Nonlinear sigma models for (super-) spin chains

1. What's a nonlinear sigma model (NLOM)?
1.1 Classical field theory
1.1.1 Symmetric spaces
1.1.2 Energy/action functional
1.1.3 Global G-symmetry \& conserved current
1.1.4 Some useful formulas
1.2 Quantum field theory
1.2.1 Lattice definition/regularization.
1.2.2 Universality hypothesis
1.2.3 Main results/ conjectures
1.2.4 Perturbative renormalization group
2. Antiferronuaguetic quantum spin chaius
2.1 Motivation/background
2.2 Heisenberg model
2.3 G/K spin-coherent states
2.4 From spin chain to NLOM
3. Superspin chain
3.1 Exterior algebra
3.2 Bosonization formula
3.3 A glimpse of super...
3.4 Raudom band matrices and NLoM
3.5 Suggestion

string theory

$$
\begin{aligned}
& M=G / K \\
& \text { (symmetric space) }
\end{aligned}
$$

1.1.1 Symmetric spaces

Riemann tensor: $R_{j k l}^{i}=\partial_{k} \Gamma_{l j}^{i}-\partial_{l} \Gamma_{k_{j}}^{i}+\Gamma_{l j}^{m} \Gamma_{k m}^{i}-\Gamma_{k_{j}}^{m} \Gamma_{l m}^{i}$
Def:: a locally symmetric space is a Riemannian manifold M with covariantly constant curvature: $\nabla R=0$.

Ex. 1: the round two-sphere $M=S^{2}, d l^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$.
Ex. 2: the set $M=\operatorname{Gr}_{n}\left(\mathbb{C}^{N}\right)$ of complex n-planes in \mathbb{C}^{N} (endowed with the $U(N)$-invariant geometry).

Def:: a globally symmetric space is a Riemannian manifold M sit. for all $p \in M$ the geodesic inversion extends to an isometry $\sigma_{p}: M \rightarrow M$.

Fact. $M=G / K$ with $K=\operatorname{Fix}_{G}(\theta)$ for $\theta: G \rightarrow G$ (Cartan involution).

Ex.: $M=U$ (U compact Lie group).

$$
G=u \times u, \quad \theta\left(u_{L}, u_{R}\right)=\left(u_{R}, u_{L}\right) .
$$

$k=F_{x_{G}}(\theta) \cong u$.
$\pi: G \rightarrow G / K=M, \quad\left(u_{L}, u_{R}\right) \mapsto u_{L} u_{R}^{-1}$.
G-action on M : $\quad u \mapsto u_{L} u u_{R}^{-1}$.
1.1.2 Energy/action functional. $\quad S[\varphi]=\int_{X}\|D \varphi\|^{2}$.

In local coordinates $\xi^{i}: M \rightarrow \mathbb{R}, d \xi^{i}\left(e_{j}\right)=\delta_{j}^{i}, \varphi^{i}=\xi^{i} \circ \varphi$, $x^{\mu}: X=\mathbb{R}^{d} \rightarrow \mathbb{R}$, one has $D \varphi=d x^{\mu} \frac{\partial \varphi^{i}}{\partial x^{\mu}} e_{i}$
and $S[\varphi]=\int_{x} d^{d} x g^{\mu \nu}(x)(x) \frac{\partial \varphi^{i}}{\partial x^{\mu}}(x) \frac{\partial \phi^{j}}{\partial x^{v}}(x) g_{i j}^{(\mu)}(\varphi(x))$
where $g_{i j}^{(M)}=\left(e_{i}, e_{j}\right)_{M}$ and $g^{\mu \nu}(x)=\left(d x^{\mu}, d x^{\nu}\right)_{x}$.
1.1.3 Global G-symmetry. $(g \varphi)(x):=g(x) \cdot \varphi(x)$.

If $g(x)=g_{0} \in G$ is constant, then $S[\varphi]=S[g \varphi]$ for any φ.

