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Outlook:

® Motivation: Homotopy invariance and Chen’s theorem

® Construction of the class By, of universal polylogarithms of several variables

® |Integration over Feynman parameters by use of Bn,



Iterated integrals

" !

I'(aw, aw—1, -, 32, 31; X) = / x(") dX( w). / faz(X//)dX// / fa1(X/)dxl
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where the differential 1-forms belong to a chosen set .

Example:

Qpolylogs = dx —X} determines classical polylogarithms:

Liw(x) = [%| |dx\ i ]or multiple polylogarithms in one variable:
d dx| dx | d dx | _d:

Lingm..(x) = [ [ 1 IS 2 15 1501125

Alternatively: View / as an integral along a path v
I(aw, dw—1, ..., @2, a1, X) = / Way, ---Way
v

where 7 and the smooth 1-forms wa,, ..., wa, are defined on a smooth manifold.



Homotopy invariance

Definition: Two paths v4 and ~g are called homotopic if they
begin and end in the same points and can be continuously
transformed into each other.

Definition: An integral /[v] = jﬂ/ Ww ... is called homotopy inva-
riant or a homotopy functional, if for homotopic paths it defines
the same function:

Ya; ¥8 homotopic = I[ya] = I[v8].

® A homotopy functional depends on the endpoint, but not on ~ itself.

® All prominent iterated integrals used in physics (HPLs, 2dHPLs, ...) are

homotopy functionals.

® However, if we consider more than one variable, homotopy invariance is not
automatic.



® Simple case:
Ihl(z) = [, w

® one-fold integral with only one smooth 1-form w,
® ~ with fixed initial point 0 and variable endpoint, given by
one variable z.

Condition: [/ is homotopy invariant if and only if w is closed.

(Proof by Stokes’ theorem.)

® Generic case:
I[’V](Zlv ceey Zn) = ZI’Y Ww...W1

® (linear combination of) iterated integrals over several
smooth 1-forms,

® ~ with fixed initial point 0 and variable endpoint in n
dimensions, given by several variables z;, ..., z,.

What is the condition for / to be homotopy invariant?



Chen 1977:
Consider tensor products of 1-forms in a given set Q :

W1 ® ... @wm = [wi]...]wm] -

Define a map D by

n m—1
D ([wr |- lwm]) = 3 [t loj1dei iy [ lwml+ 3 [ ]eelwi|f A @i o leom]
i=1 i=1

We say that [wi]|...Jwm] satisfies the integrability condition if

D ([w1]---|wn]) = 0.

Define Bm(£2) to be the set of all integrable words, i.e. the (linear combinations of)
tensor products, satisfying this condition:

m(@) = &= Z > [wi1|~~~|w;,] such that D& =0

1=0 iy, ..., 0f



Consider the simple integration map from tensor products to iterated integrals

Z Z [Wi1|...|wi,] Z Z /w,l.,,w,-’,

1=0iy, ..., 0 1=0iy, ..., 0

Chen’s theorem (1977):

The integration map is an isomorphism from Bm(Q2) to the set of

all homotopy invariant iterated integrals of length m with 1-forms in Q.

® Every integrable word ¢ € B, (2) maps to a homotopy invariant iterated
integral / with forms in Q.

® Reversely: If | with forms in Q is homotopy invariant then it comes from an
integrable word £ € B, ().



Remark:
The integrability condition

m m—1
(Wil |wi—aldwilwisa |- Jwm] + > Wil wi—alwi A wia]|wm] = 0
i=1 i=1

is trivially satisfied if all w; are closed f; dt (as f; dt A f; dt = 0).

Example: Harmonic Polylogarithms (Remiddi, Vermaseren 1999)

Q dt dt dt
HPL =94 —» 7 s 7
t’1—t 1+t
The condition is not trivial if we consider several endpoint variables zi, ..., z, and

several dty, ..., dt, in the 1-forms.



