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Lattice perturbation theory

If one naively discretizes the continuum QCD action, gauge invariance is lost
on the lattice – and only in the continuum limit can be recovered again

Instead, one must start from a continuum theory of non-interacting quarks,
discretize it, and then build a gauge invariant theory directly on the lattice

In this way gauge invariance can be then maintained at any finite value of the
lattice spacing a

Main consequence: the fields

Uµ(x) = eig0a T
aAa

µ(x) (a = 1, . . . , N2
c − 1)

appear in a lattice QCD action, instead of the usual A’s

The fields Uµ(x) live on the links which connect two neighboring lattice sites –
these variables are naturally defined in the middle point of a link

These lattice gluon variables belong to the group SU(Nc) rather than to the

corresponding Lie algebra, as is the case in the continuum
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Lattice perturbation theory

Wilson action:

SW = Sf
W + Sg

W

Sg
W =

1

g2
0

a4
∑

x,µν

[
Nc − ReTr

[
Uµ(x)Uν(x+ aµ̂)U†

µ(x+ aν̂)U†
ν (x)

]
]

Sf
W = a4

∑

x

[
−

1

2a

∑

µ

[
ψ(x)(r − γµ)Uµ(x)ψ(x+ aµ̂)

+ψ(x+ aµ̂)(r + γµ)U†
µ(x)ψ(x)

]
+ ψ(x)

(
m0 +

4r

a

)
ψ(x)

]

= a4
∑

x

ψ(x)

[
1

2

(
γµ(∇̃⋆

µ + ∇̃µ) − ar∇̃⋆
µ∇̃µ

)
+m0

]
ψ(x)

where the (forward) lattice covariant derivative is defined as

∇̃µψ(x) =
Uµ(x)ψ(x+ aµ̂) − ψ(x)

a
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Lattice perturbation theory

Lattice perturbation theory is a saddle-point expansion around Uµ(x) = 1

Its degrees of freedom are given by the components of the potential, Aa
µ(x)

So, while the fundamental gauge variables for Monte Carlo simulations are the
Uµ’s, and the action is relatively simple when expressed in terms of these
variables, in perturbation theory the true dynamical variables are the Aµ’s

This mismatch is responsible for many complications of lattice PT

One cannot escape the complications of LPT: a gauge-invariant lattice
regularization requires the U ’s, but the degrees of freedom of LPT are the A’s

Now, the Wilson action becomes very complicated when written in terms of the
variables Aµ:

Uµ = 1 + ig0aAµ −
1

2
g2
0a

2A2
µ + · · ·

Moreover, it consists of an infinite number of terms, which give rise to an
infinite number of interaction vertices – with an arbitrary number of fields

→ example: ψAA · · · Aψ (no continuum counterparts. . . )
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Lattice perturbation theory

Is lattice gauge theory then non-renormalizable?
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Lattice perturbation theory

Is lattice gauge theory then non-renormalizable?

Fortunately, only a finite number of vertices is needed to any given order in g0

All but a few vertices are “irrelevant” – they are proportional to some positive
power of the lattice spacing a and so they vanish in the naive continuum limit

However, this does not mean that they can be thrown away in the computation
of Feynman diagrams!

Quite on the contrary: they usually contribute to correlation functions in the
continuum limit, through divergent loop corrections (∼ 1/an)

These irrelevant vertices are indeed important in many cases, they contribute
to the renormalization of masses, coupling constants and wave-functions

All these vertices are in fact necessary to ensure the gauge invariance of
physical amplitudes

Only when they are included can gauge-invariant Ward Identities be
constructed, and the renormalizability of the lattice theory proven
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Lattice perturbation theory

Quark-quark-gluon vertex in momentum space, for Wilson fermions:
(euclidean space!)

