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# Integrand reduction and generalized unitarity: going beyond one-loop
# Multi-loop integral coefficients via computational algebraic geometry

» Two-loop hepta-cuts : planar and non-planar
[SB, Frellesvig, Zhang arXiv:1202.2019, JHEP 1204:055 (2012)]

# Three-loop maximal cuts : triple box
[SB, Frellesvig, Zhang arXiv:1207:2976, JHEP 1208:065 (2012)]




9 One-loop techniques: [Ossola,Papadopoulos,Pittau (2006)]
[Ellis,Giele,Kunszt,Melnikov (2007-2008)]
[Bern,Dixon,Dunbar,Kosower (1994)][Britto,Cachazo,Feng (2004)]

= Automation of NLO predictions for the LHC phenomenology

#» NNLO predictions in QCD would be extremely valuable!
Experimental precision will likely reach ~ 1% for a large number of processes

# Recent progress in extensions to two-loops:

s OPP reduction at two-loops [Mastrolia, Ossola arXiv:1107.6041]
[Mastrolia, Mirabella, Ossola, Peraro arXiv:1205.7087]

[Kleiss, Malamos, Papadopoulos, Verheyen arXiv:1206.4180]

s Maximal cuts via contour integration [Kosower, Larsen arXiv:1108.1180]
[Larsen arXiv:1205.0297], [Larsen, Caron-Huot arXiv:1205.0801]

[Johansson, Kosower, Larsen arXiv:1208.1754]




#» Feynman diagrams and integration-by-parts reduction
current state-of-the-art for QCD corrections

s 2 — 2 scattering amplitudes:

s Mmassless QCD [Anastasiou, Glover, Tejeda-Yeomans, Oleari (2000-2002)]
[Bern, Dixon, Kosower (2000)][Bern, De-Frietas ,Dixon (2002)]
s pp—> W+ j/e+e_ — 37 [Garland, Gerhmann, Glover, Koukoutsakis, Remiddi (2002)]
s pp—~ H+ 1 [Gerhmann, Jaquier, Glover, Koukoutsakis (2011)]

s Full NNLO predicitions for 2 — 2 processes
s ete” =35 [Gehrmann-De Ridder, Gehrmann, Glover, Heinrich (2007)]
s qQq — tt [Bernreuther, Czakon, Mitov (2012)]

#» On-shell methods for higher multiplicity at two loops?




» Maximal cut and techniques and leading singularity methods well
established in super-symmetric theories

2 — 2 2—3 24
2-loop N <4 N=4 N=4
3-loop N=4 N=4
4-loop N =4
5-loop N =4

Bern, Dixon, Kosower, Carrasco, Johansson, Cachzao, Buchbinder, Vergu,
Spradlin, Volovich, Wen, Roiban, Drummond, Henn, Korchemsky, Sokatchey,
Plefka, Alday, Schuster, Eden, Helsop, Smirnoy, ...

» Additional symmetries make amplitudes simpler, e.g. dual conformal
symmetry

» Would nice if some of this applied to QCD...
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# Scalar integral < 4-point functions form a basis with rational coefficients

AN — ¢, + Cg?ﬂ( + O >®<

» Integrand representation (OPP) : Ay(k-w) = Cy + Cuk - w

# 2 solutions to {I? = 0}:

204 = A4(k(1) -w) + A4(k(2) . w)




o Complete basis of scalar integrals unknown

# Progress in understanding the planar case [See Gluza’s Talk]
[Gluza, Kosower, Kajda arXiv:1009.0472]
[Schabinger arXiv:1111.4220]

# No longer just scalar integrals, also tensor integrals in basis




# Integrand is polynomial in irreducible scalar products (ISPs)
spanned by indep. ext. moms. : {p1,...,px} and spurious vecs. : {w1,...,w;}.

#» Gram matrix gives (non-linear) constraints on the polynomial form.

V1 ...0U0np
G ,Gij:vi-rj
1T ...Tn

# Important to identify spurious terms which integrate to zero.

A(2)_// dPky  dPky Z » Ap 1 ({ki -pj, ki -w;},e€)
47T D/2 47T D/2 T, ctopologies f:1 lz‘(kh kz)




# Integrand is polynomial in irreducible scalar products (ISPs)
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sum from 3to 11 propagators (8 In 4-D)




# Integrand is polynomial in irreducible scalar products (ISPs)
spanned by indep. ext. moms. : {p1,...,px} and spurious vecs. : {w1,...,w;}.

