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Multi loop calculation

Multi loop calculation

More precision in calculated results
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More precision

Ex.: Total cross section for Higgs production in gluon fusion
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[R. Harlander, W. Kilgore Nov. ’02]

Perturbative convergence LO → NLO(≈ 70%) and

NLO → NNLO(≈ 30%)
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Multi loop calculation

Multi loop calculation

More precision in calculated results

New effects
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New effects

Ex.: forward–backward charge asymmetry of the top quark
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[S. Dittmaier, P. Uwer , S. Weinzierl Apr. ’08]
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Multi loop calculation

Multi loop calculation

More precision in calculated results

New effects

Exact NLO or NNLO calculations of σhard needed because of:

Accurate and reliable predictions of parton–level

observables.

Backgrounds for New Physics Searches
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NNLO

When do we need NNLO?

When NLO corrections are large

Mohammad Assadsolimani From Tensor Integral to IBP 8



NNLO

When do we need NNLO?

When NLO corrections are large

When truly high precision is needed

Mohammad Assadsolimani From Tensor Integral to IBP 8



NNLO

When do we need NNLO?

When NLO corrections are large

When truly high precision is needed

When the precision of NLO–calculation has to be verified

Mohammad Assadsolimani From Tensor Integral to IBP 8



NNLO

When do we need NNLO?

When NLO corrections are large

When truly high precision is needed

When the precision of NLO–calculation has to be verified

For instance single top quark production :
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NNLO Single Top Quark Production

Single top quark production

Process
√
S σLO(pb) σNLO (pb)

t–channel 2.0 TeV pp 1.068 1.062

14.0 TeV pp 152.7 155.9

[B.Harris, E. Laenen, L.Phaf, Z. Sullivan, S. Weinzierl ’02]
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Single top quark production
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√
S σLO(pb) σNLO (pb)

t–channel 2.0 TeV pp 1.068 1.062

14.0 TeV pp 152.7 155.9

[B.Harris, E. Laenen, L.Phaf, Z. Sullivan, S. Weinzierl ’02]

No colour exchange at NLO:

W W

Only vertex corrections contribute:

W
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NNLO Single Top Quark Production

Single top quark production

Process
√
S σLO(pb) σNLO (pb)

t–channel 2.0 TeV pp 1.068 1.062

14.0 TeV pp 152.7 155.9

[B.Harris, E. Laenen, L.Phaf, Z. Sullivan, S. Weinzierl ’02]

No colour exchange at NLO:

W W

Only vertex corrections contribute:

W

Colour exchange at NNLO:

W W 0

W
0W
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NNLO Single Top Quark Production

The true uncertainty due to missing higher order correction may

be greater because new colour exchange diagrams first

contribute at NNLO.

A significant effect on kinematical distributions

Important for studies of the V–A structure

Source of polarised top quarks

Access to the b quark pdfs

· · ·
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Tensor integral

In the NNLO–corrections occur tensor integrals:

I(d , a1, · · · , an)[1,kµ1 ,kν2 ,··· ] =

∫

ddk1

∫

ddk2

∏
ij k

µi

1 k
νj

2

P
a1
1 · · ·Pan

n

Possibilities to reduce tensor integrals to scalar integrals:
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Tensor integral

In the NNLO–corrections occur tensor integrals:

I(d , a1, · · · , an)[1,kµ1 ,kν2 ,··· ] =

∫

ddk1

∫

ddk2

∏
ij k

µi

1 k
νj

2

P
a1
1 · · ·Pan

n

Possibilities to reduce tensor integrals to scalar integrals:

By Schwinger parametrization

[O. V. Tarasov, Phys. Rev.’96, Nucl. Phys. ’81]

By projection method

[T. Binoth, E.W.N. Glover, P. Marquard and J.J. van der Bij ’02; E.W.N. Glover ’04]
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Tensor integral

In the NNLO–corrections occur tensor integrals:

I(d , a1, · · · , an)[1,kµ1 ,kν2 ,··· ] =

∫

ddk1

∫

ddk2

∏
ij k

µi

1 k
νj

2

P
a1
1 · · ·Pan

n

Possibilities to reduce tensor integrals to scalar integrals:

By Schwinger parametrization

[O. V. Tarasov, Phys. Rev.’96, Nucl. Phys. ’81]

By projection method

[T. Binoth, E.W.N. Glover, P. Marquard and J.J. van der Bij ’02; E.W.N. Glover ’04]

Tensor reduction ⇒ various scalar integrals with the same structure

of the integrand with different powers of propagators
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Integration by Parts

Possible approaches:
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Integration by Parts

Possible approaches:

solve each integral individually,

express all scalar integrals as a linear combination of some

basic master integrals, Integration by parts (IBP).