Sqqg =

∫ π

a

− π

a

d4p

(2π)4

∫ π

a

− π

a

d4k

(2π)4

∫ π

a

− π

a

d4p′

(2π)4
(2π)4δ(4)(p+ k − p′)

× ig0
∑

µ

ψ(p′)

(
γµ cos

a(p+ p′)µ

2
− ir sin

a(p+ p′)µ

2

)
Aµ(k)ψ(p)

(color factor not included)

The 3-gluon vertex is (with p+ q + r = 0, and gluons are all incoming and
assigned clockwise):

W abc
µνλ(p, q, r) = −ig0 f

abc 2

a

{
δµν sin

a(p− q)λ

2
cos

arµ

2

+δνλ sin
a(q − r)µ

2
cos

apν

2
+ δλµ sin

a(r − p)ν

2
cos

aqλ

2

}

In the formal a→ 0 limit one recovers the well-known continuum expressions
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Peculiar issues on the lattice

Computer codes are needed to compute but the simplest matrix elements
(for example: the algebraic manipulation program FORM)

The increasing complexities can be easily seen in the calculation of the
renormalization of the moments of unpolarized structure functions

Reason: the covariant derivative is proportional to the inverse of the lattice
spacing, D ∼ 1/a, and so

〈xn〉 ∼ 〈ψ γµ Dµ1
· · · Dµn

ψ〉 ∼
1

an

Thus, to compute the n-th moment, one needs to Taylor expand to order n in a
every single quantity (propagators, vertices, operator insertions, counterterms)

It is not difficult to see how many terms can come out of that

It is sufficient to look at the Wilson quark-quark-gluon vertex to order a2

(V a)bc
µ (k, ap) = −g0 (T a)bc ·

{
iγµ

[
cos

kµ

2
−

1

2
apµ sin

kµ

2
−

1

8
a2p2

µ cos
kµ

2

]

+r
[

sin
kµ

2
+

1

2
apµ cos

kµ

2
−

1

8
a2p2

µ sin
kµ

2

]
+O

(
a3p3

µ

)}
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Peculiar issues on the lattice

or to the expansion of the Wilson quark propagator to just order a:

Sab(k + aq, am0) = δab
·

{
−i
∑

µ
γµ sin kµ + 2r

∑
µ

sin2 kµ

2
∑

µ
sin2 kµ +

[
2r
∑

µ
sin2 kµ

2

]2

+a ·

[
−i
∑

µ
γµqµ cos kµ + r

∑
µ

qµ sin kµ + m0

∑
µ

sin2 kµ +

[
2r
∑

µ
sin2 kµ

2

]2

−

(
− i
∑

ρ

γρ sin kρ + 2r
∑

ρ

sin2 kρ

2

)∑
µ

qµ sin 2kµ + 4r
∑

µ
sin2 kµ

2

(
r
∑

ν
qν sin kν + m0

)

{∑
µ

sin2 kµ +

[
2r
∑

µ
sin2 kµ

2

]2}2

]}

+O

(
a2q2

µ

)

The algebraic manipulations become thus quite complex

Overlap or domain-wall fermions, improved gauge actions, . . . , produce much
more complicated expressions

Main consequence of all this: generation of a huge number of terms, at least in
the initial stages of the manipulations Frontiers in pQFT – p.8



Peculiar issues on the lattice

Lorentz symmetry is broken on the lattice

. . . one cannot make a rotation of an arbitrary angle

The Lorentz group O(4) is broken to the hypercubic group H(4)

A whole new kind of problems stem from this, one of which is that the Einstein
summation convention ( kµk

µ = k2 ) is not valid anymore

One of the biggest challenges of computer codes for lattice perturbation theory
is to deal with the fact that the summation convention on repeated indices is
suspended

FORM, and other similar symbolic manipulations programs, have been
developed having in mind the usual continuum calculations

There are therefore many useful built-in features of FORM that are in principle
somewhat of a hindrance when one does lattice perturbative calculations

These built-in functions cannot then be used straightforwardly in the
computations on the lattice
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Peculiar issues on the lattice

This is for example what FORM would do by default, because it assumes that
two equal indices have to be contracted:

∑

λ

γλpλ −→ 6p

∑

λ

γλpλ sin kλ −→ 6p sin kλ

∑

λ

γλ sin kλ cos2 kλ −→ (γ · sin k) cos2 kλ

∑

λ,ρ

γργλγρ sin kλ cos2 kρ −→ −2
∑

λ

γλ sin kλ cos2 kρ
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Peculiar issues on the lattice