#» Gram matrix gives (non-linear) constraints on the polynomial form.
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1T ...Tn

# Important to identify spurious terms which integrate to zero.

(2>_// A"k dks S Apr, ({ki - pj ki - wi}ye)
47T D/2 47T D/2 Ty Etopglogms f:1 li(lﬁ,kg)

sum over all topologies e.g. planar and non-planar




# Integrand is polynomial in irreducible scalar products (ISPs)
spanned by indep. ext. moms. : {p1,...,px} and spurious vecs. : {w1,...,w;}.

#» Gram matrix gives (non-linear) constraints on the polynomial form.

V1 ...0U0np
G ,G,,;j:v,,;-rj
1T ...Tn

# Important to identify spurious terms which integrate to zero.

A(2)_// dPky  dPky Z » Ap 1 ({ki -pj, ki -w;},e€)
47T D/2 47T D/2 T, ctopologies f:1 li(kl k2)

Integrand parametrised as coeff x ISP
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# Integrand is polynomial in irreducible scalar products (ISPs)
spanned by indep. ext. moms. : {p1,...,px} and spurious vecs. : {w1,...,w;}.

#» Gram matrix gives (non-linear) constraints on the polynomial form.

V1 ...0U0np
G ,G,,;j:v,,;-rj
1T ...Tn

# Important to identify spurious terms which integrate to zero.

A(2)_// dPky  dPky Z » Ap 1 ({ki -pj, ki -w;},e€)
47T D/2 47T D/2 T, ctopologies f:1 lz‘(kh k2)

Set of propagators for given topology
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D4 p1

RSPs :
2k1 -p1 = —(1 —191)2—|—l2
] [ ] 1-P1 1 1
1] 7] Vs 2y py = —12 + 12
/ l6 l5 \
p3 D9

o ISPS:{kl'p47k2'plak1'wak2'w}
9 A:co+clk1-p4+---+cl6k1-w—I—...
» Everything will be simplifed to 4 dimensions from now on. ..




# On asolution to {I# = 0} the integrand factorizes onto a product of
tree-level amplitudes

» Algorithm to fit a generic integrand:

s Parametrize the full set of on-shell solutions, z§8>(ﬁ, ey Tp)
s ldentify the ISPs on this solution:

ki-pj = fij(T1,...,7p)
s Construct and solve the resulting linear system:

A(S)(Tl,...,Tp) = ZdaTl...Tp

—

M-c=d




e

Take a top-down approach to fitting each A
Subtract previously determined poles, e.g.

5

o 0) Aq, box|box
A6;tri|box — H Az ( Z dz]Tsz
=1

Fitting can be done numerically or analytically
Total number of topologies is still very large.. ..

Towards automation:
Solving the non-linear integrand constraints using algebraic geometry
[Zhang arXiv:1205.5705]

Public Mathematica code Basi sDet [http://www.nbi.dk/~zhang/BasisDet.html]




o B = {1)1,1)2’1)3,1)4}’ [G4]ij = v; - U, P = {l%, .. ,1129}

o Gram matrix [G4];; = v; - v;. t0 re-write scalar products:

(b-v1)

-1 b- vy
a-b=(a-via-v2a-vza-vs) Gy
b - vs

ey

o o o o

Remove [ from R (R/I) = Integrand Basis = A(ISPs).

s Carried out using Grobner bases and polynomial division

Re-write P using (??) = set of equations for the scalar products.
{P; = 0} has linear parts (RSPs) non-linear parts : ISP constraints =

(1)

Construct general ISP polynomial using renormalization constraints = R




# primary decomposition of ideals to identify all on-shell solutions
[Lasker-Noether theorem (1905,1921)]

# Decompose Z(I) ~ {I = 0} into a finite number of irreducible
components

s e.g. consider I = {z? — 3%}
I={z+ylU{z—yt=2Z(I)={x+y=0}U{z—y =0}

#» Prime decomposition "factorizes" all solutions to identify different
branches.

# Available in the public Macaul ay?2 program [http://www.math. uiuc.edu/Macaulay2/]

All of this applies to higher loops as well!




