Komi Science Center of Ural Branch of RAS

On the local laws for product of non-Hermitian random matrices

A. Tikhomirov
e-mail: tikhomirov@dm.komisc.ru
joint work with F. Götze and A. Naumov

Bielefeld 29.08.2018

Random matrices

- $\mathbf{X}^{(q)}=\left[X_{j k}^{(q)}\right]_{j, k=1}^{n}, q=1, \ldots, m, m \geq 1$ - independent random matrices
- Conditions (C0):

1. $X_{j k}^{(q)}, 1 \leq j, k \leq n, q=1, \ldots, m$, are independent (identically) distributed.
2. $\mathbb{E} X_{j k}^{(q)}=0, \quad \mathbb{E}\left|X_{j k}^{(q)}\right|^{2}=1$.

Random matrices

- $\mathbf{X}^{(q)}=\left[X_{j k}^{(q)}\right]_{j, k=1}^{n}, q=1, \ldots, m, m \geq 1$ - independent random matrices
- Conditions (C0):

1. $X_{j k}^{(q)}, 1 \leq j, k \leq n, q=1, \ldots, m$, are independent (identically) distributed.
2. $\mathbb{E} X_{j k}^{(q)}=0, \quad \mathbb{E}\left|X_{j k}^{(q)}\right|^{2}=1$.

- Define $\mathbf{X}:=n^{-m / 2} \prod_{q=1}^{m} \mathbf{X}^{(q)}$ and introduce its eigenvalues

$$
\lambda_{1}(\mathbf{X}), \ldots, \lambda_{n}(\mathbf{X}) .
$$

- ESD: for any $A \subset \mathbb{C}$

$$
\mu_{n}^{(m)}(A):=\frac{1}{n} \sum_{k=1}^{n} I\left[\lambda_{k}(\mathbf{X}) \in A\right]
$$

Circular law and its extension

- Let $\xi \sim$ Uniform $(|z| \leq 1)$. Denote by $p^{(m)}(z)$ the density function of ξ^{m} :

$$
p^{(m)}(z)=\frac{|z|^{\frac{2}{m}-2}}{\pi m} I[|z| \leq 1], \quad z \in \mathbb{C},
$$

- Theorem. Assume ($\mathbf{C 0}$). In probability or a.s.

$$
\mu_{n}^{(m)} \xrightarrow{w} \mu^{(m)}, \quad n \rightarrow \infty,
$$

where $d \mu^{(m)}(z)=p^{(m)}(z) d A(z)$.
Goetze and Tikhomirov (2010), Soshnikov and O'Rourke (2010).

In the case $m=1$

- Ginibre (1965)
- Girko (1984)
- Bai (1997)
- Götze and Tikhomirov (2007)
-Pan and Zhou (2007)
- Götze and Tikhomirov (2010)
- Tao and Vu (2010)

Circular law

Figure: On the left: spectra of \mathbf{X} with i.i.d. Gaussian entries. On the right: spectra of \mathbf{X} with i.i.d. ± 1 entries.

Products of random matrices

Figure: $n=3000, m=2$
Figure: $n=3000, m=10$

Local law for products

$$
\begin{equation*}
\frac{1}{\pi r^{2}} \mu_{n}\left(B\left(z_{0}, r\right)\right)=\frac{1}{\pi r^{2}} \int_{B\left(z_{0}, r\right)} p^{(m)}(z) d A(z)+\frac{R_{n}}{\pi r^{2}} \tag{1}
\end{equation*}
$$

where for fixed $r>0$

$$
\lim _{n \rightarrow \infty} R_{n}=0
$$

and $B\left(z_{0}, r\right):=\left\{z:\left|z-z_{0}\right| \leq r\right\}$.

Local law for products

$$
\begin{equation*}
\frac{1}{\pi r^{2}} \mu_{n}\left(B\left(z_{0}, r\right)\right)=\frac{1}{\pi r^{2}} \int_{B\left(z_{0}, r\right)} p^{(m)}(z) d A(z)+\frac{R_{n}}{\pi r^{2}} \tag{1}
\end{equation*}
$$

where for fixed $r>0$

$$
\lim _{n \rightarrow \infty} R_{n}=0
$$

and $B\left(z_{0}, r\right):=\left\{z:\left|z-z_{0}\right| \leq r\right\}$.

- It is of interest to investigate the case of smaller r,

$$
r=r(n) \rightarrow 0 \text { as } n \rightarrow \infty
$$

where the number of eigenvalues cease to be macroscopically large.