Conserved current. Let $Y: X \rightarrow$ Lie (G) be differentiable, and for $t \in[-\varepsilon, \varepsilon]$ exponentiate to $e^{t Y}: X \rightarrow G$. Then

$$
\left.\frac{d}{d t}\right|_{t=0} S\left[e^{t Y} \cdot \varphi\right]=\int_{x} d Y \wedge \partial_{\varphi}=\int_{x} d^{d} x \partial_{\mu} Y^{a} \partial_{a}^{\mu}
$$

where J_{φ} is $(d-1)$ form on X with values in $\mathrm{Lie}(G)^{*}$.
If φ is critical point of S
$(\Leftrightarrow$ solution of classical eggs of motion $\delta S=0)$,
then $d J_{\varphi}=0$ (conservation of current).
1.1.4 Some useful formulas.
A. Differential of exponential map: $\operatorname{Lie}(G) \rightarrow G$.

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} e^{-X} e^{X+t Y} & =\frac{1-e^{-a d(X)}}{\operatorname{ad}(X)} Y \\
& =Y-\frac{1}{2}[X, Y]+\frac{1}{6}[X,[X, Y]]-\ldots
\end{aligned}
$$

B. Cartan decomposition of Lie algebra.

Carton involution $\theta: G \rightarrow G, \quad \theta\left(g_{1} g_{2}\right)=\theta\left(g_{1}\right) \theta\left(g_{2}\right)$, induces $\theta_{*}: \operatorname{Lie}(G) \rightarrow \operatorname{Lie}^{(G)}, \quad \theta_{*}([X, Y])=\left[\theta_{*}(X), \theta_{*}(Y)\right]$.
$\wedge \operatorname{Lie}(G)=E_{+1}\left(\theta_{*}\right) \oplus E_{-1}\left(\theta_{*}\right)=: \quad k \oplus p$
with $[p, p] \subseteq k$ and $[k, p] \subseteq p$.
Hence for $X, Y \in p$ one has $\left(\frac{1-e^{-a d}(X)}{\operatorname{ad}(X)} Y\right)_{p}=\frac{\operatorname{sinhad}(X)}{\operatorname{ad}(X)} Y$.
C. Geometry of G / K in (Riemann) normal coordinates.

Let $0 \equiv e k \in G / K$, and note $T_{0}(G / K)=p$.
G - invariant metric $=\operatorname{Tr}\left(g^{-1} d g\right)_{p}^{2} \equiv x$.
Parametrize points: $q=e^{x} \cdot 0 \equiv e^{x} k \quad(X \in p)$.
Tangent vectors: $\quad v=\left.\frac{d}{d t}\right|_{t=0} e^{X+t Y} \cdot 0 \quad(Y \in p)$.
$x_{q}(v, v)=x_{0}\left(e^{-X} \cdot v, e^{-X} \cdot v\right)=\operatorname{Tr}\left(\frac{\sinh a d(X)}{\operatorname{ad}(X)} Y\right)^{2}$.
G-invariant measure $=\left.\operatorname{Det} \frac{\sinh a d(X)}{\operatorname{ad}(X)_{p \rightarrow p}}\right|_{p} \cdot \operatorname{dvol}(X)$.

Exercises
A. 1 Argue that the round two-sphere is a globally symmetric space.
A. 2 Argue that $G r_{n}\left(\mathbb{C}^{N}\right) \cong U(N) / U(n) \times U(N-n)$.
A. 3 For $G=S U(2)$ with Carton involution $\theta(u)=\sigma_{3} u \sigma_{3}$ compute the decomposition of $L_{i e} S u(2)$ into θ_{*}-even/odd parts.
B. For a compact $L_{i e}$ group G of matrices g with Cartan involution θ consider the NLFM with target space $M=G / K$ and energy functional

$$
S=\frac{1}{4} \int_{X} d_{x}^{d} \operatorname{Tr} \partial_{\mu} Q \partial_{\mu} Q^{-1} \text { where } Q(x)=g(x) \theta(g(x))^{-1} \text {. }
$$