Explicit construction of B, (€2,) with n variables:
Take the auxiliary set

& — dt; dtg tadty tat3dty (H?:z ti) dty
Sl l-n’ 1ot 1-ttts’ 71— (T, &)

Bm(ﬁ,,) are all possible length-m tensor products of forms in ﬁ,,.
They define functions of one variable t; with constant parameters to, ..., tn.
(Hyperlogarithms)

dt dtn  d ([jen ti
Q, = —1, ey — M for all non-empty A C {t1, ..., tn} ¢ .
51 th 11— (Hie/\ i)

. _ Jdty dtz dy dto tadty +ty dts
Example: 25 = ty ) tp ) 1—ty’ 1—ta’' 1—t1ts

Here the integrability condition is non-trivial.

There is an explicit map ) : Bm, (fl,,) — Bm(f2n) from which we obtain all elements

of Bm(S2n). (sometimes called 'the symbol’)



Example:

5 {dtl dty  tadf }
Q=4 —, b T
th 1-t 1-tt

{ dty dty dt dty  tadty + tidt }
Q=17 T2
1—-titp

[ ]
/n tadt; tzdtl} . |:t1dt2—|—t2dt1i|:/t2 ty dt} +/t1 b2 dt]
o l—titz  |l1-titz -t | Jo 1-nt  Jo T-tn
=In(1 — t1t2)
[
dty | tzdtl} . [ dts | dt; }+{ do  diz _&|fzdt1+t1dt2
11—t 1-tibo 11—t 1-t 1-8 11—t t2

1—titn
= Lipi(t1, t2)



Consider B1(Q2n), ..., Bm(2n) and let Bm(2n) be the Q-vectorspace of all

corresponding functions.

Why is this a good class of functions?

Homotopy invariance = well-defined functions of n variables
® 1) maps complicated functional relations to trivial identities.
® Closed under taking primitives:
The primitive [ > dx;f;I7 (where I+ € Bm(2n) and where f; have the same

denominators as w € Q,) belongs again to Bm(2n)T. (Brown '05)
There is an algorithm for taking primitives.

® Limits at zero and one are under control:
One obtains combinations of I+ € Bm(Q2,) and multiple zeta values. (Brown '05)

There is an algorithm for taking limits at zero and one.

We can integrate from zero to one and the result stays in this class of functions.



Our Maple-program

® contains an implementation of the map v and the functions Bm(Q2n).

® allows to differentiate, take primitives and limits (at 0 and 1) of functions in
Bm(Q2n).

® computes integrals of the form

/:/ Zd 2 [dgl dg2|..},

82

dgy | d,
where [f | 42 | ] ,€ Bm(Sn)
Denominator condition: All gy, g1, ... are denominators of w; € Q,.

® The result lands in the same class of functions (with MZV prefactors)

Remark: This integration step was trivial for one-variable iterated integrals,

1

e.g. / dx f;(x) HPL(...; x) = HPL(a;, ...; 1) by definition.
JO N———
€QupL

For n-variable iterated integrals, the step is not trivial (but algorithmically solved).



Systematic Integration over Feynman Parameters (Brown '08)

® |teratively integrate out all n Feynman parameters by use of Bm(Q2n).
® Start with finite integrals, e.g. of a primitively divergent vacuum graph:

/oo /oo <1_NI > < i 1
dx; | 61— X; | —=
2
0 0 i=1 i=1 u
® Condition: After each integration, the new integrand can be written as as a
sum of terms
b; [dfl | dfs | }
ol f
such that there is a x, in which the f; are linear polynomials.
Then they can be mapped to the above type of integrals .

= equivalent to the above Denominator Condition

® Map the denominators in the integrand the denominators of 2, and integrate
with our program.

Which Feynman graph satisfies the condition? In which order can we integrate?

= Polynomial reduction algorithm



Polynomial reduction (Brown '08)

® Input: A first Symanzik polynomial ¢/ and an ordering (Xry, Xra, .., Xr,) Of the
n Feynman parameters.

® Qutput: A sequence Sy, ..., Sp of sets of polynomials in the Feynman
parameters.
These polynomials are the denominators f; which we map to the denominators
of Q,.

® Call the graph polynomial reducible if for all 1 < k < n every polynomial in
Sk is linear in Xy -

=Then the denominator condition is satisfied.
= The integral can be computed by use of Bm (Qn).

A very large class of graphs is already known to be polynomial reducible. (Brown '09)

Using hyperlogarithms, the strategy was already applied to relevant integrals of QCD.

