Welcome to our Session!
New Constraints on Primordial Black Holes as Dark Matter

Florian Kühnel

Talk at 13. Kosmologietag
Bielefeld, 4th of May 2018

work in particular with
Bernard Carr
Katherine Freese
Jens Jasche
Pavel Naselsky
Tommy Ohlsson
Glenn Starkman
Black-hole (BH) formation for $R < R_S$.

Astrophysical: From $10^9 \, M_\odot$ down to M_\odot but not lower.

Have a look at the density

To form smaller black holes we need higher density

Compare to cosmological density

Formation at early times; primordial black holes (PBHs)

Masses of primordial black holes:

$$M(t = 10^{-23} \, \text{s}) = 10^{15} \, \text{g}, \quad M(t = 10^{-6} \, \text{s}) = M_\odot$$
PBH Formation Mechanisms

⭐ Formation of primordial black holes
Formation of primordial black holes by cosmic string loops

http://www.damtp.cam.ac.uk/research/gr/public/cs_top.html
PBH Formation Mechanisms

★ Formation of primordial black holes by
 ★ Cosmic string loops
 ★ Bubble collisions

http://www.damtp.cam.ac.uk/research/gr/public/cs_phase.html
Formation of primordial black holes by

- Cosmic string loops
- Bubble collisions
- Pressure reduction
Formation of primordial black holes by:
- Cosmic string loops
- Bubble collisions
- Pressure reduction

More in Chris' talk
Formation of primordial black holes by

- Cosmic string loops
- Bubble collisions
- Pressure reduction
Formation of primordial black holes by

- Cosmic string loops
- Bubble collisions
- Pressure reduction
- Large density perturbations

Simple estimate: [Carr 1975]

\[R > R_J \quad \Rightarrow \quad \delta_H > \omega \] , \quad \text{for} \quad \rho = \omega \rho

scale of the over density

Jeans length
Probe a huge range of scales:

<table>
<thead>
<tr>
<th>Mass Range</th>
<th>Field</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M \sim 10^{-5} \text{g}$</td>
<td>Quantum Gravity</td>
<td>Planck relics, Extra dimensions and higher-dimensional black holes, …</td>
</tr>
<tr>
<td>$M \lesssim 10^{15} \text{g}$</td>
<td>Early Universe</td>
<td>Baryogenesis, Nucleosynthesis, Reionisation, …</td>
</tr>
<tr>
<td>$M \sim 10^{15} \text{g}$</td>
<td>High-Energy Physics</td>
<td>Cosmological and galactic gamma-rays, …</td>
</tr>
<tr>
<td>$M \gtrsim 10^{15} \text{g}$</td>
<td>Gravity</td>
<td>Critical phenomena, Cold dark matter, Dynamical effects, Lensing effects, Gravitational waves, Black holes in galactic nuclei, …</td>
</tr>
</tbody>
</table>
Consider an example of primordial black holes constituting all of the dark matter:

- Mass range: 10^{20} g
- Size: 10^{-8} cm
- Number in our Galaxy: 10^{25}
- Distance: 10 AU
\[\propto \Omega_{\text{PBH}} \left|_{\text{form}} \right. \]

\[\beta' \]

\[\text{Note that} \]

\[\rho_{\text{rad}} \propto a^{-4} \]

\[\rho_{\text{PBH}} \propto a^{-3} \]

and hence

\[\Omega_{\text{PBH}} \propto a \]
If PBHs do not constitute the entirety of the dark matter, the latter must necessarily contain something else.

One possibility: a combined scenario, e.g. DM = PBHs + Particles

Let us now study WIMP annihilations in PBH halos:

- The annihilation rate $\Gamma \propto n^2$.
- Halo profile does matter; enhancement of Γ in density spikes.
Let us now study WIMP annihilations in PBH halos:
★ The annihilation rate $\Gamma \propto n^2$.
→ Halo profile does matter; enhancement of Γ in density spikes.
★ Let us now study WIMP annihilations in PBH halos:
★ The annihilation rate $\Gamma \propto n^2$.
→ Halo profile does matter; enhancement of Γ in density spikes.
★ 1) We derive the density profile of the captured WIMPs

\[m_\chi = 100 \text{ GeV} \]

- ρ_{c} vs. r/r_g
 - M_{PBH}/M_\odot
 - 10^{-2}
 - 10^{-5}
 - 10^{-12}
 - 10^{-18}

[Boucenna, FK, Ohlsson, Visinelli 2018]
Let us now study WIMP annihilations in PBH halos:

- The annihilation rate $\Gamma \propto n^2$.
- Halo profile does matter; enhancement of Γ in density spikes.

1) We derive the density profile of the captured WIMPs,
2) calculate the annihilation rate

$$\langle \sigma v \rangle = 3 \times 10^{-26} \text{ cm}^3/\text{s}$$

[Boucenna, FK, Ohlsson, Visinelli 2018]
Let us now study WIMP annihilations in PBH halos:

- The annihilation rate \(\Gamma \propto n^2 \).

Halo profile does matter; enhancement of \(\Gamma \) in density spikes.

1) We derive the density profile of the captured WIMPs, 2) calculate the annihilation rate, 3) and compare to data:

[Boucenna, FK, Ohlsson, Visinelli 2018]
1) We derive the density profile of the captured WIMPs, 2) calculate the annihilation rate, 3) and compare to data:

[Graph showing the density profile of captured WIMPs with annotations for EG, F, NS, K, ML, E, and W.]

[Boucenna, FK, Ohlsson, Visinelli 2018]
1) We derive the density profile of the captured WIMPs, 2) calculate the annihilation rate, 3) and compare to data:

\[\langle \sigma v \rangle = 3 \times 10^{-26} \text{ cm}^3/\text{s} \]

[Boucenna, FK, Ohlsson, Visinelli 2018]
1) We derive the density profile of the captured WIMPs, 2) calculate the annihilation rate, 3) and compare to data:

$$\langle \sigma v \rangle = 3 \times 10^{-26} \text{ cm}^3/\text{s}$$

[Boucenna, FK, Ohlsson, Visinelli 2018]
Primordial black holes are very interesting!

- They are unique probes of their formation scenarios.

- If PBHs do not constitute the entirety of the dark matter, the latter must necessarily contain something else, with combined dark-matter scenarios (PBHs + WIMPs) are amongst the most plausible ones.

- These scenarios (also those with sterile neutrinos) have distinct signatures and might be falsified or confirmed in the near future.