Local law for products

$$
\begin{equation*}
\frac{1}{\pi r^{2}} \mu_{n}\left(B\left(z_{0}, r\right)\right)=\frac{1}{\pi r^{2}} \int_{B\left(z_{0}, r\right)} p^{(m)}(z) d A(z)+\frac{R_{n}}{\pi r^{2}} \tag{1}
\end{equation*}
$$

where for fixed $r>0$

$$
\lim _{n \rightarrow \infty} R_{n}=0
$$

and $B\left(z_{0}, r\right):=\left\{z:\left|z-z_{0}\right| \leq r\right\}$.

- It is of interest to investigate the case of smaller r,

$$
r=r(n) \rightarrow 0 \text { as } n \rightarrow \infty
$$

where the number of eigenvalues cease to be macroscopically large.

- $m=1$: P. Bourgade, H.-T. Yau and J. Yin (PTRF, 2014, 3 parts); Tao and Vu (Annals of Prob., 2015), J. Alt, L. Erdös, T. Krüger (Ann. Appl. Probab., 2018)
$m \geq 1$ Y. Nemish (EJP, 2017).

Local law for products

- Let $z_{0}:\left|\left|z_{0}\right|-1\right| \geq \tau>0$ and $f(z)$ be a smooth non-negative function with compact support, such that $\|f\| \leq C,\left\|f^{\prime}\right\| \leq n^{C}$ for some constant C independent of n. For any $a \in(0,1 / 2)$ we define smoothed indicator

$$
f_{z_{0}}(z):=n^{2 a} f\left(\left(z-z_{0}\right) n^{a}\right) .
$$

Local law for products

- Let $z_{0}:\left|\left|z_{0}\right|-1\right| \geq \tau>0$ and $f(z)$ be a smooth non-negative function with compact support, such that $\|f\| \leq C,\left\|f^{\prime}\right\| \leq n^{C}$ for some constant C independent of n. For any $a \in(0,1 / 2)$ we define smoothed indicator

$$
f_{z_{0}}(z):=n^{2 a} f\left(\left(z-z_{0}\right) n^{a}\right) .
$$

- Theorem[Goetze, Naumov, T.] Let $m \geq 1$. Assume (C0) and $\max _{j, k, q} \mathbb{E}\left|X_{j k}^{(q)}\right|^{4+\delta}<\infty$ for some $\delta>0$.
Then for any $Q>0$ there exists $c>0$ such that with probability at least $1-n^{-Q}$:

$$
\left|\frac{1}{n} \sum_{j=1}^{n} f_{z_{0}}\left(\lambda_{j}\right)-\int_{\mathbb{C}} f_{z_{0}}(z) p^{(m)}(z) d A(z)\right| \leq \frac{q(n)}{n^{1-2 a}}\|\Delta f\|_{L^{1}}
$$

where $q(n)<c \log ^{4} n$.

Local law for products

- Let $z_{0}:\left|\left|z_{0}\right|-1\right| \geq \tau>0$ and $f(z)$ be a smooth non-negative function with compact support, such that $\|f\| \leq C,\left\|f^{\prime}\right\| \leq n^{C}$ for some constant C independent of n. For any $a \in(0,1 / 2)$ we define smoothed indicator

$$
f_{z_{0}}(z):=n^{2 a} f\left(\left(z-z_{0}\right) n^{a}\right) .
$$

- Theorem[Goetze, Naumov, T.] Let $m \geq 1$. Assume (C0) and $\max _{j, k, q} \mathbb{E}\left|X_{j k}^{(q)}\right|^{4+\delta}<\infty$ for some $\delta>0$.
Then for any $Q>0$ there exists $c>0$ such that with probability at least $1-n^{-Q}$:

$$
\left|\frac{1}{n} \sum_{j=1}^{n} f_{z_{0}}\left(\lambda_{j}\right)-\int_{\mathbb{C}} f_{z_{0}}(z) p^{(m)}(z) d A(z)\right| \leq \frac{q(n)}{n^{1-2 a}}\|\Delta f\|_{L^{1}},
$$

where $q(n)<c \log ^{4} n$.

- Previous results with $q(n) \leq n^{\varepsilon}$ under condition:

$$
\exists \theta>0: \max _{1 \leq q \leq m} \max _{1 \leq j, k \leq n} \mathbb{P}\left(\left|X_{j k}^{(q)}\right| \geq t\right) \leq \theta^{-1} e^{-t^{\theta}}
$$

(or existence of sufficient number of moments)+ Tao, Vu 4-moment theorem.