(Ablinger, Bliimlein, Hasselhuhn, Schneider, Wissbrock '12)



At first we consider primitively (UV-) divergent vacuum graphs (= corresponding
propagator integrals) which are polynomial-reducible.

How severe are these restrictions?

® Beyond primitive divergence: By a method of Brown and Kreimer (2012) we

can consider graphs with sub-divergences,

® Beyond vacuum graphs: Try to include the second Symanzik polynomial F in
the above algorithms.

First question: Which graphs have reducible second Symanzik polynomials?

® Beyond polynomial-reducibility?: Maybe by extending the class of functions.
However, we are optimistic that many interesting graphs are polynomial
reducible.



Conclusions:

The functions Bm(Qn) :
® From an appropriate set of 1-forms 2, we construct integrable words.

® Chen’s theorem = These give homotopy invariant iterated integrals, i.e.
well-defined functions of n variables.

® \We can compute definite integrals without leaving this class of functions
(together with multiple zeta values).

Integrating out Feynman parameters with Bm () :
® Polynomial reduction tells us, if and in which order we can integrate out the
Feynman parameters.
® \We iteratively integrate without leaving the class of functions Bm(2n).



A well known functional equation is the five-term-relation:

—Lip (11 - ) —Lip (::’_{) +Lia (xy)—Liz (x)—Lia (y) = % In2(1—x)+% In2(1—y)

x y

Writing each function as iterated integral on the total space (using ), the relation
becomes obvious:

. 1—y dx dx dy | xdy + ydx dx dy dx dx dx
Lip (1% )= [T+ 5 - e R R
x X 1-x 11—y 1—xy 1—-x1-—y X 1—-x1—x

1-— d d d d d d d d d d
Lip X = [l+ 4 X IX_)/+_)/X:|+|: x ‘ Y i|_|:7y+7y‘ 4 :|
y 1—-y 1—x 1-—xy 1—-x1-—y y 1—y 1—y

. dx  dy xdy + ydx . dx  dx . dy, d
i () = [ 5+ 2P w0 = [ 2% ] ) = [ 27

y l1—y



Differential Equations Method (Kotikov '91, Remiddi '97, Gehrmann, Remiddi 2000, Mastrolia,
Argeri '07)

Let /1, ..., Im be a set of IBP-master-integrals with a common physical variable z
(e.g. squared momentum or mass).

For each I; derive a first order differential equation, using IBP:

0
a5l taili P IEL
—— i#j
the MI we want to solve
the other MIs

(Recent alternative: consider the Picard-Fuchs equation of a Feynman period
integral (Miiller-Stach, Weinzierl, Zayadeh '11) )

Assume that the inhomogeneous part of an equation is known in terms of iterated
integrals in one variable.

Solving the equation involves integrating over these terms.

E.g. for harmonic polylogarithms (HPL), try to write the integrand as
1 1
}

1
f;(x)HPL(...; ith ¢ {=, ——, ——
Z (x) (i ) wi {x 1—x 1+4+x

such that integration is trivial

y
/ dx f;(x) HPL(...; x) = HPL(a;, ...; y) by definition.
0 S———

€QupL



Assume some [; are known as iterated integrals with several parameters z;, ..., z,.
It may be advantageous to consider differential equations in several variables:

2]
ag i taili = > aili,
“ i
1o}
87/k+bklk = > bl
22 ik

Then the [;(z1, 22, ...) have to be functions in n variables and the (non-trivial)

integration step can be done with our program.



A recent application of the 'symbol’

Del Duca, Duhr, Smirnov '10: Computation of the two-loop hexagon Wilson loop in
N =4 SYM

® using the Mellin-Barnes representation, the authors reduce to a finite
parametric integral:

/ dv1/ d.,2/ dv;/ (1 —(1—ug)v1)™ (1*"2 (17112((117—_:))|/1>>_1

X (1= va(l — uvgva))?

® they obtain aresult in terms of iterated integrals, filling 17 pages

Goncharov et al '10: Simplification to only classical polylogs, filling 5 lines

® consider the 'symbol’ of the result as tensor product of differential forms,
® construct a much simpler function with the same 'symbol’,

® adjust constant terms in the new expression






