Integrand Reduction Techniques for Multi-Loop Amplitudes

Simon Badger (NBIA & Discovery Center)

11th September 2012

Frontiers in Perturbative Quantum Field Theory, Bielefeld University

Outline

- Integrand reduction and generalized unitarity: going beyond one-loop
- Multi-loop integral coefficients via computational algebraic geometry
- Two-loop hepta-cuts : planar and non-planar

[SB, Frellesvig, Zhang arXiv:1202.2019, JHEP 1204:055 (2012)]

Three-loop maximal cuts: triple box

[SB, Frellesvig, Zhang arXiv:1207:2976, JHEP 1208:065 (2012)]

Background

One-loop techniques:

[Ossola, Papadopoulos, Pittau (2006)]

[Ellis, Giele, Kunszt, Melnikov (2007-2008)]

[Bern, Dixon, Dunbar, Kosower (1994)][Britto, Cachazo, Feng (2004)]

- ⇒ Automation of NLO predictions for the LHC phenomenology
- NNLO predictions in QCD would be extremely valuable! Experimental precision will likely reach $\sim 1\%$ for a large number of processes
- Recent progress in extensions to two-loops:
 - OPP reduction at two-loops

[Mastrolia, Ossola arXiv:1107.6041]

[Mastrolia, Mirabella, Ossola, Peraro arXiv:1205.7087]

[Kleiss, Malamos, Papadopoulos, Verheyen arXiv:1206.4180]

Maximal cuts via contour integration

[Kosower, Larsen arXiv:1108.1180]

[Larsen arXiv:1205.0297], [Larsen, Caron-Huot arXiv:1205.0801]

[Johansson, Kosower, Larsen arXiv:1208.1754]

Background

- Feynman diagrams and integration-by-parts reduction current state-of-the-art for QCD corrections
 - $2 \rightarrow 2$ scattering amplitudes:
 - massless QCD

[Anastasiou, Glover, Tejeda-Yeomans, Oleari (2000-2002)]

[Bern, Dixon, Kosower (2000)][Bern, De-Frietas, Dixon (2002)]

• $pp \to W + j/e^+e^- \to 3j$ [Garland, Gerhmann, Glover, Koukoutsakis, Remiddi (2002)]

• pp o H + 1j [Gerhmann, Jaquier, Glover, Koukoutsakis (2011)]

• Full NNLO predicitions for $2 \rightarrow 2$ processes

• $e^+e^- \rightarrow 3i$ [Gehrmann-De Ri

 $e^+e^- \to 3j \qquad \qquad \text{[Gehrmann-De Ridder, Gehrmann, Glover, Heinrich (2007)]} \\ \bullet \quad q\bar{q} \to t\bar{t} \qquad \qquad \text{[Bernreuther, Czakon, Mitov (2012)]}$

On-shell methods for higher multiplicity at two loops?

Background

 Maximal cut and techniques and leading singularity methods well established in super-symmetric theories

$$2 \to 2 \qquad 2 \to 3 \qquad 2 \to 4$$
 2-loop $\mathcal{N} \le 4 \qquad \mathcal{N} = 4 \qquad \mathcal{N} = 4$ 3-loop $\mathcal{N} = 4 \qquad \mathcal{N} = 4$ 5-loop $\mathcal{N} = 4$

Bern, Dixon, Kosower, Carrasco, Johansson, Cachzao, Buchbinder, Vergu, Spradlin, Volovich, Wen, Roiban, Drummond, Henn, Korchemsky, Sokatchev, Plefka, Alday, Schuster, Eden, Helsop, Smirnov, ...

- Additional symmetries make amplitudes simpler, e.g. dual conformal symmetry
- Would nice if some of this applied to QCD...

One-Loop Overview

• Scalar integral ≤ 4 -point functions form a basis with rational coefficients

$$A_n^{(1)} = C_4 + C_3 + C_2 + C_2 + C_2^{[4]} + C_3^{[4]} + C_3^{[2]} + C_2^{[2]} + C_2^$$

- Integrand representation (OPP) : $\Delta_4(k\cdot\omega)=C_4+\tilde{C}_4k\cdot\omega$
- 2 solutions to $\{l_i^2 = 0\}$:

$$2C_4 = \Delta_4(k^{(1)} \cdot \omega) + \Delta_4(k^{(2)} \cdot \omega)$$

Two-Loop Integral Bases

- Complete basis of scalar integrals unknown
- Progress in understanding the planar case

[See Gluza's Talk]

[Gluza, Kosower, Kajda arXiv:1009.0472]

[Schabinger arXiv:1111.4220]

