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May-Wigner Instability Scenario :

"Will a Large Complex System be Stable?"

Robert May, Lord May of Oxford, president of the Royal Society (2000-2005); Chief Scientific

Adviser to UK Government.

Will diversity make a food chain more or less stable?
The prevailing view in the mid-20th century was that diverse ecosystems have more
resilience to recover from events displacing the system from equilibrium and hence
are more stable. This ‘ecological intuition’ was challenged by Robert May in his
article in NATURE 238, 413 (1972) where he introduced a toy model for (in)stability
of a large ecological system.



May-Wigner Instability Scenario :

May suggested to consider a toy linear model for the dynamics of many interacting
species represented by a state vector x ∈ RN :

ẋ = −µx + Jx, µ > 0, x =

 x1

. . .
xN


Without interactions the part ẋ = −µx describes a simple exponential relaxation
of N uncoupled degrees of freedom xi with the same rate µ > 0 towards the stable
equilibrium x = 0.

A complicated interaction between dynamics of different degrees of freedom is
mimicked by a general real asymmetric N ×N random community matrix J with
mean zero and prescribed variance α2 of all entries. As a typical eigenvalue of J
with the largest real part grows as α

√
N the equilibrium at x = 0 becomes unstable

as long as µ < µc = α
√
N .

This scenario is known in the literature as the "May-Wigner instability" and despite
its oversimplifying and schematic nature attracted very considerable attention in
mathematical ecology and complex systems theory over the years.



Limitations of May-Wigner Instabilty Scenario:

• Typical evolution equations are generically nonlinear. The May’s analysis is
essentially based on a linearization around a given equilibrium (set at x = 0) ,
and hence tells us only about local asymptotic stability. It therefore does not allow
to describe what may happen with the system when it does become unstable.

• The model has only limited bearing for dynamics of populations operating out-
of-equilibrium. An instability does not necessarily imply lack of persistence:
populations could coexist thanks to limit cycles or chaotic attractors, which
typically originate from unstable equilibrium points. Interesting questions then
relate to classification of equilibria by stability, studying the basins of attraction,
and other features of global dynamics.

It is therefore desirable to have a generic nonlinear model which would be rich
enough to allow description of May-Wigner instability as a feature of its global phase
portrait, yet simple enough to allow analytical insights.



A Nonlinear Analogue of May-Wigner model:

We suggest a natural nonlinear extension of the May’s model to a system of N
coupled nonlinear autonomous random ODE’s:

ẋi = −µxi + fi(x1, . . . , xN), i = 1, . . . , N

where couplings fi(x) represent components of an N−dimensional vector field and
are chosen as a sum of a "gradient" and "solenoidal" contributions:

fi(x) = −∂V (x)
∂xi

+ 1√
N

∑N
j=1

∂Aij(x)

∂xj
, i = 1, . . . , N

where we require the fields Aij(x) to be antisymmetric: Aij = −Aji. To make the
model as simple as possible and amenable to a detailed mathematical analysis we
choose the scalar potential V (x) and the fields Aij(x) to be independent mean zero
Gaussian random fields, with additional assumptions of stationarity and isotropy
w.r.t. the variables x = (x1, . . . , xN)T reflected in the covariance structure

E{V (x1)V (x2)} = v2ΓV
(
|x1 − x2|2

)
E{Aij(x1)Anm(x2)} = a2ΓA

(
|x1 − x2|2

)
(δinδjm − δimδjn)

assuming certain smoothness of ΓV,A normalized such that Γ′′V (0) = Γ′′A(0) = 1.



Counting equilibria:

The standard analysis of autonomous ODE’s starts with finding equilibrium points
and classifying them by stability properties.

Ideally, we would like to have the full statistical characterization of the total number
Ntot(D) of all possible equilibria in a domain D of RN for the system of nonlinear
autonomous random ODE’s :

ẋi = −µxi + fi(x1, . . . , xN), i = 1, . . . , N

and further of the numberNst(D) of stable equilibria attracting the dynamics in their
vicinity.

Control parameters of the model are:
i) the ’May ratio’ of the relaxation rate to the characteristic value set by interaction:

m = µ/µc. µc =
√
N(a2 + v2)

ii) The ’non-potentiality’ parameter

τ = v2/(v2 + a2)

characterizing the ratio of variances of gradient and solenoidal components of
the field such that τ = 0 corresponds to purely solenoidal, and τ = 1 to purely
gradient descent dynamics.



Mean number of equilibria and the Elliptic Ensemble:

Using Kac-Rice approach we are able to count the mean values E{Ntot} and
E{Nst} of all possible equilibria and of all stable equilibria. The first one turns
out to be given by the following integral:

E{Ntot} = 1
mN

∫∞
−∞ 〈|det (x−X)|〉X

e−
Nt2

2 dt√
2π/N

where x = m+t
√
τ , and the brackets 〈...〉X denote the averaging over the ensemble

of random real asymmetric matrix X known as the Gaussian Elliptic Ensemble:

P(X) = CN(τ)e
− N

2(1−τ2)
[TrXXT−τTrX2]

, τ ∈ [0, 1]

One can see that the real Ginibre ensemble corresponds to purely solenoidal
dynamics with τ = 0, whereas GOE with τ = 1 corresponds to purely gradient
descent flow.
Similarly, the mean number of stable equilibria is given by

E{Nst} = 1
mN

∫∞
−∞ 〈det (x−X)χx−X〉X

e−
Nt2

2 dt√
2π/N

where χA = 1 if all eigenvalues ofA have negative real parts, and χA = 0 otherwise.



