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Outlook:
• Motivation: Homotopy invariance and Chen's theorem
• Construction of the class Bm of universal polylogarithms of several variables
• Integration over Feynman parameters by use of Bm



Iterated integralsI (aw , aw−1, ..., a2, a1; x) =

ˆ x0 faw (x(w))dx(w)...

ˆ x′′′0 fa2(x ′′)dx ′′ ˆ x′′0 fa1(x ′)dx ′where the di�erential 1-forms belong to a chosen set Ω.Example:
ΩPolylogs = { dxx , dx1−x} determines classical polylogarithms:Liw (x) = [ dxx |...| dxx | dx1−x ]or multiple polylogarithms in one variable:Lin1n2...(x) = [...| dxx |...| dxx | dx1−x | dxx |...| dxx | dx1−x ]Alternatively: View I as an integral along a path γI (aw , aw−1, ..., a2, a1; x) = ˆ

γ

ωaw ...ωa1where γ and the smooth 1-forms ωa1 , ..., ωaw are de�ned on a smooth manifold.



Homotopy invarianceDe�nition: Two paths γA and γB are called homotopic if theybegin and end in the same points and can be continuouslytransformed into each other.De�nition: An integral I [γ] = ´
γ
ωw ... is called homotopy inva-riant or a homotopy functional, if for homotopic paths it de�nesthe same function:

γA, γB homotopic ⇒ I [γA] = I [γB ].
• A homotopy functional depends on the endpoint, but not on γ itself.
• All prominent iterated integrals used in physics (HPLs, 2dHPLs, ...) arehomotopy functionals.
• However, if we consider more than one variable, homotopy invariance is notautomatic.



• Simple case: I [γ](z) = ´
γ
ω

• one-fold integral with only one smooth 1-form ω,

• γ with �xed initial point 0 and variable endpoint, given byone variable z .Condition: I is homotopy invariant if and only if ω is closed.(Proof by Stokes' theorem.)
• Generic case: I [γ](z1, ..., zn) =∑ ´γ ωw ...ω1

• (linear combination of) iterated integrals over severalsmooth 1-forms,
• γ with �xed initial point 0 and variable endpoint in ndimensions, given by several variables z1, ..., zn.What is the condition for I to be homotopy invariant?



Chen 1977:Consider tensor products of 1-forms in a given set Ω :

ω1 ⊗ ...⊗ ωm ≡ [ω1|...|ωm] .De�ne a map D byD ([ω1|...|ωm]) =
n∑i=1 [ω1|...|ωi−1|dωi |ωi+1|...|ωm]+

m−1∑i=1 [ω1|...|ωi−1|ωi ∧ ωi+1|...|ωm] .We say that [ω1|...|ωm] satis�es the integrability condition ifD ([ω1|...|ωn]) = 0.De�ne Bm(Ω) to be the set of all integrable words, i.e. the (linear combinations of)tensor products, satisfying this condition:Bm(Ω) =






ξ =

m∑l=0 ∑i1, ..., il [ωi1 |...|ωil ] such that Dξ = 0

.



Consider the simple integration map from tensor products to iterated integralsm∑l=0 ∑i1, ..., il [ωi1 |...|ωil ] 7→ m∑l=0 ∑i1, ..., il ˆγ ωi1 ...ωil .Chen's theorem (1977):The integration map is an isomorphism from Bm(Ω) to the set ofall homotopy invariant iterated integrals of length m with 1-forms in Ω.

• Every integrable word ξ ∈ Bm(Ω) maps to a homotopy invariant iteratedintegral I with forms in Ω.

• Reversely: If I with forms in Ω is homotopy invariant then it comes from anintegrable word ξ ∈ Bm(Ω).



Remark:The integrability conditionm∑i=1 [ω1|...|ωi−1|dωi |ωi+1|...|ωm] +

m−1∑i=1 [ω1|...|ωi−1|ωi ∧ ωi+1|...|ωm] = 0is trivially satis�ed if all ωi are closed fi dt (as fi dt ∧ fj dt = 0).Example: Harmonic Polylogarithms (Remiddi, Vermaseren 1999)
ΩHPL =

{dtt , dt1− t , dt1+ t}The condition is not trivial if we consider several endpoint variables z1, ..., zn andseveral dt1, ..., dtn in the 1-forms.