[Chetyrkin, Tkachov ’81]
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Integration by Parts

Possible approaches:

solve each integral individually,

express all scalar integrals as a linear combination of some

basic master integrals, Integration by parts (IBP).

[Chetyrkin, Tkachov ’81]

Reduction techniques:

Laporta: efficient algorithm to solve linear system of

IBP–Identities

AIR [Anastasiou, Lazopoulos ’04]

FIRE [Smirnov ’08]

Crusher [Marquard, Seidel (to be published)]

REDUZE 1&2 [Studerus ’09; Manteuffel, Studerus ’12]
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Tarasov’s method

Tensor reduction leads to a very large number of scalar integrals

which are shifted in dimension and have other powers of propagators

I(d , a1, · · · , an)[kµ1 kν2 ,··· ] → gµν
∑

i

I(d + xi , a
i
1, · · · , a

i
n)[1]

Example for two loop corrections to Axial Vector Form Factors

I(d , 1, 1, 1, 1, 1, 1)[1,kµ1
1 k

µ2
1 k

ν1
2 k

ν2
2 ] → I(2+ d , 2, 1, 1, 1, 1, 2)+

· · · + I(4+ d , 1, 1, 1, 2, 3, 1) + · · · + I(8+ d , 3, 3, 3, 2, 1, 2)
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Tarasov’s method

Shift in the dimension
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Tarasov’s method

Shift in the dimension

An arbitrary scalar Feynman integral:

I(d)({si },{m2
s })∝

∏N
j=1 cj

∫∞
0
· · ·

∫∞
0

dαjα
aj−1

j

[D(α)]
d
2

e
i

[

Q({si },α)

D(α)
−
∑N

l=1
αl (m

2
l
−iǫ)

]
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Tarasov’s method

Shift in the dimension

An arbitrary scalar Feynman integral:

I(d)({si },{m2
s })∝

∏N
j=1 cj

∫∞
0
· · ·

∫∞
0

dαjα
aj−1

j

[D(α)]
d
2

e
i

[

Q({si },α)

D(α)
−
∑N

l=1
αl (m

2
l
−iǫ)

]

D
(

∂
∂m2

j

)

(polynomial differential operator) obtained from D(α) by

substituting αi → ∂j ≡ ∂/∂m2
j . The application of D(∂i ) to the

scalar integral:

I(d−2)({si }, {m
2
s }) ∝ D(∂j) I(d)({si }, {m

2
s }),
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Tarasov’s method

Shift in the dimension

An arbitrary scalar Feynman integral:

I(d)({si },{m2
s })∝

∏N
j=1 cj

∫∞
0
· · ·

∫∞
0

dαjα
aj−1

j

[D(α)]
d
2

e
i

[

Q({si },α)

D(α)
−
∑N

l=1
αl (m

2
l
−iǫ)

]

D
(

∂
∂m2

j

)

(polynomial differential operator) obtained from D(α) by

substituting αi → ∂j ≡ ∂/∂m2
j . The application of D(∂i ) to the

scalar integral:

I(d−2)({si }, {m
2
s }) ∝ D(∂j) I(d)({si }, {m

2
s }),

apply this to master integrals

Imaster (d − 2, a1, · · · , an) =
∑

i

ciI(d , a
i
1, · · · , a

i
n),
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Tarasov’s method

all scalar integrals in rhs. of that equation have to be replaced by

master integrals.

i.e.

Imaster (d − 2, a1, · · · , an) =
∑

j

DjImaster (d , a
j
1, · · · , a

j
n),
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Tarasov’s method

all scalar integrals in rhs. of that equation have to be replaced by

master integrals.

i.e.

Imaster (d − 2, a1, · · · , an) =
∑

j

DjImaster (d , a
j
1, · · · , a

j
n),

we have for all master integrals:







Id−2
1
...

Id−2
l







master

= Dll ·







Id1
...

Idl







master

where l is the number of master integrals.
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Projection method

By this method we get scalar products between loop momenta and

external momenta and no shift in the dimension of integrals

I(d , a1, · · · , an)[1,kµ1 ,k
µ
2 ,··· ] → gµν

∑

ij

I(d , a1, · · · , an)[1]kipj

Example for two loop corrections to Axial Vector Form Factors

I(d , 1, 1, 1, 1, 1, 1)[1,kµ1
1 k

µ2
1 k

ν1
2 k

ν2
2 ] → I(d ,−2, 1, 1, 1, 1, 1) + · · ·

+I(d ,−1, 0, 1, 1, 1, 1) + · · · + I(d , 0, 1, 1, 1,−2,−2)
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Projection method

The general tensor structure for the amplitude A:

A =

n∑

i=1

Bi(t, u, s)Si ,

where t, u and s are the Mandelstam variables and Si are the Dirac

structures.