Products of random matrices

Figure: $n=10000, a=2 / n^{\frac{1}{5}}$

Products of random matrices

Figure: $n=10000, a=2 / n^{\frac{1}{4}}$

Products of random matrices

Rademacher distribution
$n=10000$
$\varepsilon=\frac{2}{n^{1 / 3}}$,

Figure: $n=10000, a=2 / n^{\frac{1}{3}}$

Products of random matrices

Figure: $n=10000, a=2 / n^{\frac{1}{2}}$

Linearization

- Consider block-matrix

$$
\mathbf{V}:=\left[\begin{array}{ccccc}
\mathbf{O} & \mathbf{X}^{(k)} & \mathbf{O} & \cdots & \mathbf{O} \\
\mathbf{O} & \mathbf{O} & \mathbf{X}^{(2)} & \cdots & \mathbf{O} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\mathbf{O} & \mathbf{O} & \cdots & \mathbf{O} & \mathbf{X}^{(n-1)} \\
\mathbf{X}^{(n)} & \mathbf{O} & \cdots & \mathbf{O} & \mathbf{O}
\end{array}\right]
$$

Note that \mathbf{V}^{m} is equal to diagonal matrix

$$
\begin{array}{cccc}
\prod_{k=1}^{m} \mathbf{X}^{(1)} & \mathbf{O} & \ldots & \mathbf{O} \\
\mathbf{O} & \prod_{k=2}^{m} \mathbf{X}^{(k)} \mathbf{X}^{(1)} & \mathbf{O} & \cdots \\
\ldots & \ldots & \cdots & \cdots \\
\mathbf{O} & \ldots & \mathbf{X}^{(m-1)} \mathbf{X}^{(m)} \prod_{k=1}^{m-2} \mathbf{X}^{(k)} & \mathbf{O} \\
\mathbf{X}^{(n)} & \mathbf{O} & \ldots & \mathbf{X}^{(m)} \prod_{k=1}^{m-1} \mathbf{X}^{(k)}
\end{array}
$$

and has eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$ with multiplicity m.

Logarithmic potential and Stieltjes transform

- Logarithmic potential of ν is given by

$$
U_{\nu}(z):=-\int_{\mathbb{C}} \log |z-w| \nu(d w), \quad z \in \mathbb{C} .
$$

Logarithmic potential and Stieltjes transform

- Logarithmic potential of ν is given by

$$
U_{\nu}(z):=-\int_{\mathbb{C}} \log |z-w| \nu(d w), \quad z \in \mathbb{C} .
$$

- Let F be an arbitrary d.f. on \mathbb{R}. The Stieltjes transform of F is given by

$$
m_{F}(z)=\int_{\mathbb{R}} \frac{1}{x-z} d F(x), \quad z \in \mathbb{C}
$$

From logarithmic potential to Stieltjes transform

- Assume that

$$
U_{\nu}(z)=-\int_{\mathbb{R}} \log |x| d F(z, x), \quad z \in \mathbb{C}
$$

where $F(z, x), x \in \mathbb{R}$, is some d.f. for any z.

From logarithmic potential to Stieltjes transform

- Assume that

$$
U_{\nu}(z)=-\int_{\mathbb{R}} \log |x| d F(z, x), \quad z \in \mathbb{C}
$$

where $F(z, x), x \in \mathbb{R}$, is some d.f. for any z.

- Let us define the following function

$$
g_{F}(z, v):=\int_{-\infty}^{\infty} \log |x-i v| d F(z, x), \quad U_{\nu}(z)=-g_{F}(z, 0)
$$

By the Newton-Leibniz formula

$$
g_{F}(z, M)-g_{F}(z, 0)=\int_{0}^{M} \operatorname{Im} m_{F}(z, i v) d v .
$$

From logarithmic potential to Stieltjes transform

- Green's formula: For any compactly supported $f \in C^{2}(\mathbb{C})$

$$
\int f(z) \nu(d z)=-\frac{1}{2 \pi} \int \Delta f(z) U_{\nu}(z) d A(z)
$$

From logarithmic potential to Stieltjes transform

- Green's formula: For any compactly supported $f \in C^{2}(\mathbb{C})$

$$
\int f(z) \nu(d z)=-\frac{1}{2 \pi} \int \Delta f(z) U_{\nu}(z) d A(z)
$$

- Let μ_{1} and μ_{2} be arbitrary probability measures on \mathbb{C} and $f \in C_{0}^{2}(\mathbb{C})$. Then

$$
\begin{aligned}
\int f(z) d\left(\mu_{1}-\mu_{2}\right) & =\frac{1}{2 \pi} \int \Delta f(z) \int_{0}^{M}\left[\operatorname{Im} m_{F_{2}}(z, i v)-\operatorname{Im} m_{F_{1}}(z, i v)\right] d v d A(z) \\
& -\frac{1}{2 \pi} \int \Delta f(z)\left[g_{F_{2}}(z, M)-g_{F_{1}}(z, M)\right] d A(z) .
\end{aligned}
$$