This is for example what FORM would do by default, because it assumes that
two equal indices have to be contracted:

∑

λ

γλpλ −→ 6p

∑

λ

γλpλ sin kλ −→ 6p sin kλ

∑

λ

γλ sin kλ cos2 kλ −→ (γ · sin k) cos2 kλ

∑

λ,ρ

γργλγρ sin kλ cos2 kρ −→ −2
∑

λ

γλ sin kλ cos2 kρ

On the lattice however monomials typically contain more than twice the same
index

Only the first case is then correctly handled by FORM

For example, in the last case the right answer is instead

−
∑

λ,ρ

γλ sin kλ cos2 kρ + 2
∑

ρ

γρ sin kρ cos2 kρ
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Some discoveries from lattice PT

Lattice perturbation theory is widely applied for the renormalization of
couplings, masses, operators (weak matrix elements, structure functions, . . . )

. . . but not only this . . .

Helpful in the investigation of unknown properties of new lattice formulations

or also: to elucidate the mixing structures of operators

Sometimes nonperturbative calculations are difficult or expensive, or their
implications are not unambiguous

In the rest of this talk: we discuss in some detail three cases where some
important features of lattice QCD simulations were first discovered using
perturbation theory

Three different situations:

mixings for lattice matrix elements of moments of structure functions

minimally doubled fermions

domain-wall fermions for a finite extension of the fifth dimension
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An operator mixing

The n-th moment 〈xn〉 of unpolarized structure functions is measured by
matrix elements of the (symmetric and traceless) operator

O{µµ1···µn}(x) = ψ(x) γ{µ Dµ1
· · ·Dµn} ψ(x)

Second moment: the operator is O{µνσ} = ψ γ{µ DνDσ} ψ

We have three choices here for the symmetrized components

One is given by the operator O{123}, which belongs to the 42 representation of
the hypercubic group, and is multiplicatively renormalizable

However, this choice is quite unsatisfactory when one considers simulations,
because two components of the hadron momentum must be different from
zero and from each other, leading to rather large systematic errors

One should minimize these systematic errors by including as few nonzero
components of the hadron momentum as possible

From this point of view, the optimal choice is the operator O{111}, which
belongs to the 41 representation
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An operator mixing

Unfortunately this operator mixes with ψ γ1 ψ, which is a 41 as well

Moreover, the coefficient of this mixing can be seen from dimensional
arguments to be power divergent , ∼ 1/a2
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An operator mixing

Unfortunately this operator mixes with ψ γ1 ψ, which is a 41 as well

Moreover, the coefficient of this mixing can be seen from dimensional
arguments to be power divergent , ∼ 1/a2

There is an intermediate choice between having the indices all different or all
equal, and is given by the operator

OS = O{011} −
1

2
(O{022} +O{033})

which does not have any power divergences due to this particular combination

This operator belongs to an irreducible representation of the hypercubic group,
the 81

Nonetheless, is not multiplicatively renormalizable, and undergoes a mixing
with another operator

The way in which this happens is not trivial
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An operator mixing

It turns out that two 81 operators mix with each other

This mixing can be best seen in the following way

The nonsymmetrized operators

OA = O011 −
1

2
(O022 +O033)

OB = O101 +O110 −
1

2
(O202 +O220 +O303 +O330)

turn out to have different 1-loop corrections on the lattice, and they renormalize
with different numerical factors which form a nontrivial mixing matrix:

ÔA = ZAA OA + ZAB OB

ÔB = ZBA OA + ZBB OB

Notice that the two covariant derivatives have the same index in OA but two
different indices in OB , and the two operators have different tree levels:

γ0p
2
1 −

1

2
(γ0p

2
2 + γ0p

2
3)

2γ1p0p1 − (γ2p0p2 + γ3p0p3)
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An operator mixing

The operator that we want to measure (the “continuum” one),

OS = O{011} −
1

2
(O{022} +O{033}) =

1

3
(OA +OB),

does not transform into itself under 1-loop renormalization,

ÔS =
1

3
(ZAA + ZBA)OA +

1

3
(ZAB + ZBB)OB ,

because on the lattice ZAA + ZBA 6= ZAB + ZBB (as explicit calculations
have shown)