Projectors for the tensor coefficients:

S
†
j A =

n∑

i=1

Bi(t, u, s)
(

S
†
j Si

︸︷︷︸
Mji

)

⇒ Bi(t, u, s) =
∑

i

M−1
ij

(

S
†
j A
)
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Projection method

The general tensor structure for the amplitude A:

A =

n∑

i=1

Bi(t, u, s)Si ,

where t, u and s are the Mandelstam variables and Si are the Dirac

structures.

Projectors for the tensor coefficients:

S
†
j A =

n∑

i=1

Bi(t, u, s)
(

S
†
j Si

︸︷︷︸
Mji

)

⇒ Bi(t, u, s) =
∑

i

M−1
ij

(

S
†
j A
)

essential for this method : to be able to calculate the inverse matrix

M−1
ij
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Tarasov’s method vs. Projection method

Tarasov’s method

Positive powers for propagators (the sum of the powers of all

propagators is large )

Calculate the inverse matrix in order to shift back the dimension
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Tarasov’s method vs. Projection method

Tarasov’s method

Positive powers for propagators (the sum of the powers of all

propagators is large )

Calculate the inverse matrix in order to shift back the dimension

Projection method

Negative powers for propagators

Calculate the inverse matrix for the projector coefficients
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Two loop corrections to Heavy Quark Form Factors

We implemented both methods to calculate the two loop corrections to

Heavy Quark Vector and axial Vector Form Factors:

[W. Bernreuther,R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia, E. Remiddi ’04]

[J. Gluza, A. Mitov, S. Moch, T. Riemann ’09 ]
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Two loop corrections to Heavy Quark Form Factors

q1

p2
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Two loop corrections to Heavy Quark Form Factors

q1

p2

There are 6 Dirac structures

(Heavy Quark Vector and axial Vector

Form Factors):
S1 = ū(q1)(1+ γ5)u(p2)p

µ
2

S2 = ū(q1)(1− γ5)u(p2)p
µ
2

S3 = ū(q1)(1+ γ5)u(p2)q
µ
1

S4 = ū(q1)(1− γ5)u(p2)q
µ
1

S5 = ū(q1)(1+ γ5)γµu(p2)

S6 = ū(q1)(1− γ5)γµu(p2)
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Two loop corrections to Heavy Quark Form Factors

q1

p2

There are 6 Dirac structures

(Heavy Quark Vector and axial Vector

Form Factors):
S1 = ū(q1)(1+ γ5)u(p2)p

µ
2

S2 = ū(q1)(1− γ5)u(p2)p
µ
2

S3 = ū(q1)(1+ γ5)u(p2)q
µ
1

S4 = ū(q1)(1− γ5)u(p2)q
µ
1

S5 = ū(q1)(1+ γ5)γµu(p2)

S6 = ū(q1)(1− γ5)γµu(p2)

Projection Tarasov

number of integrals 564 671

max sum of powers

of propagators 6 14

max sum of negative

powers of propagators 4 0

reduction time 7500 s 433260 s
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Projection Tarasov
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reduction time 7500 s 433260 s

Now one may come to the conclusion:
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method for the multi loop calculation!
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Two loop corrections to Heavy Quark Form Factors

q1

p2

There are 6 Dirac structures

(Heavy Quark Vector and axial Vector

Form Factors):
S1 = ū(q1)(1+ γ5)u(p2)p

µ
2

S2 = ū(q1)(1− γ5)u(p2)p
µ
2

S3 = ū(q1)(1+ γ5)u(p2)q
µ
1

S4 = ū(q1)(1− γ5)u(p2)q
µ
1

S5 = ū(q1)(1+ γ5)γµu(p2)

S6 = ū(q1)(1− γ5)γµu(p2)

Projection Tarasov

number of integrals 564 671

max sum of powers

of propagators 6 14

max sum of negative

powers of propagators 4 0

reduction time 7500 s 433260 s

Now one may come to the conclusion:

⇒ projection method is an alternative

method for the multi loop calculation!

but · · ·
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Two loop corrections to single Top Quark Production

There are three topological families:

t

W

t t

W W
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Two loop corrections to single Top Quark Production

There are three topological families:

t

W

t t

W W

and 11 Dirac structures:
S1 = u(q1) γ7 u(p2)u(q2) γ6γq1 u(p1)

S2 = u(q1) γ6γp1 u(p2)u(q2) γ6γq1 u(p1)

S3 = u(q1) γ6γµ1
u(p2)u(q2) γ6γµ1

u(p1)