Moreover,

$$
g_{F_{k}}(z, M)=\log M+r_{M, k}, \quad\left|r_{M, k}\right| \leq \frac{1}{M^{2}} \int_{-\infty}^{\infty} x^{2} d F_{k}(z, x), \quad k=1,2 .
$$

- Introduce the following matrix

$$
\mathbf{V}(z):=\left[\begin{array}{cc}
\mathbf{O} & \mathbf{V}-z \mathbf{I} \\
\mathbf{V}^{*}-\bar{z} \mathbf{I} & \mathbf{O}
\end{array}\right],
$$

and let $s_{j}(z):=s_{j}(\mathbf{X}-z \mathbf{I}), j=1, \ldots, n$, be the singular values of $\mathbf{X}-z \mathbf{I}$.

- Introduce the following matrix

$$
\mathbf{V}(z):=\left[\begin{array}{cc}
\mathbf{O} & \mathbf{V}-z \mathbf{I} \\
\mathbf{V}^{*}-\bar{z} \mathbf{I} & \mathbf{O}
\end{array}\right],
$$

and let $s_{j}(z):=s_{j}(\mathbf{X}-z \mathbf{I}), j=1, \ldots, n$, be the singular values of $\mathbf{X}-z \mathbf{I}$.

- Then $\pm s_{j}(z), j=1, \ldots, n m$, are the eigenvalues of $\mathbf{V}(z)$. Let

$$
F_{n}(z, x):=\frac{1}{2 n} \sum_{j=1}^{n} I\left[s_{j}(z) \leq x\right]+\frac{1}{2 n} \sum_{j=1}^{n} I\left[-s_{j}(z) \leq x\right] .
$$

- Introduce the following matrix

$$
\mathbf{V}(z):=\left[\begin{array}{cc}
\mathbf{O} & \mathbf{V}-z \mathbf{I} \\
\mathbf{V}^{*}-\bar{z} \mathbf{I} & \mathbf{O}
\end{array}\right],
$$

and let $s_{j}(z):=s_{j}(\mathbf{X}-z \mathbf{I}), j=1, \ldots, n$, be the singular values of $\mathbf{X}-z \mathbf{I}$.

- Then $\pm s_{j}(z), j=1, \ldots, n m$, are the eigenvalues of $\mathbf{V}(z)$. Let

$$
F_{n}(z, x):=\frac{1}{2 n} \sum_{j=1}^{n} I\left[s_{j}(z) \leq x\right]+\frac{1}{2 n} \sum_{j=1}^{n} I\left[-s_{j}(z) \leq x\right] .
$$

- Following Girko we use hermitization trick and write

$$
U_{\mu_{n}}(z)=-\frac{1}{2 n} \log |\operatorname{det} \mathbf{V}(z)|=-\int_{-\infty}^{\infty} \log |x| d F_{n}(z, x)
$$

Moreover, there is d.f. $G(z, x)$:

$$
U_{\mu^{(1)}}(z)=-\int_{-\infty}^{\infty} \log |x| d G(z, x)
$$

The Stieltjes transform of the distribution $G(w, z)$ we denote by $s(w, z)$. It is well-known that

$$
\begin{equation*}
s(z, w)=-\frac{w+s(z, w)}{(w+s(z, w))^{2}-|z|^{2}} \tag{2}
\end{equation*}
$$

Local law for singular values of shifted matrices

- The Stieltjes transform of F_{n} may be rewritten as follows

$$
m_{n}(z, w)=\int_{-\infty}^{\infty} \frac{d F_{n}(z, \lambda)}{\lambda-w}=\frac{1}{2 n m} \operatorname{Tr}(\mathbf{W}-w \mathbf{I})^{-1}=: \frac{1}{2 n m} \operatorname{Tr} \mathbf{R}(w, z)
$$

where $w=u+i v, v \geq 0$ (i.e. $w \in \mathbb{C}^{+}$) and

$$
\mathbf{W}-w \mathbf{I}=\left[\begin{array}{cc}
-w \mathbf{I} & \mathbf{V}(z) \tag{3}\\
\mathbf{V}^{*}(z) & -w \mathbf{I}
\end{array}\right]
$$