In other words, the symmetric combination is lost after renormalization, and
OS mixes with an operator of mixed symmetry (with a small coefficient)

The choice of indices for the operator for 〈x2〉 is thus very important , for the
Monte Carlo simulations as well as for the calculation of renormalization factors

In the continuum all O{µνσ} cases, including O{111}, belong to the (3

2
, 3

2
)

Thus, they have the same renormalization constant, and no mixing problem

All these (unexpected) features of the renormalization of 〈x2〉 were discovered
while doing 1-loop perturbative calculations! Frontiers in pQFT – p.15



An operator mixing

Discovered in

G. Beccarini, M. Bianchi, S. C. and G.C. Rossi
“Deep Inelastic Scattering in Improved Lattice QCD. II. The second
moment of structure functions”, Nuclear Physics B456 (1995) 271

At first one could not believe that the 1-loop corrections for OA and OB

were not the same – after all, only the ordering of the indices is different . . .

It was the first time . . . for 〈x〉 there was no such problem (it was not possible)

. . . and before our calculation: the renormalization for OA and OB had been
estimated using tadpole dominance −→ same numbers!

Our discovery then also spurred the search for mixings in many other
operators (third moment, . . . ) → careful analyses with the hypercubic group
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An operator mixing

Discovered in

G. Beccarini, M. Bianchi, S. C. and G.C. Rossi
“Deep Inelastic Scattering in Improved Lattice QCD. II. The second
moment of structure functions”, Nuclear Physics B456 (1995) 271

At first one could not believe that the 1-loop corrections for OA and OB

were not the same – after all, only the ordering of the indices is different . . .

It was the first time . . . for 〈x〉 there was no such problem (it was not possible)

. . . and before our calculation: the renormalization for OA and OB had been
estimated using tadpole dominance −→ same numbers!

Our discovery then also spurred the search for mixings in many other
operators (third moment, . . . ) → careful analyses with the hypercubic group

The 〈x2〉 mixing, although small in perturbation theory, cannot be overlooked

It could be small also nonperturbatively (but this is not yet known . . . )

However, just taking the result for the matrix element of the simmetrized
operator OS would bias the physical numbers , even if the mixing is small
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Minimally doubled fermions

Minimally doubled fermions ( 2 flavors ):

realize the minimal doubling allowed by the Nielsen-Ninomiya theorem

Preserve an exact chiral symmetry for a degenerate doublet of quarks

chiral symmetry protects mass renormalization

→ no additive renormalization → no tuning of masses . . .

At the same time, also remain strictly local

→ fast for simulations

A cheap realization of chiral symmetry at nonzero lattice spacing
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Minimally doubled fermions

Minimally doubled fermions ( 2 flavors ):

realize the minimal doubling allowed by the Nielsen-Ninomiya theorem

Preserve an exact chiral symmetry for a degenerate doublet of quarks

chiral symmetry protects mass renormalization

→ no additive renormalization → no tuning of masses . . .

At the same time, also remain strictly local

→ fast for simulations

A cheap realization of chiral symmetry at nonzero lattice spacing

We can construct a conserved axial current, which has a simple expression

Compared with staggered fermions:

same kind of U(1) ⊗ U(1) chiral symmetry

2 flavors instead of 4
⇒ no uncontrolled extrapolations to 2 physical light flavors

no complicated intertwining of spin and flavor
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Minimally doubled fermions

Ideal for Nf = 2 simulations: no rooting needed!