Explicit construction of Bm(Ωn) with n variables:Take the auxiliary set
Ω̃n =

{dt1t1 , dt11− t1 , t2dt11− t1t2 , t2t3dt11− t1t2t3 , ..., (∏ni=2 ti ) dt11−
(∏ni=1 ti )}Bm(Ω̃n) are all possible length-m tensor products of forms in Ω̃n.They de�ne functions of one variable t1 with constant parameters t2, ..., tn.(Hyperlogarithms)

Ωn =

{dt1t1 , ..., dtntn , d (∏i∈Λ ti )1−
(∏i∈Λ ti ) for all non-empty Λ ⊂ {t1, ..., tn}} .Example: Ω2 =

{ dt1t1 , dt2t2 , dt11−t1 , dt21−t2 , t2dt1+t1dt21−t1t2 }Here the integrability condition is non-trivial.There is an explicit map ψ : Bm (Ω̃n)→ Bm(Ωn) from which we obtain all elementsof Bm(Ωn). (sometimes called 'the symbol')



Example:
Ω̃2 =

{dt1t1 , dt11− t1 , t2dt11− t1t2}
Ω2 =

{dt1t1 , dt2t2 , dt11− t1 , dt21− t2 , t2dt1 + t1dt21− t1t2 }

ψ : Bm (Ω̃2)→ Bm(Ω2)
•

ˆ t10 t2 dt′11− t′1t2 ≡

[ t2 dt11− t1t2 ] 7→

[ t1 dt2 + t2 dt11− t1t2 ]

≡

ˆ t20 t1 dt′21− t1t′2 +

ˆ t10 t2 dt′11− t′1t2
= ln(1 − t1t2)

•

[ dt11− t1 | t2 dt11− t1t2 ] 7→

[ dt21− t2 | dt11− t1 ]+ [ dt11− t1 −
dt21− t2 −

dt2t2 |
t2 dt1 + t1 dt21− t1t2 ]

= Li1,1(t1, t2)



Consider B1(Ωn), ..., Bm(Ωn) and let Bm(Ωn) be the Q-vectorspace of allcorresponding functions.Why is this a good class of functions?
• Homotopy invariance ⇒ well-de�ned functions of n variables
• ψ maps complicated functional relations to trivial identities.
• Closed under taking primitives:The primitive ´ ∑ dxi fi IT (where IT ∈ Bm(Ωn) and where fi have the samedenominators as ω ∈ Ωn) belongs again to Bm(Ωn)T . (Brown '05)There is an algorithm for taking primitives.
• Limits at zero and one are under control:One obtains combinations of IT ∈ Bm(Ωn) and multiple zeta values. (Brown '05)There is an algorithm for taking limits at zero and one.We can integrate from zero to one and the result stays in this class of functions.



Our Maple-program
• contains an implementation of the map ψ and the functions Bm(Ωn).
• allows to di�erentiate, take primitives and limits (at 0 and 1) of functions in

Bm(Ωn).
• computes integrals of the formĨ = ˆ 10 ∑i dx aig0 [dg1g1 |

dg2g2 | ...

]

,where [ dg1g1 | dg2g2 | ...
]

,∈ Bm(Ωn)Denominator condition: All g0, g1, ... are denominators of ωi ∈ Ωn .
• The result lands in the same class of functions (with MZV prefactors)Remark: This integration step was trivial for one-variable iterated integrals,e.g. ˆ 10 dx fi (x)

︸ ︷︷ ︸

∈ΩHPL HPL(...; x) = HPL(ai , ...; 1) by de�nition.For n-variable iterated integrals, the step is not trivial (but algorithmically solved).



Systematic Integration over Feynman Parameters (Brown '08)
• Iteratively integrate out all n Feynman parameters by use of Bm(Ωn).
• Start with �nite integrals, e.g. of a primitively divergent vacuum graph:

ˆ ∞0 ...

ˆ ∞0 ( N∏i=1 dxi) δ(1−
N∑i=1 xi) 1

U2
• Condition: After each integration, the new integrand can be written as as asum of terms bif0 [ df1f1 |

df2f2 | ...

]such that there is a xr in which the fi are linear polynomials.Then they can be mapped to the above type of integrals Ĩ .
⇒ equivalent to the above Denominator Condition

• Map the denominators in the integrand the denominators of Ωn and integratewith our program.Which Feynman graph satis�es the condition? In which order can we integrate?
⇒ Polynomial reduction algorithm



Polynomial reduction (Brown '08)
• Input: A �rst Symanzik polynomial U and an ordering (xr1 , xr2 , ..., xrn ) of then Feynman parameters.
• Output: A sequence S1, ..., Sn of sets of polynomials in the Feynmanparameters.These polynomials are the denominators fi which we map to the denominatorsof Ωn .
• Call the graph polynomial reducible if for all 1 ≤ k ≤ n every polynomial inSk is linear in xrk+1 .