Topology ISPs (non-spurious+spurious) | |A|(non-sp.+sp.) | #branches(dimension)

2+2 32(16 + 16) 6(1)

O

/ 242 38(19 + 19) 8(1)

2+1 20(10 + 10) 2(2)

1+4 69(18 + 51) 4(2)




Topology ISPs (non-spurious+spurious) | |A|(non-sp.+sp.) | #branches(dimension)
2+2 32(16 + 16) 4(1)
>@< 2+6 42(12 + 30) 1(5)
4+3 398(199 + 199) 14(2)
5+3 584(292 + 292) 12(2) + 4(3)




#» The integrand representation contains hundreds of integrals

» From this form we can apply further identities from conventional IBPs
[Tkachov, Chetyrkin (1980)]

» Doubled propagators can be allowed at this stage

» Public codes: [AIR, Anastasiou, Lazopoulos (2004)]
[FIRE, Smirnov ,Smirnov (2008)]
[Reduze2, Studerus, von Manteuffel (2009-2011)]

d*ky d*k Ay ({ki - piski-w;})
A(2)_// 1 2 P,Lp J J
47'(' 2 Z Z le li(kl,kg)

p=3 T, ctopologies




#» The integrand representation contains hundreds of integrals

» From this form we can apply further identities from conventional IBPs
[Tkachov, Chetyrkin (1980)]

» Doubled propagators can be allowed at this stage

» Public codes: [AIR, Anastasiou, Lazopoulos (2004)]
[FIRE, Smirnov ,Smirnov (2008)]
[Reduze2, Studerus, von Manteuffel (2009-2011)]

d*k, d*k ¢t - By
A<2>_// L 0k , B,
47'(' % Z Z Hle li(kl, kg)

p=3 T, ctopologies




#» The integrand representation contains hundreds of integrals

» From this form we can apply further identities from conventional IBPs
[Tkachov, Chetyrkin (1980)]

» Doubled propagators can be allowed at this stage

» Public codes: [AIR, Anastasiou, Lazopoulos (2004)]
[FIRE, Smirnov ,Smirnov (2008)]
[Reduze2, Studerus, von Manteuffel (2009-2011)]

A(Q)_// dkl d4k2 C-B
H?:l li(kla k2)




#» The integrand representation contains hundreds of integrals

» From this form we can apply further identities from conventional IBPs
[Tkachov, Chetyrkin (1980)]

» Doubled propagators can be allowed at this stage

» Public codes: [AIR, Anastasiou, Lazopoulos (2004)]

[FIRE, Smirnov ,Smirnov (2008)]
[Reduze2, Studerus, von Manteuffel (2009-2011)]

A(Q)_// dkl d4k2 C-B
[T, Li(k1, ko)

d4k d4k B’
AD =C .- M / / > 2
e _ 1 li(k1, k2)




# The integrand representation contains hundreds of integrals

#» From this form we can apply further identities from conventional IBPs
[Tkachov, Chetyrkin (1980)]

# Doubled propagators can be allowed at this stage

» Public codes : [AIR, Anastasiou, Lazopoulos (2004)]

[FIRE, Smirnov ,Smirnov (2008)]
[Reduze2, Studerus, von Manteuffel (2009-2011)]

solution to system of IBPs :

A(Q)_// dkl d4k2 C*-E
Li(K, K . -
=1 (1 2) ffB:M[BPffB/




Compute A({ISPs}) = ¢ Solve {I2 =0} = d
Polynomial Division Primary Decomposition

1IBPs
1

Formula for MI coeff.
Crrr(d)




Two-loop Hepta-cuts: planar and non-planar (s, Frellesvig, Zhang arXiv:1202.2019]
IBPs with FI RE [AV Smirnov,VA Smirnov]
General analytic formulae for the Ml coefficients

e o o @

Check gg — gg scattering with adjoint fermions and scalars
[Full agreement with Bern, De-Freitas, Dixon (2002)]

Wt | T%% T\l
NN |

— -— -—

i N L T

38 x 32 system, 2 Mls 48 x 38 system, 2 MIs 20 x 20 system, no MIs




Planar triple box [SB, Frellesvig, Zhang arXiv:1207.2796]
IBPs with Reduze? [Studerus, von Manteuffel]
General analytic formulae for the Ml coefficients

14 branches of the on-shell solutions

e o o o ©

New results valid in non-supersymmetric theories (QCD)

622 x 398 system, 3 MIs(!)
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» A few small steps towards automated multi-loop amplitudes

» Computational algebraic geometry for integrand reduction
s efficent solutions to constraint equations
s generalizes easily to D-dimensional systems

» We didn’'t address the evaluation of the Master Integrals

» |IBPs with many scales are hard:
s massive amplitudes, higher multiplicity
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