A Nonlinear Analogue of May-Wigner Instability as Topology Detrivialization:

By relating 〈|det (x−X)|〉X to the mean density of real eigenvalues of the elliptic
ensemble and using the work by Forrester & Nagao ’07 one can find asymptotics of
E{Ntot} forN � 1. Such an analysis reveals a topology detrivialization transition,
with the total number of equilibria abruptly changing from a single equilibrium for
µ > µc =

√
N(a2 + v2) to exponentially many equilibria as long as µ < µc.

Namely, for m = µ
µc

> 1 we have limN→∞E{Ntot} = 1 for any τ , whereas for
m = µ

µc
< 1 and any 0 ≤ τ ≤ 1 we obtain instead

E{Ntot} ≈ K(τ,m) eNΣtot(m), Σtot(m) = m2−1
2 − lnm > 0

where the pre-exponential factor has the form

K(τ,m) =


√

2(1+τ)
1−τ , for 0 ≤ τ < 1

4
√

N
π

∫√1−m2

0
e−t

2u2
dt for τ = 1− u2

N → 1

A qualitatively similar transition was reported recently in a model of randomly coupled
nonlinear ODE’s describing neural networks ( G. Wainrib & J. Touboul ’13).



Large Deviation Approach:
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The asymptotic behaviour of

DN(x) = 〈det(x δij −Xij)χx−X〉

for large N � 1 can be extracted by exploiting the large deviation ideas, see e.g.
Ben Arous & Zeitouni ’98. One finds

DN(x) ≈

{
AN(x)eNΦ1(x), x > 1 + τ

BN(x)e−N
2Iτ(x)+NΦ2(x), x < 1 + τ

where
Φ1(x) = 1

8τ

(
x−
√
x2 − 4τ

)2
+ ln

x+
√
x2−4τ
2 ,

whereas the explicit form of the functions AN(x), BN(x), Iτ(x) and Φ2(x) is not
actually needed for our purposes apart from the following facts:
(i) Iτ(x) defined for all x ≤ 1 + τ has its minimum at x = 1 + τ and at that point its
value is zero: Iτ(1 + τ) = 0.

(ii) The functions Φ1(x) defined for x > 1 + τ and Φ2(x) defined for x < 1 + τ
satisfy a continuity property limx→(1+τ)+0 Φ2(x) = limx→(1+τ)−0 Φ1(x) = τ

2 .



The mean number of stable equilibria in the topologically non-trivial phase:

Using the large deviation analysis, we were further able to show that the mean
number of stable equilibria satisfies asymptotically:

limN→∞
1
N lnE{Nst} = Σst(m; τ) = − lnm+ (m− 1)− (1−m)2

2τ

everywhere in the ’topologically non-trivial’ quadrant 0 < m < 1, 0 ≤ τ ≤ 1 of the
(m, τ) plane. Moreover, there exists a curve τB(m) given explicitly by

τB(m) = − (1−m)2

2(1−m+lnm)

such that for a given m < 1 and τ < τB(m) the ’complexity function’ Σst(m; τ) is
negative, implying that the mean number of stable equilibria is exponentially small.
This in turn implies that for such a regime the probability of having one or more
stable equilibria is exponentially small, so in a typical realization of random ODE’s
there are simply no stable equilibria at all, i.e. Nst = 0. It is natural to name this
type of the phase portrait the ’absolute instability’ regime.

In contrast, for τ > τB(m) the complexity function Σst(m; τ) is positive so that stable
equilibria are exponentially abundant. Still, for any m < 1, the stable equilibria are
exponentially rare among all possible equilibria. One may call the associated type of
the phase portrait as the ’relative instability’ regime.



Complexity of stable equilibria in the topologically non-trivial phase:
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Σst < 0 below the line τB(m) implies that the probability of having one or more stable equilibria

is exponentially small though the total number of equilibria is exponentially big, hence ’absolute
instabilty’ regime. Above the line stable equilibria are exponentially abundant but still are only

vanishing fraction among all equilibria.



Summary :

• As a generalization of the linear model by Robert May we suggest to consider
an autonomous system of N nonlinear differential equations coupled by random
Gaussian fields:

ẋ = −µx + f(x)

• The problem of counting (on average) all possible equilibria, as well as of only
stable equilibria can be mapped onto the problem of evaluating the expected value
of the objects related to characteristic polynomial of random matrices from ’real
elliptic ensemble’. The asymptotics of those objects forN � 1 can be efficiently
studied by either ’large deviation’ techniques, or, in particular instances, by relating
to real eigenvalues of elliptic matrices.

• The asymptotic analysis reveals that when the magnitude of random
couplings increases with respect to the relaxation rate µ a single stable
equilibrium is replaced by exponentially many equilibria via a sharp "topology
(de)trivialization" transition. However, immediately after the transition none of
those equilibria are stable, unless the dynamics is of purely gradient descent
type. Further increase in random couplings gives rise to exponentially many stable
equilibria, unless the the dynamics is purely divergence-free, or ’solenoidal’.



Open questions:

• It is certainly important to further classify equilibria by ’index’ , that is to find how
many equilibria with a given number of unstable directions exist on average.

• Fluctuations in the number of equilibria of a given ’index’ is an interesting and
difficult open problem.

• Universality of the emerging picture for similar types of models (e.g. ’ non-
relaxational spherical model dynamics’ (Cugliandolo et al. ’96), random neural
networks (Sompolinsky et al. ’88; Weinrib and Touboul ’13)

• Completely open are issues related to clarifying the global dynamical behaviour
for a generic non-potential random flow, existence & stability of limit cycles,
emergence of chaotic dynamics and associated Lyapunov exponents, glassy and
non-equilibrium effects like ’aging’, etc.


