value of
logψ(−1)

n (x).

This critical value can be studied by using identity

logψ(−1)
n (x) = (n − 1) log

[
1 + z

z

]
+ n log

[
ψ(−1) (x)

]
.



Proof #1 (direct)

Define

ψ (z) = E
(

zX ∗1 X1

1− zX ∗1 X1

)
and ψn (z) = E

(
zΠ∗nΠn

1− zΠ∗nΠn

)
.

Let ψ(−1) (z) and ψ(−1)
n (z) be functional inverses of ψ (z) and ψn (z) ,

respectively.
Then ‖Π∗nΠn‖ is related to the smallest positive critical value of
logψ(−1)

n (x).

This critical value can be studied by using identity

logψ(−1)
n (x) = (n − 1) log

[
1 + z

z

]
+ n log

[
ψ(−1) (x)

]
.



Proof #1 (direct)

Define

ψ (z) = E
(

zX ∗1 X1

1− zX ∗1 X1

)
and ψn (z) = E

(
zΠ∗nΠn

1− zΠ∗nΠn

)
.

Let ψ(−1) (z) and ψ(−1)
n (z) be functional inverses of ψ (z) and ψn (z) ,

respectively.
Then ‖Π∗nΠn‖ is related to the smallest positive critical value of
logψ(−1)

n (x).

This critical value can be studied by using identity

logψ(−1)
n (x) = (n − 1) log

[
1 + z

z

]
+ n log

[
ψ(−1) (x)

]
.



Proof #2

Suppose the distribution of X coincides with that of a polynomial of
degree m in free group generators.

Then we can use freeness and Haagerup’s inequality:

[E(X ∗1 X1)]n = E (Π∗nΠn) ≤ ‖Π∗nΠn‖
≤ CnmE (Π∗nΠn) = Cnm [E (X ∗1 X1)]n .

(Haagerup’s inequality is about the left-regular representation of the
group algebra of the free group.

In a simplest form it says that if an element of the algebra is a product
of no more than n generators (or their inverses), then its operator
norm is bounded by its Frobenius norm multiplied by n.)
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What about
‖Π∗nΠn‖
‖Π∗nΠn‖2

≡ ‖Π∗nΠn‖
E (Π∗nΠn)

?

According to Haagerup’s inequality, this ratio is O(n).

Theorem
lim

n→∞

‖Π∗nΠn‖
E (Π∗nΠn)

= eVn,

where

V =
E(X ∗1 X1)2

(EX ∗1 X1)2 − 1

and e = 2.7 . . . is the base of natural logarithms.
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This result is not readily seen in the simulations of random matrix
products.



Question

Does the formula

lim
n→∞

1
n

log ‖Π∗nΠn‖ = log E (X ∗1 X1) .

hold for block variables Xi which are free with amalgamation?
Example: Products of

Xi =

[
Ai Ai
At

i Bi

]
.



The prediction here is

1
2

log
(

1
2

TrEX ∗1 X1

)
.



Matrix-valued analogue of Haagerup’s inequality

Let G be a free group with finitely many free generators, let H be a
Hilbert space and let f be a function supported on Ek (G) with values
in B(H).

Ek (G) is the span of the group elements which are products of no
more than k generators or their inverses.

What can we say about ‖λ(f )‖B(H⊗l2(G)) ?



Buchholz theorem (1999)

(1)

‖λ(f )‖B(H⊗l2(G)) ≥ max{‖(f (pq))(p,q)∈Ei (G)×Ek−i (G)‖Xi : 0 ≤ i ≤ k},

(2)

‖λ(f )‖B(H⊗l2(G)) ≤ (k+1) max{‖(f (pq))(p,q)∈Ei (G)×Ek−i (G)‖Xi : 0 ≤ i ≤ k},

where ‖ · ‖Xi is the operator norm in the space
B(
⊕

q∈Ek−i (G) H,
⊕

p∈Ei (G) H).



Dependent variables

Does the limit of n−1 log(‖Πn‖) exists for dependent block matrices?

The pictures are for products of

Xi =

[
Ai −Bi−1
Bi At

i

]



Lyapunov exponents

Let νn be the spectral probability measure of n−1 log Π∗nΠn.

Definition #1: The distribution of Lyapunov exponents is defined as
the following limit:

ν := lim
n→∞

νn,

if it exists.



Definition #2
Integrated Lyapunov exponent function:

Λ̃ (t) = lim
n

1
n

sup
Pt∈A

log det (ΠnPt ) ,

where Pt is a projection of dimension t .

Definition #3

Λ (t) = lim
n

1
n

log det (ΠnPt ) ,

where Pt is a projection of dimension t , which is free of all Xi .
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Theorem The limit

Λ(t) = lim
n→∞

1
n

log det (ΠnPt )

exists for each t .

Theorem Let Xi be invertible. Then

f (t) :=
d
dt

Λ (t) =
1
2

log
[

t
1− t

θ (t)
]
,

where 0 ≤ t ≤ 1, and θ (t) satisfies the equation:

E
[

1
θ (t) + X ∗1 X1

]
= (1− t)

1
θ (t)

.
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Relation with S-transform
Theorem. Let Xi be identically distributed free bounded invertible
operators. Then the marginal Lyapunov exponent of {Xi}

fX (t) = −1
2

log
[
SX∗

1 X1 (−t)
]

where S(t) denotes the S-transform.

Corollary If X is bounded then the largest Lyapunov exponent equals
1
2 log E(X ∗X ).

Corollary. Let X and Y be free, invertible, and bounded. Then

fXY (t) = fX (t) + fY (t) .

Corollary If X is bounded and invertible, then

det (X ) = exp

{
−1

2

∫ 1

0
log SX∗X (−t) dt

}
.
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Example: if X ∗X has free Poisson (= Marchenko-Pastur) distribution
with parameter λ ≥ 1, then

fX (t) =
1
2

log (λ− t) .

(Newman’s triangle law is a particular case when λ = 1.)



Theorem (Tucci 2010) The distribution of (Π∗nΠn)1/n converges to a
limit ν.

Theorem (Tucci) If Xi are invertible then the limit distribution ν is
supported on

[
(‖X−1

i ‖2)−1, ‖Xi‖2

]
and has the distribution function

that satisfies F
(

1/
√

SX∗X (t − 1)
)

= t .

This is essentially the same formula as for Lyapunov’s exponents
defined earlier!
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Haagerup and Möller (2013) extended Tucci’s result to unbounded Xi
and gave a different proof.

The proof is based on identities

z + 1 = E

[(
1− z

z + 1
SY (z)Y

)−1
]
,

valid for every self-adjoint Y , and

t =

∫ ∞
0

(
1 +

1− t
t

SX∗X (t − 1)nyn
)−1

dνn(y),

obtained by substituting t = z + 1, Y = Π∗nΠn and using
multiplicativity of S(z).
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For R-diagonal free operators Xi , the limit distribution of (Π∗nΠn)1/n is
the same as the limit distribution of
((X ∗)nX n)1/n

and the same as the transformation of the Brown measure of X (i.e.
analogue of eigenvalue distribution) under the map z > |z|2.
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Open questions

What if Xi are not identically distributed?

Are the measure of (Π∗nΠn)1/n related to the Brown measure of Πn for
non-R diagonal free operators.

How can any of these results be extended to the case of block - free
matrices?
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