

New Constraints on Primordial Black Holes

as Dark Matter

Talk at *13. Kosmologietag* Bielefeld, 4th of May 2018

work in particular with
Bernard Carr
Katherine Freese
Jens Jasche
Pavel Naselsky
Tommy Ohlsson
Glenn Starkman

PBH Generalities

- \bigstar Black-hole (BH) formation for $R < R_S$.
 - \bigstar Astrophysical: From $10^9\,M_\odot$ down to M_\odot but not lower.
 - ★ Have a look at the density

$$\rho_S = 10^{18} \left(\frac{M}{M_{\odot}}\right)^{-2} \frac{g}{\text{cm}^3}$$

To form smaller black holes we need higher density

$$\rho_C = 10^6 \left(\frac{t}{s}\right)^{-2} \frac{g}{\text{cm}^3}$$

- Formation at early times; primordial black holes (PBHs)
- ★ Masses of primordial black holes:

$$M(t = 10^{-23} \,\mathrm{s}) = 10^{15} \,\mathrm{g}, \quad M(t = 10^{-6} \,\mathrm{s}) = M_{\odot}$$

★ Formation of primordial black holes

- ★ Formation of primordial black holes by
 - **★** Cosmic string loops

http://www.damtp.cam.ac.uk/research/gr/public/cs_top.html

- ★ Formation of primordial black holes by
 - **★** Cosmic string loops
 - ★ Bubble collisions

http://www.damtp.cam.ac.uk/research/gr/public/cs_phase.html

- ★ Formation of primordial black holes by
 - **★** Cosmic string loops
 - ★ Bubble collisions
 - ★ Pressure reduction

- ★ Formation of primordial black holes by
 - **★** Cosmic string loops
 - ★ Bubble collisions
 - ★ Pressure reduction

More in Chris' talk

- ★ Formation of primordial black holes by
 - ★ Cosmic string loops
 - ★ Bubble collisions
 - ★ Pressure reduction

- ★ Formation of primordial black holes by
 - ★ Cosmic string loops
 - ★ Bubble collisions
 - ★ Pressure reduction
 - ★ Large density perturbations

Simple estimate:

[Carr 1975]

for
$$p = w \rho$$

https://ned.ipac.caltech.edu/level5/Sept12/Kravtsov/Kravtsov3.htm

PBH — Probes of Scales

★ Probe a huge range of scales:

 $M \sim 10^{-5} \mathrm{g}$ Quantum Gravity:

Planck relics, Extra dimensions and higher-dimensional black holes, ...

 $M \lesssim 10^{15} {\rm g}$ Early Universe:

Baryogenesis, Nucleosynthesis, Reionisation, ...

 $M \sim 10^{15} \mathrm{g}$ High-Energy Physics: Cosmological and galactic gammarays, ...

 $M \gtrsim 10^{15} \mathrm{g}$ Gravity:

Critical phenomena,

Cold dark matter,

Dynamical effects, Lensing effects,

Gravitational waves,

Black holes in galactic nuclei, ...

PBH — Some Numbers

★ Consider an example of primordial black holes constituting all of the dark matter:

★ Mass range:

 $10^{20}\,\mathrm{g}$

★ Size:

 $10^{-8} \, \text{cm}$

★ Number in our Galaxy:

 10^{25}

★ Distance:

 $10\,\mathrm{AU}$

PBH Constraints at Formation

- ★ If PBHs do not constitute the entirety of the dark matter, the latter must necessarily contain something else.
- ★ One possibility: a combined scenario, e.g. DM = PBHs + Particles
- ★ Let us now study WIMP annihilations in PBH halos:
 - \uparrow The annihilation rate $\Gamma \propto n^2$.
 - Halo profile does matter; enhancement of Γ in density spikes.

- ★ Let us now study WIMP annihilations in PBH halos:
 - \uparrow The annihilation rate $\Gamma \propto n^2$.
 - Halo profile does matter; enhancement of Γ in density spikes.

- ★ Let us now study WIMP annihilations in PBH halos:
 - \uparrow The annihilation rate $\Gamma \propto n^2$.
 - Halo profile does matter; enhancement of Γ in density spikes.
 - ★ 1) We derive the density profile of the captured WIMPs

- ★ Let us now study WIMP annihilations in PBH halos:
 - \uparrow The annihilation rate $\Gamma \propto n^2$.
 - Halo profile does matter; enhancement of Γ in density spikes.
 - 1) We derive the density profile of the captured WIMPs,
 - 2) calculate the annihilation rate

- ★ Let us now study WIMP annihilations in PBH halos:
 - \uparrow The annihilation rate $\Gamma \propto n^2$.
 - Halo profile does matter; enhancement of Γ in density spikes.
 - 1) We derive the density profile of the captured WIMPs,
 - 2) calculate the annihilation rate, 3) and compare to data:

- 1) We derive the density profile of the captured WIMPs,
 - 2) calculate the annihilation rate, 3) and compare to data:

- 1) We derive the density profile of the captured WIMPs,
 - 2) calculate the annihilation rate, 3) and compare to data:

- ★ 1) We derive the density profile of the captured WIMPs,
 - 2) calculate the annihilation rate, 3) and compare to data:

Conclusion

- ★ Primordial black holes are very interesting!
 - They are unique probes of their formation scenarios.
 - ★ If PBHs do not constitute the entirety of the dark matter, the latter must necessarily contain something else, with combined dark-matter scenarios (PBHs + WIMPs) are amongst the most plausible ones.
 - These scenarios (also those with sterile neutrinos) have distinct signatures and might be falsified or confirmed in the near future.