. We introduce the functions, for $\nu=1, \ldots, 2 m$,

$$
m_{n}^{(\nu)}(w, z)=\frac{1}{n} \sum_{j=(\nu-1) m+1}^{\nu m} R_{j j}(w, z)
$$

Note that

$$
m_{n}(w, z)=\frac{1}{2 m} \sum_{\nu=1}^{2 m} m_{n}^{(\nu)}(w, z)
$$

Local circular law

- Introduce the notations for $\nu=1, \ldots, 2 m$

$$
\Lambda^{(\nu)}=m_{n}^{(\nu)}(w, z)-s(w, z),
$$

and

$$
\mathbf{\Lambda}_{n}=\left(\Lambda_{n}^{(1)}, \ldots, \Lambda^{(2 m)}\right)^{T} .
$$

- Let $a=-s^{-2}(w, z)$ and $b=\frac{|z|^{2}}{\mid w+s\left(w,\left.z\right|^{2}\right.}$. Introduce matrices

$$
\mathbf{A}_{11}:=\left[\begin{array}{cccccc}
a & 0 & 0 & \cdots & 0 & b \\
b & a & 0 & \cdots & 0 & 0 \\
0 & b & a & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & a & 0 \\
0 & 0 & 0 & \cdots & b & a
\end{array}\right]
$$

Local circular law

- and

$$
\mathbf{A}_{12}:=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \\
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

- We define now matrix

$$
\mathbf{A}:=\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{12} & \mathbf{A}_{11}^{T}
\end{array}\right]
$$

Local circular law

- Using Shur complement formula, we may show that

$$
\mathbf{A} \boldsymbol{\Lambda}_{n}=\mathbf{r}_{n}+\frac{1}{s(w, z)} \mathbf{T}_{n}
$$

, where

$$
\left\|\mathbf{r}_{n}\right\| \leq C(|z|, w, s(w, z))\left\|\boldsymbol{\Lambda}_{\mathbf{n}}\right\|^{\mathbf{2}}
$$

and vector \mathbb{T}_{n} defined as follows

$$
T_{n}^{(\nu)}:=\frac{1}{n} \sum_{j=1}^{n} \varepsilon_{j_{\nu}} R_{j_{\nu} j_{\nu}}, \quad j_{\nu}:=(\nu-1) m+j .
$$

The error term $\varepsilon_{j_{\nu}}$ are defined in standard way via linear and quadratic of q-th row and q-th column of matrices $\mathbf{X}^{(q)}$.

Local law for singular values of shifted matrices

- Let

$$
v_{0}:=\frac{A \log n}{n}, \quad V_{0} \gg 1
$$

and define the following region in the complex plane

$$
\mathcal{D}(z):=\left\{v_{0} \leq v \leq V_{0}, u \in \operatorname{supp} G\right\},
$$

Local law for singular values of shifted matrices

- Let

$$
v_{0}:=\frac{A \log n}{n}, \quad V_{0} \gg 1
$$

and define the following region in the complex plane

$$
\mathcal{D}(z):=\left\{v_{0} \leq v \leq V_{0}, u \in \operatorname{supp} G\right\},
$$

- Theorem. Let $m \geq 1$. Assume ($\mathbf{C 0}$) and $\max _{j, k, q} \mathbb{E}\left|X_{j k}^{(q)}\right|^{4+\delta}<\infty$ for some $\delta>0$.
Let $V_{0}>0$ be some constant. For any $Q>0$ there exist positive constants A and C depending on V_{0}, δ, Q such that

$$
\mathbb{P}\left(\left|m_{n}(z, u+i v)-s(z, u+i v)\right| \geq \frac{C \log n}{n v}\right) \geq 1-n^{-Q}
$$

for all $u+i v \in \mathcal{D}(z)$

Stein's approach to estimation of $\mathbb{E}\left\|\mathbf{T}_{n}\right\|^{p}$ for $p \sim \log n$

- Let \mathfrak{M}_{j} be σ-subalgebras of \mathfrak{M} and denote $\mathbb{E}_{j}(\cdot):=\mathbb{E}\left(\cdot \mid \mathfrak{M}^{(j)}\right)$.