Verify the following claim:
B. 1 S indeed depends only on $\varphi(x)=\pi(g(x)) \equiv g(x) K \in G / K$.
B. 2 In terms of $g(x), S$ has the expression $S=-\int_{x} d^{d} x \operatorname{Tr}\left(g^{-1} \partial_{\mu} g\right)_{p}^{2}$.
B. 3 The conserved current is $J^{\mu}=-2 g\left(g^{-1} \partial^{\mu} g\right)_{p} g^{-1}$.
(Cartandecomprition Lie $\ni Y=Y_{k}+Y_{p}$.)
1.2 Quantum field theory

One wants to take averages (with weight $\mathrm{e}^{-\mathrm{S} / \hbar}$) over all maps (?!)
1.2.1 Lattice definition/regularization.

Discretized maps φ :

$$
\begin{aligned}
& \Lambda \rightarrow M \\
& x \mapsto \varphi_{x}
\end{aligned}
$$

Require S_{\wedge} to be local, \wedge-symmetric, G-invariant. This still leaves a vast number of possible choices...
(finite)
cubic lattice $\Lambda=\mathbb{Z}_{L}^{d}$

$$
|\Lambda|=L^{d}, \quad L \rightarrow \infty
$$

parameter $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\infty}\right)$.

Gibbs measure $=\frac{1}{z} e^{-\frac{1}{\hbar} S_{\Lambda, \alpha}[\varphi]} \prod_{x \in \Lambda} d \operatorname{vol}\left(\varphi_{x}\right)$
is a G-invariant density on $M^{|\Lambda|}$;
$\hbar \equiv T$ (Planck's constant, or temperature).
Observables $A, B: M \rightarrow R$.
Correlation functions: $\left\langle A\left(\varphi_{x}\right) B\left(\varphi_{y}\right)\right\rangle_{S_{\Lambda, \alpha}}=: C_{A, B}(x, y ; \alpha)$.
1.2.2 Universality hypothesis (rough statement).

In the continuum limit (α, large) there exists a function $\xi(\alpha)$ (called the correlation length) and for each pair A, B a function $\gamma_{A, B}: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ such that $C_{A, B}(x, y ; \alpha) \stackrel{C . L .}{=} \gamma_{A, B}(|x-y| ; \xi(\alpha))$.
(In this sense the multitude of lattice theories is governed by a single master theory - the nonlinear sigma model.)
1.2.3 Main results/ conjectures

- Mermin-Wagner-Coleman Theorem.

Let $d=1,2$ and M compact. If $A: M \rightarrow \mathbb{R}$ is orthogonal to the constants $\left(\int_{M} A d^{\prime} e_{M}=0\right)$, then $\left\langle A\left(\varphi_{x}\right) A\left(\varphi_{y}\right)\right\rangle \rightarrow 0$ for $|x-y| \longrightarrow \infty$.

- Mass gap conjecture.

For $d=1,2$ and M compact with positive curvature correlations decay exponentially: $\left\langle A\left(\varphi_{x}\right) A\left(\varphi_{y}\right)\right\rangle \sim e^{-c_{A}|x-y| / \xi}$ for all temperatures.

- In $d \geqslant 3$ spontaneous symmetry breaking occurs for $l_{0} w$ temperatures.
1.2.4 Perturbative renormalization group (RG)
- K.G. Wilson: \exists vector field (the "beta function") in parameter space s.t. $\left(\frac{\partial}{\partial s}+\beta^{i}(\alpha) \frac{\partial}{\partial \alpha^{i}}\right) C_{A, B}\left(e^{-s} x, e^{-s} y ; \alpha\right)=0$. dynamical-systans view point: $\dot{\alpha}^{i}=\beta^{i}(\alpha)$.
- Universality occurs near zeroes of β (or fixed points of the RG flow): there, the flow is contracting in all directions but very few (just one for $d=1,2$ and M compact).
parameter space
many stable directions

One unstable direction

- β-function of nonlinear models in $d=2$
(M Riemannian manifold with metric $\frac{1}{T} g_{i j}$):

$$
\frac{d}{d s}\left(\frac{1}{T} g_{i j}\right)=-R_{i c_{i j}}-\frac{T}{2} R_{i k R_{m}} R_{j k l m}+O\left(T^{2}\right)
$$