No longer just scalar integrals, also tensor integrals in basis

- Integrand is polynomial in irreducible scalar products (ISPs) spanned by indep. ext. moms. : $\{p_1, \ldots, p_k\}$ and spurious vecs. : $\{\omega_1, \ldots, \omega_j\}$.
- Gram matrix gives (non-linear) constraints on the polynomial form.

$$G\begin{pmatrix} v_1 \dots v_n \\ r_1 \dots r_n \end{pmatrix}, G_{ij} = v_i \cdot r_j$$

Important to identify spurious terms which integrate to zero.

$$A_n^{(2)} = \int \int \frac{d^D k_1}{(4\pi)^{D/2}} \frac{d^D k_2}{(4\pi)^{D/2}} \sum_{p=3}^{11} \sum_{T_p \in \text{topologies}} \frac{\Delta_{p,T_p}(\{k_i \cdot p_j, k_i \cdot \omega_j\}, \epsilon)}{\prod_{i=1}^p l_i(k_1, k_2)}$$

- Integrand is polynomial in irreducible scalar products (ISPs) spanned by indep. ext. moms. : $\{p_1, \ldots, p_k\}$ and spurious vecs. : $\{\omega_1, \ldots, \omega_j\}$.
- Gram matrix gives (non-linear) constraints on the polynomial form.

$$G\begin{pmatrix} v_1 \dots v_n \\ r_1 \dots r_n \end{pmatrix}, G_{ij} = v_i \cdot r_j$$

Important to identify spurious terms which integrate to zero.

$$A_n^{(2)} = \int \int \frac{d^D k_1}{(4\pi)^{D/2}} \frac{d^D k_2}{(4\pi)^{D/2}} \sum_{p=3}^{11} \sum_{T_p \in \text{topologies}} \frac{\Delta_{p,T_p}(\{k_i \cdot p_j, k_i \cdot \omega_j\}, \epsilon)}{\prod_{i=1}^p l_i(k_1, k_2)}$$

sum from 3 to 11 propagators (8 in 4-D)

- Integrand is polynomial in irreducible scalar products (ISPs) spanned by indep. ext. moms. : $\{p_1, \ldots, p_k\}$ and spurious vecs. : $\{\omega_1, \ldots, \omega_j\}$.
- Gram matrix gives (non-linear) constraints on the polynomial form.

$$G\begin{pmatrix} v_1 \dots v_n \\ r_1 \dots r_n \end{pmatrix}, G_{ij} = v_i \cdot r_j$$

Important to identify spurious terms which integrate to zero.

$$A_n^{(2)} = \int \int \frac{d^D k_1}{(4\pi)^{D/2}} \frac{d^D k_2}{(4\pi)^{D/2}} \sum_{p=3}^{11} \sum_{T_p \in \text{topologies}} \frac{\Delta_{p,T_p}(\{k_i \cdot p_j, k_i \cdot \omega_j\}, \epsilon)}{\prod_{i=1}^p l_i(k_1, k_2)}$$

sum over all topologies e.g. planar and non-planar

- Integrand is polynomial in irreducible scalar products (ISPs) spanned by indep. ext. moms. : $\{p_1, \ldots, p_k\}$ and spurious vecs. : $\{\omega_1, \ldots, \omega_j\}$.
- Gram matrix gives (non-linear) constraints on the polynomial form.

$$G\begin{pmatrix} v_1 \dots v_n \\ r_1 \dots r_n \end{pmatrix}, G_{ij} = v_i \cdot r_j$$

Important to identify spurious terms which integrate to zero.

$$A_n^{(2)} = \int \int \frac{d^D k_1}{(4\pi)^{D/2}} \frac{d^D k_2}{(4\pi)^{D/2}} \sum_{p=3}^{11} \sum_{T_p \in \text{topologies}} \frac{\Delta_{p,T_p}(\{k_i \cdot p_j, k_i \cdot \omega_j\}, \epsilon)}{\prod_{i=1}^p l_i(k_1) k_2)}$$

Integrand parametrised as coeff × ISP

- Integrand is polynomial in irreducible scalar products (ISPs) spanned by indep. ext. moms. : $\{p_1, \ldots, p_k\}$ and spurious vecs. : $\{\omega_1, \ldots, \omega_j\}$.
- Gram matrix gives (non-linear) constraints on the polynomial form.

$$G\begin{pmatrix} v_1 \dots v_n \\ r_1 \dots r_n \end{pmatrix}, G_{ij} = v_i \cdot r_j$$

Important to identify spurious terms which integrate to zero.

$$A_n^{(2)} = \int \int \frac{d^D k_1}{(4\pi)^{D/2}} \frac{d^D k_2}{(4\pi)^{D/2}} \sum_{p=3}^{11} \sum_{T_p \in \text{topologies}} \frac{\Delta_{p,T_p}(\{k_i \cdot p_j, k_i \cdot \omega_j\}, \epsilon)}{\prod_{i=1}^p l_i(k_1, k_2)}$$

Set of propagators for given topology

Example: Planar Double Box

- ISPs = $\{k_1 \cdot p_4, k_2 \cdot p_1, k_1 \cdot \omega, k_2 \cdot \omega\}$
- Everything will be simplifed to 4 dimensions from now on...