S4 = u(q1) γ7γµ1
γp1 u(p2)u(q2) γ6γµ1

u(p1)

S5 = u(q1) γ7γµ1
γµ2

u(p2)u(q2) γ6γµ1
γµ2

γq1 u(p1)

S6 = u(q1) γ6γµ1
γµ2

γp1 u(p2)u(q2) γ6γµ1
γµ2

γq1 u(p1)

S7 = u(q1) γ6γµ1
γµ2

γµ3
u(p2)u(q2) γ6γµ1

γµ2
γµ3

u(p1)

S8 = u(q1) γ7γµ1
γµ2

γµ3
γp1 u(p2)u(q2) γ6γµ1

γµ2
γµ3

u(p1)

S9 = u(q1) γ7γµ1
γµ2

γµ3
γµ4

u(p2)u(q2) γ6γµ1
γµ2

γµ3
γµ4

γq1 u(p1)

S10 = u(q1) γ6γµ1
γµ2

γµ3
γµ4

γp1 u(p2)u(q2) γ6γµ1
γµ2

γµ3
γµ4

γq1 u(p1)

S11 = u(q1) γ6γµ1
γµ2

γµ3
γµ4

γµ5
u(p2)u(q2) γ6γµ1

γµ2
γµ3

γµ4
γµ5

u(p1)
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Two loop corrections to single Top Quark Production

Vertex corrections: both methods
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Vertex corrections

+ +

=

[

N2
C
TC

F
g4s

{

S1

[

1

m5
t





−8−11t +t2

2ǫ(t −1)3
−

−71−275t +44t2

12(t −1)3
+O(ǫ)



 −







44t

3m3
t (t −1)3

+O(ǫ)







−







2nf
3m3

t (t −1)
+O(ǫ)






+

1

m3
t



−
−8−11t +t2

3ǫ(t −1)3
+

−103−226t +41t2

18(t −1)3
+O(ǫ)





+





2nf
3mt (t −1)

+O(ǫ)



 +





12t

mt (t −1)3
+O(ǫ)



 −

(

2mt (t +1)

3(t−1)
+O(ǫ)

) ]

+S3

[

1

m4
t



−
11+12t +13t2

24ǫ(t −1)2
+

−72+169t −324t2 +303t3 +76t4 −24t5

72(t −1)3t
+O(ǫ)





+
1

m2
t

(

2
3ǫ

−
46+28t

9t
+O(ǫ)

)

+
1

m2
t





2t
3ǫ(t −1)

+
2t(1+5t −14t2)

9(t −1)3
+O(ǫ)





+
1

m2
t





n
f
(5−19t)

36(t −1)
−

n
f
(t +1)

6ǫ(t −1)
+O(ǫ)



 +
1

m2
t





5t2 +12t +19

36ǫ(t −1)2
+

29t2 −86t −87

72(t −1)2
+O(ǫ)





+
(

−nf /9+nf /(3ǫ)+O(ǫ)
)

+





n
f
t

3ǫ(t −1)
−

n
f
(3+t)

9(t −1)
+O(ǫ)





+
(

2/t −t/3+O(ǫ)
)

+





(1+3t +3t2 −t3)

3(t −1)2
+O(ǫ)





−







m2
t (3t2 +19t +28)

9
+O(ǫ)






−







m2
t t(3t

2 +4t +1)

9(t −1)
+O(ǫ)







]}

+N2
C
C2
F

{

· · ·

}

+N2
C
CF CA

{

· · ·

}]
1

m2
t

(

t −m2
W

)
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Two loop corrections to single Top Quark Production

Vertex corrections: both methods X

Planar double boxes : projection method

problem: build the inverse matrix Mji = S
†
j Si

try with common computer algebra system, e.g.

Mathematica or Maple

runtime ≈ 1 month with 64GB RAM

We calculated M−1
ji and all Planar double boxes diagrams X

Non Planar double boxes: a challenge !
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Status of the calculation for single Top Quark Production

Topology # Diagrams reduction performed checks

Vertex corrections 29 X X

Planar double boxes 6 X work in progress

Non Planar double boxes 12 work in progress –

There are two most complicated topologies, which could not be

reduced completely until now :

t

t

t

W

t t

W

t
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Conclusions

We have seen two possibilities to reduce tensor integrals to

scalar integrals

The choice of reductions method determines how difficult the

next step (IBP) is

As a test of our setup, we have calculated the O(α2
s )

contributions to the Heavy Quark Vector and Axial Vector Form

Factors, confirming the results of Bernreuther et al. and

Gluza et al.

We have also calculated the two loop vertex corrections to single

Top Quark Production
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