- M compact symmetric space (choose $g_{i j} \equiv R_{i c} c_{i j}$):

$$
\begin{aligned}
& \frac{d}{d s}\left(\frac{1}{T}\right)=-1+O(T) \\
\wedge & \left(\frac{\partial}{\partial s}+\beta(1 / \tau) \frac{\partial}{\partial(1 / \tau)}\right) e^{s} \xi(T)=0 \curvearrowright \xi(T) \sim e^{1 / \tau} .
\end{aligned}
$$

2. Antiferromagnetic quantum spin chains
2.1 Motivation/background

- Provide a physical example realizing NL FM.
- Key words: topological quantum matter, classification, interacting topological insulators, AKLT spin chain, Haldane phase, matrix product states...
- Phenomenology:

Ferromagnetic spin chains have low-energy excitations with dispersion $\varepsilon(k) \sim k^{2}$.
Antiferromagnetic spin chains (naively) have $\varepsilon(k) \sim|k|$ (relativistic dispersion) s NLOM (Haldane).
(c.f. Affleck, Las Houches 1988)
2.2 Heisenberg model
V highest -weight irrep for (compact) Lie group G.
$\cdots \otimes V \otimes V^{*} \otimes V \otimes V^{*} \otimes \ldots$ Hilbert space of spin chain.
$\left\{X_{a}\right\}$ orthonormal basis of Lie (G).

$$
\begin{aligned}
& \operatorname{Cas}_{2}=\sum_{a} X_{a} X_{a} \in U(\operatorname{Lie}(6)) . \\
& H=-\sum_{n} \sum_{a} X_{a}^{(V)}(2 n)\left(X_{a}^{\left(V^{*}\right)}(2 n-1)+X_{a}^{\left(V^{*}\right)}(2 n+1)\right)
\end{aligned}
$$

Hamiltonian of antiferromagnetic quantum spin chain ("Heisenberg").
2.3 G/K spin-coherent states
$\theta: G \rightarrow G$ Carton involution
$\left|v_{0}\right\rangle \in V$ highest-weight vector for G-action.
Let $\mathbb{C} \cdot\left|v_{0}\right\rangle$ be one-dimensional repn for $K=\operatorname{Fix}_{G}(\theta)$.
$\left\{\mathbb{P} g\left|v_{0}\right\rangle\right\}_{g \in G} \cong G / K$ the G-orbit of coherent states.
Resolution of the identity.
For G compact there exists a G-invariant density $d g_{k}$ s.th.

$$
\mathbb{1}_{V}=\int_{G / K} d g_{k} g\left|v_{0}\right\rangle\left\langle v_{0}\right| g^{-1}
$$

Proof as an exercise.
2.4 From spin chain to NLOM

Use the Feynman-Troter-Suzuki method to convert the quantion partition function $Z=\operatorname{Tr} e^{-\beta H}=\operatorname{Tr}\left(e^{-\frac{\beta}{L} H}\right)^{L}$ (and correlation facts) into an integral over many copies of G / K.
$\underset{\text { time }}{\operatorname{imag} .} \uparrow$

G-invariance locality
$\overrightarrow{\text { space }}$

Continuum limit $=$ NL M ?
Control achievable only in a semiclassical limit:
\wedge scale the highest weight $\left(\left|V_{0}\right\rangle \rightarrow\left|N V_{0}\right\rangle\right)$ and consider $N \rightarrow \infty$ based on $\cdots \otimes\left|N v_{0}\right\rangle_{V} \otimes\left|-N v_{0}\right\rangle_{V^{*}} \otimes\left|N v_{0}\right\rangle_{V} \otimes\left|-N v_{0}\right\rangle_{V^{*}} \otimes \cdots$

Two spins.