Generalized Unitarity Cuts

- On a solution to $\{l_i^2=0\}$ the integrand factorizes onto a product of tree-level amplitudes
- Algorithm to fit a generic integrand:
 - Parametrize the full set of on-shell solutions, $l_i^{(s)}(au_1,\ldots, au_p)$
 - Identify the ISPs on this solution:

$$k_i \cdot p_j = f_{ij}(\tau_1, \dots, \tau_p)$$

Construct and solve the resulting linear system:

$$\Delta^{(s)}(\tau_1, \dots, \tau_p) = \sum d_a \tau_1 \dots \tau_p$$

$$\mathbf{M} \cdot \vec{c} = \vec{d}$$

Integrand Reduction

- Take a top-down approach to fitting each Δ
- Subtract previously determined poles, e.g.

$$\Delta_{6; \text{tri}|\text{box}} = \prod_{i=1}^{5} A_i^{(0)} - \frac{\Delta_{7; \text{box}|\text{box}}}{(k_1 - p_1)^2} = \sum_{i,j} d_{ij} \tau_i \tau_j$$

- Fitting can be done numerically or analytically
- Total number of topologies is still very large....
- Towards automation:
 Solving the non-linear integrand constraints using algebraic geometry

[Zhang arXiv:1205.5705]

Public Mathematica code BasisDet

[http://www.nbi.dk/~zhang/BasisDet.html]

An Algorithm for the Integrand Basis

- $B = \{v_1, v_2, v_3, v_4\}, [G_4]_{ij} = v_i \cdot v_j, P = \{l_1^2, \dots, l_p^2\}$
- Gram matrix $[G_4]_{ij} = v_i \cdot v_j$. to re-write scalar products:

$$a \cdot b = (a \cdot v_1 \ a \cdot v_2 \ a \cdot v_3 \ a \cdot v_4) \ G_4^{-1} \quad \begin{pmatrix} b \cdot v_1 \\ b \cdot v_2 \\ b \cdot v_3 \\ b \cdot v_4 \end{pmatrix}$$
 (1)

- Re-write P using (??) \Rightarrow set of equations for the scalar products.
- $\{P_i=0\}$ has linear parts (RSPs) non-linear parts : ISP constraints = I
- Construct general ISP polynomial using renormalization constraints = R
- Remove I from R $(R/I) \Rightarrow$ Integrand Basis $= \Delta(ISPs)$.
 - Carried out using Gröbner bases and polynomial division

Solving the On-Shell Contraints

primary decomposition of ideals to identify all on-shell solutions

[Lasker-Noether theorem (1905,1921)]

- Decompose $Z(I) \sim \{I=0\}$ into a finite number of irreducible components
 - e.g. consider $I = \{x^2 y^2\}$ $I = \{x + y\} \cup \{x y\} \Rightarrow Z(I) = \{x + y = 0\} \cup \{x y = 0\}$
- Prime decomposition "factorizes" all solutions to identify different branches.
- Available in the public Macaulay2 program [http://www.math.uiuc.edu/Macaulay2/]

All of this applies to higher loops as well!

A Few Examples

Topology	ISPs (non-spurious+spurious)	$ \Delta $ (non-sp.+sp.)	#branches(dimension)
	2+2	32(16+16)	6(1)
	2+2	38(19+19)	8(1)
	2+1	20(10+10)	2(2)
	1+4	69(18 + 51)	4(2)

A Few Examples

Topology	ISPs (non-spurious+spurious)	$ \Delta $ (non-sp.+sp.)	#branches(dimension)
	2+2	32(16+16)	4(1)
	2+6	42(12+30)	1(5)
	4+3	398(199 + 199)	14(2)
	410	000(100 100)	11(2)
	5.0	F0.4(200 + 200)	10(0) + 4(0)
	5+3	584(292+292)	12(2) + 4(3)

- The integrand representation contains hundreds of integrals
- From this form we can apply further identities from conventional IBPs

[Tkachov, Chetyrkin (1980)]

- Doubled propagators can be allowed at this stage
- Public codes :

[AIR, Anastasiou, Lazopoulos (2004)]

[FIRE, Smirnov, Smirnov (2008)]

$$A_n^{(2)} = \int \int \frac{d^4k_1}{(4\pi)^2} \frac{d^4k_2}{(4\pi)^2} \sum_{p=3}^8 \sum_{T_p \in \text{topologies}} \frac{\Delta_{p,T_p}(\{k_i \cdot p_j, k_i \cdot \omega_j\})}{\prod_{i=1}^p l_i(k_1, k_2)}$$