Stein's approach to estimation of $\mathbb{E}\left\|\mathbf{T}_{n}\right\|^{p}$ for $p \sim \log n$

- Let \mathfrak{M}_{j} be σ-subalgebras of \mathfrak{M} and denote $\mathbb{E}_{j}(\cdot):=\mathbb{E}\left(\cdot \mid \mathfrak{M}^{(j)}\right)$.
- Assume that $\xi_{j}, f_{j}, j=1, \ldots, n$, are \mathfrak{M}-measurable r.v. and

$$
\begin{equation*}
\mathbb{E}_{j}\left(\xi_{j}\right)=0 \tag{4}
\end{equation*}
$$

Stein's approach to estimation of $\mathbb{E}\left\|\mathbf{T}_{n}\right\|^{p}$ for $p \sim \log n$

- Let \mathfrak{M}_{j} be σ-subalgebras of \mathfrak{M} and denote $\mathbb{E}_{j}(\cdot):=\mathbb{E}\left(\cdot \mid \mathfrak{M}^{(j)}\right)$.
- Assume that $\xi_{j}, f_{j}, j=1, \ldots, n$, are \mathfrak{M}-measurable r.v. and

$$
\begin{equation*}
\mathbb{E}_{j}\left(\xi_{j}\right)=0 \tag{4}
\end{equation*}
$$

- We consider the following statistic:

$$
T_{n}^{*}:=\sum_{j=1}^{n} \xi_{j} f_{j}+\mathcal{R}
$$

where \mathcal{R} is some \mathfrak{M} measurable function.

Stein's approach

- Let \widehat{f}_{j} be an arbitrary $\mathfrak{M}^{(j)}$-measurable r.v. and

$$
T_{n}^{(j)}:=\mathbb{E}_{j}\left(T_{n}^{*}\right)
$$

Stein's approach

- Let \widehat{f}_{j} be an arbitrary $\mathfrak{M}^{(j)}$-measurable r.v. and

$$
T_{n}^{(j)}:=\mathbb{E}_{j}\left(T_{n}^{*}\right)
$$

- Lemma. For all $p \geq 2$ there exists some absolute constant C such that

$$
\mathbb{E}\left|T_{n}^{*}\right|^{p} \leq C^{p}\left(\mathcal{A}^{p}+p^{\frac{p}{2}} \mathcal{B}^{\frac{p}{2}}+p^{p} \mathcal{C}+p^{p} \mathcal{D}+\mathbb{E}|\mathcal{R}|^{p}\right)
$$

where

$$
\begin{aligned}
\mathcal{A} & :=\mathbb{E}^{\frac{1}{p}}\left(\sum_{j=1}^{n} \mathbb{E}_{j}\left|\xi_{j}\left(f_{j}-\widehat{f}_{j}\right)\right|\right)^{p}, \\
\mathcal{B} & :=\mathbb{E}^{\frac{2}{p}}\left(\sum_{j=1}^{n} \mathbb{E}_{j}\left(\left|\xi_{j}\left(T_{n}^{*}-T_{n}^{(j)}\right)\right|| | \widehat{f}_{j} \mid\right)^{\frac{p}{2}},\right. \\
\mathcal{C} & :=\sum_{j=1}^{n} \mathbb{E}\left|\xi_{j}\right|\left|T_{n}^{*}-\widetilde{T}_{n}^{(j)}\right|^{p-1}\left|\widehat{f_{j}}\right|, \\
\mathcal{D} & :=\sum_{j=1}^{n} \mathbb{E}\left|\xi_{j}\right|\left|f-\widehat{f}_{j}\right|\left|T_{n}^{*}-T_{n}^{(j)}\right|^{p-1} .
\end{aligned}
$$

Stein's approach, Toy example

- Let $\mathbb{E} X_{j}^{2}=1$ and

$$
\begin{equation*}
T_{n}^{*}=\sum_{j=1}^{n} a_{j} X_{j} \tag{5}
\end{equation*}
$$

$\xi_{j}:=X_{j}, f_{j}:=a_{j}=: \widehat{f_{j}}, \mathcal{R}=0$. It is easy to see that $T_{n}^{(j)}=\sum_{k \neq j} a_{k} X_{k}$.