Much cheaper and simpler than Ginsparg-Wilson fermions
(overlap, domain-wall, fixed-point)

We considered two realizations of minimally doubled fermions: Boriçi-Creutz
and Karsten-Wilczek fermions

For them, we also constructed the conserved vector and axial currents

They have simple expressions which involve only nearest-neighbors sites

One of the very few lattice discretizations in which one can give a simple
expression (and ultralocal) for a conserved axial current

This conserved axial current is even ultralocal

These features could turn out to be very useful also in numerical simulations

Frontiers in pQFT – p.18



Boriçi-Creutz fermions

The work of Boriçi and Creutz leads to a fermionic action whose free Dirac
operator in momentum space reads

D(p) = i
∑

µ

(γµ sin pµ + γ′
µ cos pµ) − 2iΓ +m0

where

Γ =
1

2
(γ1 + γ2 + γ3 + γ4) (Γ2 = 1)

and
γ′

µ = ΓγµΓ = Γ − γµ

Useful relations:
∑

µ

γµ =
∑

µ

γ′
µ = 2Γ, {Γ, γµ} = 1, {Γ, γ′

µ} = 1

The action vanishes at p1 = (0, 0, 0, 0) and p2 = (π/2, π/2, π/2, π/2)

This ingenious construction represents a special linear combination of two
(physically equivalent) naive fermions , corresponding to the first two terms in
the action Frontiers in pQFT – p.19



Karsten-Wilczek fermions

Already in the Eighties: Karsten (1981) and then Wilczek (1987) proposed
some particular kind of minimally doubled fermions

Unitary equivalent to each other, after phase redefinitions

Wilczek [ PRL 59, 2397 (1987) ] proposed a special choice of the function
Pµ(p) which minimizes the numbers of doublers

The free Karsten-Wilczek Dirac operator

D(p) = i

4∑

µ=1

γµ sin pµ + iγ4

3∑

k=1

(1 − cos pk)

has zeros at p1 = (0, 0, 0, 0) and p2 = (0, 0, 0, π)

Drawback: it destroys the equivalence of the four directions under discrete
permutations

Mixings with new operators then arise

This is also true for the Boriçi-Creutz action Frontiers in pQFT – p.20



Hypercubic breaking

The actions of minimally doubled fermions have two zeros

⇒ there is always a special direction in euclidean space
(given by the line that connects these two zeros)

Thus, these actions cannot maintain a full hypercubic symmetry

They are symmetric only under the subgroup of the hypercubic group which
preserves (up to a sign) a fixed direction

For the Boriçi-Creutz action this is a major hypercube diagonal, while for other
minimally doubled actions it may not be a diagonal – for example for the
Karsten-Wilczek action is the x4 axis

Although the distance between 2 two Fermi points is the same (p2
2 − p2

1 = π2),
these two realization of minimally doubled fermions are not equivalent

The breaking of the hypercubic symmetry implies the appearance of mixings
with operators of different dimensionality, like ψΓψ , ψγ4ψ or ψγ4D4ψ
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Self-energy

At 1 loop, for Boriçi-Creutz fermions:

Σ(p,m0) = i6pΣ1(p) +m0 Σ2(p) + c1(g0) · iΓ
∑

µ

pµ + c2(g0) · i
Γ

a

with

Σ1(p) = 1+
g2
0

16π2
CF

[
log a2p2+6.80663+(1−α)

(
−log a2p2+4.792010

)]
+O(g4

0)

Σ2(p) = 1+
g2
0

16π2
CF

[
4 log a2p2−29.48729+(1−α)

(
−log a2p2+5.792010

)]
+O(g4

0)

c1(g0) = 1.52766 ·
g2
0

16π2
CF +O(g4

0)

c2(g0) = 29.54170 ·
g2
0

16π2
CF +O(g4

0)

The full inverse propagator at one loop can be written as

Σ−1(p,m0) =
(
1−Σ1

)
·
{
i6p+m0

(
1−Σ2 +Σ1

)
−
ic1
2

∑

µ

γµ

∑

ν

pν −
ic2
a

Γ
}
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Self-energy

At 1 loop, for Karsten-Wilczek fermions:

Σ(p,m0) = i6pΣ1(p) +m0 Σ2(p) + d1(g0) · i γ4p4 + d2(g0) · i
γ4

a

where

Σ1(p) =
g2
0

16π2
CF

[
log a2p2 + 9.24089 + (1 − α)

(
− log a2p2 + 4.792010

)]

Σ2(p) =
g2
0

16π2
CF

[
4 log a2p2 − 24.36875 + (1 − α)