- The integrand representation contains hundreds of integrals
- From this form we can apply further identities from conventional IBPs

[Tkachov, Chetyrkin (1980)]

- Doubled propagators can be allowed at this stage
- Public codes :

[AIR, Anastasiou, Lazopoulos (2004)]

[FIRE, Smirnov ,Smirnov (2008)]

$$A_n^{(2)} = \int \int \frac{d^4k_1}{(4\pi)^2} \frac{d^4k_2}{(4\pi)^2} \sum_{p=3}^8 \sum_{T_n \in \text{topologies}} \frac{c_{T_p}^{\rightarrow} \cdot \vec{B}_{T_p}}{\prod_{i=1}^p l_i(k_1, k_2)}$$

- The integrand representation contains hundreds of integrals
- From this form we can apply further identities from conventional IBPs

[Tkachov, Chetyrkin (1980)]

- Doubled propagators can be allowed at this stage
- Public codes :

[AIR, Anastasiou, Lazopoulos (2004)]

[FIRE, Smirnov ,Smirnov (2008)]

$$A_n^{(2)} = \int \int \frac{d^4k_1}{(4\pi)^2} \frac{d^4k_2}{(4\pi)^2} \frac{\vec{C} \cdot \vec{B}}{\prod_{i=1}^n l_i(k_1, k_2)}$$

- The integrand representation contains hundreds of integrals
- From this form we can apply further identities from conventional IBPs

[Tkachov, Chetyrkin (1980)]

- Doubled propagators can be allowed at this stage
- Public codes :

[AIR, Anastasiou, Lazopoulos (2004)]

[FIRE, Smirnov, Smirnov (2008)]

$$A_n^{(2)} = \int \int \frac{d^4k_1}{(4\pi)^2} \frac{d^4k_2}{(4\pi)^2} \frac{\vec{C} \cdot \vec{B}}{\prod_{i=1}^n l_i(k_1, k_2)}$$

$$A_n^{(2)} = \vec{C} \cdot M_{IBP} \cdot \int \int \frac{d^4k_1}{(4\pi)^2} \frac{d^4k_2}{(4\pi)^2} \frac{\vec{B'}}{\prod_{i=1}^n l_i(k_1, k_2)}$$

- The integrand representation contains hundreds of integrals
- From this form we can apply further identities from conventional IBPs

[Tkachov, Chetyrkin (1980)]

- Doubled propagators can be allowed at this stage
- Public codes:

[AIR, Anastasiou, Lazopoulos (2004)]

[FIRE, Smirnov, Smirnov (2008)]

[Reduze2, Studerus, von Manteuffel (2009-2011)]

$$A_n^{(2)} = \int \int \frac{d^4k_1}{(4\pi)^2} \frac{d^4k_2}{(4\pi)^2} \frac{\vec{C} \cdot \vec{B}}{\prod_{i=1}^n l_i(k_1, k_2)}$$

solution to system of IBPs : $\int \int \vec{B} = M_{IBP} \cdot \int \int \vec{B}'$

$$\int \int \vec{B} = M_{IBP} \cdot \int \int \vec{B}'$$

$$A_n^{(2)} = \vec{C} \cdot M_{IBP} \cdot \int \int \frac{d^4k_1}{(4\pi)^2} \frac{d^4k_2}{(4\pi)^2} \frac{\vec{B'}}{\prod_{i=1}^n l_i(k_1, k_2)}$$

Integrand Reduction Procedure

Applications and Tests

- Two-loop Hepta-cuts: planar and non-planar [SB, Frellesvig, Zhang arXiv:1202.2019]
- IBPs with FIRE [AV Smirnov, VA Smirnov]
- General analytic formulae for the MI coefficients
- Check gg o gg scattering with adjoint fermions and scalars

[Full agreement with Bern, De-Freitas, Dixon (2002)]

 38×32 system, 2 MIs

 48×38 system, 2 MIs

 20×20 system, no MIs

Application at Three Loops

Planar triple box

[SB, Frellesvig, Zhang arXiv:1207.2796]

IBPs with Reduze2

[Studerus, von Manteuffel]

- General analytic formulae for the MI coefficients
- 14 branches of the on-shell solutions
- New results valid in non-supersymmetric theories (QCD)

 622×398 system, 3 MIs(!)

Outlook

- A few small steps towards automated multi-loop amplitudes
- Computational algebraic geometry for integrand reduction
 - efficent solutions to constraint equations
 - ullet generalizes easily to D-dimensional systems
- We didn't address the evaluation of the Master Integrals
- IBPs with many scales are hard:
 - massive amplitudes, higher multiplicity