$$
H_{2}=-\frac{1}{N} \sum_{a} X_{a}^{(V)} X_{a}^{\left(V^{*}\right)}
$$

For N large, approximate $G / K \times G / k \stackrel{!}{=} T(G / K)=G x_{k} p$, ie. parametrize coherent states as

$$
g e^{Y / 2}\left|N v_{0}\right\rangle_{V} \otimes g e^{-Y / 2}\left|-N v_{0}\right\rangle_{V^{*}} \equiv|g ; Y\rangle=\left|g k ; k^{-1} Y k\right\rangle .
$$

Matrix element: $\left\langle g e^{z / 2} ; Y^{\prime}\right| e^{-\frac{\beta}{L} H_{2}}\left|g e^{-z / 2} ; Y\right\rangle$

$$
=\exp \left(\frac{\beta}{2 L} N \operatorname{Tr}\left(Y^{2}+Y^{\prime 2}\right)+i N \omega_{0}\left(Z, Y+Y^{\prime}\right)+\ldots\right)
$$

 Berry curvature

Haldane conjecture (N even).
3. Superspin chain
3.1 Exterior algebra.
$V=\mathbb{C}^{N}$ complex vector space, V^{*} dual space.
(the linear fit ion V)
Def:: The Grasmuanu algebra $\Lambda\left(V^{*}\right)=\bigoplus_{k=0}^{N} \Lambda^{k}\left(V^{*}\right)$ is the associative algebra generated by $\mathbb{C} \equiv \Lambda^{0}\left(V^{*}\right)$ and $V^{*} \equiv \Lambda^{1}\left(V^{*}\right)$ with relations $\alpha \beta+\beta \alpha=0$ for any $\alpha, \beta \in V^{*}$.
Note: $\omega^{2}=0$ for $\omega \in \Lambda^{\text {odd }}\left(v^{*}\right)$.
The inner product of $v \in V$ with $\alpha \in V^{*}$ extends to an odd derivation $1(v): \Lambda^{k}\left(V^{*}\right) \longrightarrow \Lambda^{k-1}\left(V^{*}\right)$,

$$
1(v)(\alpha \beta)=(1(v) \alpha) \beta+(-1)^{l} \alpha(1(v) \beta), \quad \alpha \in \Lambda^{l}\left(v^{*}\right)
$$

Note: $1(v) 1\left(v^{\prime}\right)+1\left(v^{\prime}\right) 1(v)=0$ and $1(v)^{2}=0$.

Fermi integral is a linear mapping $\Omega: \Lambda\left(V^{*}\right) \longrightarrow \mathbb{C}$ with "translation" invariance: $\Omega[1(v) \Psi]=0$.
$\wedge \Omega[\Psi]=1\left(e_{1}\right) \cdots 1\left(e_{N}\right) \Psi$ for some basis e_{1}, \ldots, e_{N} of V.

Remark. $\quad \Omega \in \Lambda^{N}(V) \cong \mathbb{C}$.

Change the notation. ξ^{1}, \ldots, ξ^{N} dual basis of V^{*}; $1\left(e_{j}\right) \equiv \frac{\partial}{\partial \xi^{j}}$ and $\Omega[\Psi]=\frac{\partial}{\partial \xi^{1}} \cdots \frac{\partial}{\partial \xi^{N}} \Psi \equiv \int_{F} \Psi$.

Pfaffian. For $A: V \times V \longrightarrow \mathbb{C}$ skew
let $\xi A \xi \equiv \xi^{i} A\left(e_{i}, e_{j}\right) \xi^{j} \in \Lambda^{2}\left(V^{*}\right)$.

$$
\begin{aligned}
& P f(A):=\int_{F} e^{\frac{1}{2} \xi A \xi} \\
& =\left\{\begin{array}{l}
0 \quad N \text { odd } \\
\frac{2^{-N / 2}}{(N / 2)!} \sum_{\pi \in S_{N}} \operatorname{sign}(\pi) A\left(e_{\pi(N)}, e_{\pi(N-1)}\right) \cdots A\left(e_{\pi(2)}, e_{\pi(1)}\right) \quad N \text { even }
\end{array}\right.
\end{aligned}
$$

Determinant as Gaussian integral.
For $B: V \longrightarrow V$ linear let $\bar{\xi} B \xi \equiv \bar{\xi}_{i} B_{j}^{i} \xi^{j} \quad\left(\bar{\xi}_{i}=e_{i}\right)$.
Then $\operatorname{Det} B=\prod_{i=1}^{N} \frac{\partial^{2}}{\partial \xi^{i} \partial \bar{\xi}_{i}} e^{\bar{\xi} B \xi}$.
3.2 Bosonization formula (Od).