Stein's approach, Toy example

- Let $\mathbb{E} X_{j}^{2}=1$ and

$$
\begin{equation*}
T_{n}^{*}=\sum_{j=1}^{n} a_{j} X_{j} \tag{5}
\end{equation*}
$$

$\xi_{j}:=X_{j}, f_{j}:=a_{j}=: \widehat{f_{j}}, \mathcal{R}=0$. It is easy to see that $T_{n}^{(j)}=\sum_{k \neq j} a_{k} X_{k}$.

$$
\mathbb{E}\left|T_{n}^{*}\right|^{p} \leq C^{p}\left(\mathcal{A}^{p}+p^{\frac{p}{2}} \mathcal{B}^{\frac{p}{2}}+p^{p} \mathcal{C}+p^{p} \mathcal{D}+\mathbb{E}|\mathcal{R}|^{p}\right)
$$

where

$$
\begin{aligned}
& \mathcal{A}=\mathbb{E}^{\frac{1}{p}}\left(\sum_{j=1}^{n} \mathbb{E}_{j}\left|\xi_{j}\left(f_{j}-\widehat{f}_{j}\right)\right|\right)^{p}=0, \\
& \mathcal{B}=\mathbb{E}^{\frac{2}{p}}\left(\sum_{j=1}^{n} \mathbb{E}_{j}\left(\left|\xi_{j}\left(T_{n}^{*}-T_{n}^{(j)}\right)\right|\right)\left|\widehat{f}_{j}\right|\right)^{\frac{p}{2}}=\sum_{j=1}^{n} a_{j}^{2}, \\
& \mathcal{C}=\sum_{j=1}^{n} \mathbb{E}\left|\xi_{j}\right|\left|T_{n}^{*}-T_{n}^{(j)}\right|^{p-1}\left|\widehat{f}_{j}\right|=\sum_{j=1}^{n} a_{j}^{p} \mathbb{E}\left|X_{j}\right|^{p}, \\
& \mathcal{D}=\sum_{j=1}^{n} \mathbb{E}\left|\xi_{j}\right|\left|f-\widehat{f}_{j}\right|\left|T_{n}^{*}-T_{n}^{(j)}\right|^{p-1}=0 .
\end{aligned}
$$

Stein's approach, for matrices

- $\xi_{j}:=n^{-1}\left(\varepsilon_{j 1}+\varepsilon_{j 2}+\varepsilon_{j 3}\right), f_{j}:=\mathbf{R}_{j j}, \mathcal{R}=n^{-1} \sum_{j} \varepsilon_{j 4} \mathbf{R}_{j j}$.

Stein's approach, for matrices

- $\xi_{j}:=n^{-1}\left(\varepsilon_{j 1}+\varepsilon_{j 2}+\varepsilon_{j 3}\right), f_{j}:=\mathbf{R}_{j j}, \mathcal{R}=n^{-1} \sum_{j} \varepsilon_{j 4} \mathbf{R}_{j j}$.
- For all $p \geq 2$ there exists some absolute constant C such that

$$
\mathbb{E}\left|T_{n}^{*}\right|^{p} \leq C^{p}\left(\mathcal{A}^{p}+p^{\frac{p}{2}} \mathcal{B}^{\frac{p}{2}}+p^{p} \mathcal{C}+p^{p} \mathcal{D}+\mathbb{E}|\mathcal{R}|^{p}\right)
$$

where

$$
\begin{aligned}
& \mathcal{A}=\mathbb{E}^{\frac{1}{p}}\left(\sum_{j=1}^{n} \mathbb{E}_{j}\left|\xi_{j}\left(f_{j}-\widehat{f}_{j}\right)\right|\right)^{p} \sim \frac{1}{(n v)}, \\
& \mathcal{B}=\mathbb{E}_{j \alpha} \sim(n v)^{-1 / 2}, f_{j}-\widehat{f}_{j} \sim(n v)^{-1 / 2} \\
& \left.\quad \sum_{j=1}^{n} \mathbb{E}_{j}\left(\left|\xi_{j}\left(T_{n}^{*}-T_{n}^{(j)}\right)\right|\right)\left|\widehat{f}_{j}\right|\right)^{\frac{p}{2}} \sim \frac{1}{(n v)^{2}}, \\
& \mathcal{C}=\sum_{j=1}^{n} \mathbb{E}\left|\xi_{j} \| T_{n}^{*}-T_{n}^{(j)}\right|^{p-1}\left|\widehat{f}_{j}\right| \sim \frac{C^{p}}{(n v)^{p}}, \\
& \mathcal{D}=\sum_{j=1}^{n} \mathbb{E}\left|\xi_{j} \| f-\widehat{f}_{j}\right|\left|T_{n}^{*}-T_{n}^{(j)}\right|^{p-1} \sim \frac{C^{p}}{(n v)^{p}} .
\end{aligned}
$$

Stein's approach, Toy example

- Let $\mathbb{E} X_{j}^{2}=1$ and

$$
\begin{equation*}
T_{n}^{*}=\sum_{j=1}^{n} a_{j} X_{j} . \tag{6}
\end{equation*}
$$

$\left(\xi_{j}:=X_{j}, f_{j}:=a_{j}=: \widehat{f_{j}}\right)$. It is easy to see that $T_{n}^{(j)}=\sum_{k \neq j} a_{k} X_{k}$.