⇒Then the denominator condition is satis�ed.
⇒ The integral can be computed by use of Bm (Ωn) .A very large class of graphs is already known to be polynomial reducible. (Brown '09)Using hyperlogarithms, the strategy was already applied to relevant integrals of QCD.(Ablinger, Blümlein, Hasselhuhn, Schneider, Wissbrock '12)



At �rst we consider primitively (UV-) divergent vacuum graphs (⇒ correspondingpropagator integrals) which are polynomial-reducible.How severe are these restrictions?
• Beyond primitive divergence: By a method of Brown and Kreimer (2012) wecan consider graphs with sub-divergences,
• Beyond vacuum graphs: Try to include the second Symanzik polynomial F inthe above algorithms.First question: Which graphs have reducible second Symanzik polynomials?
• Beyond polynomial-reducibility?: Maybe by extending the class of functions.However, we are optimistic that many interesting graphs are polynomialreducible.



Conclusions:The functions Bm(Ωn) :
• From an appropriate set of 1-forms Ωn we construct integrable words.
• Chen's theorem ⇒ These give homotopy invariant iterated integrals, i.e.well-de�ned functions of n variables.
• We can compute de�nite integrals without leaving this class of functions(together with multiple zeta values).Integrating out Feynman parameters with Bm(Ωn) :
• Polynomial reduction tells us, if and in which order we can integrate out theFeynman parameters.
• We iteratively integrate without leaving the class of functions Bm(Ωn).



A well known functional equation is the �ve-term-relation:
−Li2( 1− y1− 1x )−Li2( 1− x1− 1y )+Li2 (xy)−Li2 (x)−Li2 (y) = 12 ln2(1−x)+12 ln2(1−y)Writing each function as iterated integral on the total space (using ψ), the relationbecomes obvious:Li2( 1− y1− 1x ) =

[dxx +
dx1− x −

dy1− y |xdy + ydx1− xy ]

−

[ dx1− x | dy1− y ]−[dxx +
dx1− x | dx1− x ]Li2( 1− x1− 1y ) =

[dyy +
dy1− y −

dx1− x |xdy + ydx1− xy ]

+

[ dx1− x | dy1− y ]−[dyy +
dy1− y | dy1− y ]Li2 (xy) = [dxx +

dyy |
xdy + ydx1− xy ]

, Li2 (x) = [dxx |
dx1− x ] , Li2 (y) = [ dyy |

dy1− y ]



Di�erential Equations Method (Kotikov '91, Remiddi '97, Gehrmann, Remiddi 2000, Mastrolia,Argeri '07)Let I1, ..., Im be a set of IBP-master-integrals with a common physical variable z(e.g. squared momentum or mass).For each Ij derive a �rst order di�erential equation, using IBP:
∂

∂z Ij + aj Ij
︸ ︷︷ ︸the MI we want to solve = ∑i 6=j ai Ii

︸ ︷︷ ︸the other MIs(Recent alternative: consider the Picard-Fuchs equation of a Feynman periodintegral (Müller-Stach, Weinzierl, Zayadeh '11) )Assume that the inhomogeneous part of an equation is known in terms of iteratedintegrals in one variable.Solving the equation involves integrating over these terms.E.g. for harmonic polylogarithms (HPL), try to write the integrand as
∑i fi (x)HPL(...; x) with fi ∈ {

1x , 11− x , 11+ x }such that integration is trivial
ˆ y0 dx fi (x)

︸ ︷︷ ︸

∈ΩHPL HPL(...; x) = HPL(ai , ...; y) by de�nition.



Assume some Ii are known as iterated integrals with several parameters z1, ..., zn.It may be advantageous to consider di�erential equations in several variables:
∂

∂z1 Ij + aj Ij =
∑i 6=j ai Ii ,

∂

∂z2 Ik + bk Ik =
∑i 6=k bi Ii ,

...Then the Ii (z1, z2, ...) have to be functions in n variables and the (non-trivial)integration step can be done with our program.



A recent application of the 'symbol'Del Duca, Duhr, Smirnov '10: Computation of the two-loop hexagon Wilson loop in
N = 4 SYM

• using the Mellin-Barnes representation, the authors reduce to a �niteparametric integral:
ˆ 10 dv1 ˆ 10 dv2 ˆ 10 dv3 ˆ u30 du (1 − (1 − u1)v1)−1 (1 − v2 (1 −

u2(1 − v2)1 − (1 − u1)v1))−1
× (1 − v3(1 − uv1v2))−1

• they obtain aresult in terms of iterated integrals, �lling 17 pagesGoncharov et al '10: Simpli�cation to only classical polylogs, �lling 5 lines
• consider the 'symbol' of the result as tensor product of di�erential forms,
• construct a much simpler function with the same 'symbol',
• adjust constant terms in the new expression