Let $V=\operatorname{Hom}\left(\mathbb{C}^{n}, \mathbb{C}^{N}\right) \cong \mathbb{C}^{N} \otimes\left(\mathbb{C}^{n}\right)^{*} ; \quad V^{*}=\operatorname{Hom}\left(\mathbb{C}^{N}, \mathbb{C}^{n}\right)$.
Write $\psi\left(\bar{\xi}_{a}^{i}, \xi_{j}^{b}\right) \equiv \psi(\bar{\xi}, \xi)$ for $\psi \in \Lambda\left(V^{*} \oplus \bigvee\right)$.
The. Assume $U(N)$ - invariance: $\psi(\bar{\xi}, \xi)=\psi\left(\bar{\xi} u^{-1}, u \xi\right)$. Then
(i) $\exists \Psi: E n d\left(\mathbb{C}^{n}\right) \xrightarrow{\text { entire }} \mathbb{C}$ s.th. $\psi(\bar{\xi}, \xi)=\Psi(\bar{\xi} \cdot \xi)$, and
(ii) $\exists c_{n, N} \in \mathbb{C}:$ for any such Ψ one has

$$
\int_{F} \psi=c_{n, N} \int_{u(n)} \Psi(u) \operatorname{Det}^{-N}(u) d u
$$

Haar measure

Idea of proof for $(i i)$. Let $\left(h^{\prime} \psi\right)(\xi, \bar{\xi}):=\psi\left(h_{L} \xi, \bar{\xi} h_{R}^{-1}\right)$.

$$
\begin{aligned}
& \Omega_{1}\left[h_{\psi}\right] \equiv \int_{F} h_{\psi}=\frac{\operatorname{Det}^{N}\left(h_{L}\right)}{\operatorname{Det}^{N}\left(h_{R}\right)} \Omega_{1}[\psi] \\
& \Omega_{2}\left[h_{\psi} \psi\right] \equiv c_{n, N} \int_{u(n)} \Psi\left(h_{L} u h_{R}^{-1}\right) \operatorname{Det}^{-N}(u) d u=\frac{\operatorname{Det}^{N}\left(h_{L}\right)}{\operatorname{Det}^{N}\left(h_{R}\right)} \Omega_{2}[\psi] .
\end{aligned}
$$

Exercises
C. 1 Check that $\operatorname{Tr}\left(g^{-1} d g\right)_{p}^{2} \equiv x$ really defines a G-invariant metic tensor on G / K.
C. 2 For G compact and V irreducible there exists a G-invariant density $d g_{k}$ s.th.

$$
\mathbb{1}_{V}=\int_{G / k} d g_{k} g\left|v_{0}\right\rangle\left\langle v_{0}\right| g^{-1} .
$$

C. $3 \mathrm{Pf}(\mathrm{A})=\left\{\begin{array}{l}0 N \text { odd } \\ \frac{2^{-N / 2}}{(N / 2)!} \sum_{\pi \in S^{N}} \operatorname{sign}(\pi) A\left(e_{\pi(N)}, e_{\pi(N-1)}\right) \cdots A\left(e_{\pi(2)}, e_{\pi(1)}\right) \quad N \text { even }\end{array}\right.$
C. 4 Prove the bosonization identity and determine $c_{n, N}$ for $n=1$:

$$
\int_{F} \psi=c_{1, N} \int_{u(1)} \Psi(u) u^{-N} d u .
$$

3.3 A glimpse of super

Supertrace. $V=V_{0} \oplus V_{1} \quad Z_{2}$-graded vector space
STr: End $(V) \rightarrow \mathbb{C}, X \longmapsto \operatorname{Tr}_{v_{0}} X-T r_{V_{1}} X$.
Superdeterminant.
supermatrix $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$;
A, D have matrix entries from $\Lambda^{\text {even, }}$, B, C from $\Lambda^{\text {odd }}$.
If D is invertible,
$S \operatorname{Det}\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)=\frac{\operatorname{Det}\left(A-B D^{-1} C\right)}{\operatorname{Det}(D)}=\frac{\operatorname{Det}(A)}{\operatorname{Det}\left(D-C A^{-1} B\right)}$.
Berezin integral $=$ Fermi integral followed by ordinary integration.
Example: $\int_{\mathbb{R}^{2 \mid 2}} f=\int_{\mathbb{R}^{2}} d x d y \frac{\partial^{2}}{\partial \xi \partial y} f(x, y ; \xi, \eta)$.
Most features of ordinary analysis carry over (mutatis mutandi) to superanalysis, e.g. the substitution rule (for compact supports).

Example. Superbosonization identity $\left(n_{0}=n_{1}=1 ; O d\right)$
Complex variables $\phi^{i}, \bar{\phi}_{i}$ and anticommuting variables $\psi^{i}, \bar{\psi}_{i}$

$$
\begin{aligned}
& p=\bar{\phi} \cdot \varphi, \quad \xi=\bar{\phi} \cdot \psi, \quad \eta=\bar{\psi} \cdot \varphi, \quad q=\bar{\psi} \cdot \psi . \quad(i=1, \ldots, N) . \\
& F\left(\begin{array}{ll}
p & \xi \\
\eta & q
\end{array}\right)=\left(F_{0}+\xi F_{1}+\eta F_{2}+\xi \eta F_{3}\right)(p, q) \text {. } \\
& \operatorname{SDet}^{N}\left(\begin{array}{ll}
p & \xi \\
\eta & q
\end{array}\right)=\frac{p^{N}}{q^{N}}-N \xi \eta \frac{p^{N-1}}{q^{N+1}} . \\
& \pi^{N} \int_{\mathbb{C}^{N}} \prod_{i=1}^{N} d \phi^{i} d \bar{\phi}_{i} \prod_{i=1}^{N} \frac{\partial^{2}}{\partial \psi^{i} \partial \bar{\psi}_{i}} F\left(\begin{array}{cc}
\bar{\phi} \cdot \varphi & \bar{\phi} \cdot \psi \\
\bar{\psi} \cdot \varphi & \bar{\psi} \cdot \psi
\end{array}\right) \\
& =\left.\frac{1}{(N-1)!} \int_{0}^{\infty}\left(\partial_{q}^{N} F_{0}(p, q)-p \partial_{q}^{N-1} F_{3}(p, q)\right)\right|_{q=0} p^{N-1} d p \\
& =\int_{\mathbb{R}_{+} \times \cup(1)} \operatorname{DM} \operatorname{SDet}^{N}(M) F(M) \text { if } D M=(2 \pi i)^{-1} d p d q \frac{\partial^{2}}{\partial \xi \partial \eta} \text {. }
\end{aligned}
$$

3.4 Random band matrices and NLOM

For a quasi-1D random matrix model of length L and band width W the approximation by a NL OM

$$
\sim \exp \left(-\xi \int_{0}^{L} d x \operatorname{Sir} \partial_{x} Q \partial_{x} Q^{-1}\right)
$$

predicts (i) $\xi=$ court $\cdot W^{2}$,
(ii) crossover from Wiguer-Dyson statistics for $L / \xi \ll 1$ to Poisson statistics for $L / \xi \gg 1$.

Challenge: establish this rigorously!
3.5 Suggestion

Consider a quantum Hall bar ('chiral'edges) with a sequence of constriction:

$$
U=U_{\text {back }} U_{\text {form }}
$$

Heuristically (at least) this translates into an "antiferromagnetic" two-suparpin problem on $V \otimes V^{*}$.
NL OM predicts localization length $\xi \sim N$ and Crossover between Wiguer-Dyson and Poison regime.

Attractive features: (i) Laboratory realization exists, (ii) No "massive" modes (NLOM approximation exact).