Stein's approach, Toy example

- Let $\mathbb{E} X_{j}^{2}=1$ and

$$
\begin{equation*}
T_{n}^{*}=\sum_{j=1}^{n} a_{j} X_{j} . \tag{6}
\end{equation*}
$$

$\left(\xi_{j}:=X_{j}, f_{j}:=a_{j}=: \widehat{f}_{j}\right)$. It is easy to see that $T_{n}^{(j)}=\sum_{k \neq j} a_{k} X_{k}$.

- For all $p \geq 2$ there exists some absolute constant C such that

$$
\left.\mathbb{E}\left|T_{n}^{*}\right|^{p} \leq C^{p} p^{\frac{p}{2}}\left(\sum_{j=1}^{n} a_{j}^{2}\right)^{\frac{p}{2}}+C^{p} p^{p} \sum_{j=1}^{n} a_{j}^{p} \mathbb{E}\left|X_{j}\right|^{p}\right)
$$

How to reduce the condition $\mathbb{E}\left|X_{j k}\right|^{4+\delta}<\infty$ with $\delta>0$ to $\delta=0$.

- Define
$A_{j k}:=\left\{\left|X_{j k}\right|<n^{\frac{1}{4}} \log n\right\}, B_{j k}:=A_{j k}^{c}=\left\{n^{\frac{1}{4}} \log n \leq\left|X_{j k}\right| \leq n^{\frac{1}{2}} R^{-1}\right\}$,
and $p_{n}:=\mathbb{P}\left(B_{11}\right)$. Moreover $p_{n} \leq \beta_{4} n^{-1} \log ^{-4} n$.
- Define $\mathbf{L}:=\mathbf{L}(\mathbf{X}):=\left[L_{j k}\right]_{j, k=1}^{n}$, where $L_{j k}:=I\left[A_{j k}\right]$. Let $\xi_{j k}$ and $\eta_{j k}, j, k=1, \ldots, n$ be mutually independent and $\mathbb{P}\left(\xi_{j k} \in \cdot\right)=$ $\mathbb{P}\left(X_{j k} \in \cdot \mid A_{j k}\right)$ and $\mathbb{P}\left(\eta_{j k} \in \cdot\right)=\mathbb{P}\left(X_{j k} \in \cdot \mid B_{j k}\right)$.
- Define $\mathbf{X}(\mathbf{L}):=\left[X_{j k}\left(L_{j k}\right)\right]_{j, k=1}^{n}$, where

$$
X_{j k}\left(L_{j k}\right):=\left\{\begin{array}{l}
\xi_{j k}, \text { if } L_{j k}=1 \\
\eta_{j k}, \text { if } L_{j k}=0
\end{array}\right.
$$

Local semicircle law, $z=0.4$ moments.

- Let $r:=r_{n}:=\log ^{3} n$. We say that \mathbf{L} is r-admissible, if \mathbf{L} can be represented as follows (up to the permutation of rows and columns)

$$
\mathbf{L}=\left[\begin{array}{cccc}
\mathbf{A}_{1} & 1 \ldots & 1 \ldots & 1 \ldots \\
1 \ldots & \mathbf{A}_{2} & \ldots & 1 \ldots \\
\ldots & \ldots & \ldots & \\
1 \ldots & 1 \ldots & \mathbf{A}_{L} & 1 \ldots \\
1 \ldots & 1 \ldots & \ldots & 1 \ldots \\
\ldots & \ldots & \ldots & \\
1 \ldots & 1 \ldots & \ldots & 1 \ldots
\end{array}\right]
$$

where \mathbf{A}_{ν} random Hermitian of size $r_{\nu} \leq r, \nu=1, \ldots, L$. Here $r_{1}+\ldots+r_{L} \leq \log ^{3} n \max \left(1, n^{2} p_{n}\right)$. Moreover, the zero-entries of matrix \mathbf{L} can only be inside of \mathbf{A}_{ν}, and in each row (column) may contain at most r zero-entries.

$$
\begin{equation*}
\mathbb{P}(\mathbf{L} \text { is not } r \text {-admissible }) \leq n^{-c \log ^{2} n} \tag{7}
\end{equation*}
$$

where $c>0$

Thank you!