(
− log a2p2 + 5.792010

)]

d1(g0) = − 0.12554 ·
g2
0

16π2
CF +O(g4

0)

d2(g0) = − 29.53230 ·
g2
0

16π2
CF +O(g4

0)

The full inverse propagator at one loop can be written as

Σ−1(p,m0) =
(
1 − Σ1

)
·
(
i6p +m0

(
1 − Σ2 + Σ1

)
− id1 γ4p4 −

id2

a
γ4

)
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Vacuum polarization

Our focus here: the radiative corrections to the gluon propagator due to
fermion loops

Contributions to the vacuum polarization due to loops of gluons and ghosts:
independent of the lattice fermionic action chosen (at one loop)

⇒ do not provide informations relevant for hypercubic breaking

Only the fermionic loops are able to generate hypercubic-breaking terms
(as it in the end happens for both Karsten-Wilczek and Boriçi-Creutz fermions)

The fermionic contribution to the vacuum polarization for one flavor of Wilson
fermions (where neither breaking of hypercubic symmetry nor fermion doubling
occur) is

Π(f)
µν (p) =

(
pµpν − δµνp

2

)[
g2
0

16π2
Ct

(
−

4

3
log p2a2 + 4.337002

)]

where Tr (tatb) = C2 δ
ab

We can see that this (gauge invariant) result satisfies the Ward identity

pµΠ
(f)
µν (p) = 0, which expresses the conservation of the fermionic current
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Vacuum polarization

For Boriçi-Creutz fermions:

Π(f)
µν (p) =

(
pµpν − δµνp

2

)[
g2
0

16π2
C2

(
−

8

3
log p2a2 + 23.6793

)]

−

(
(pµ + pν)

∑

λ

pλ − p2 − δµν

(∑

λ

pλ

)2

)
g2
0

16π2
C2 · 0.9094

For Karsten-Wilczek fermions:

Π(f)
µν (p) =

(
pµpν − δµνp

2

)[
g2
0

16π2
C2

(
−

8

3
log p2a2 + 19.99468

)]

−

(
pµpν (δµ4 + δν4) − δµν

(
p2 δµ4δν4 + p2

4

)
)

g2
0

16π2
C2 · 12.69766

There are new terms, compared with a standard situation like Wilson fermions

Although each of these actions breaks hypercubic symmetry in its appropriate

and peculiar way, these new terms still satisfy the Ward identity pµΠ
(f)
µν (p) = 0

Very important: there are no power-divergences (1/a2 or 1/a) in our results for
the vacuum polarization!
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Counterterms

Each of these two bare actions does not contain all possible operators allowed
by the respective symmetries (broken hypercubic group)

Radiative corrections generate new contributions whose form is not matched
by any term in the original bare actions

Counterterms are then necessary for a consistent renormalized theory

This consistency requirement will uniquely determine their coefficients

Our task: add to the bare actions all possible counterterms allowed by the
remaining symmetries (after hypercubic symmetry has been broken)

They are lattice artefacts peculiar to minimally doubled fermions

In the following we will consider the massless case m0 = 0

Chiral symmetry strongly restricts the number of possible counterterms

For Boriçi-Creutz fermions, operators are allowed where summations over just
single indices are present (in addition to the standard Einstein summation
over two indices)

Then objects like
∑

µ
γµ = 2Γ appear
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Counterterms

We find that there can be only one dimension-4 counterterm: ψ Γ
∑

µ
Dµψ

Possible discretization: form similar to the hopping term in the action

c4(g0)
1

2a

∑

µ

(
ψ(x) ΓUµ(x)ψ(x+ aµ̂) − ψ(x+ aµ̂) ΓU†

µ(x)ψ(x)
)

There is also one counterterm of dimension three:
ic3(g0)

a
ψ(x) Γψ(x)

This is already present in the bare action, but with a fixed coefficient , −2/a

The appearance of this counterterm means that in the general renormalized
action the coefficient of this operator must be kept general

For Karsten-Wilczek fermions we find an analogous situation

Here objects are allowed in which we constrain any index to be equal to 4

Only gauge-invariant counterterm of dimension four: ψ γ4D4 ψ

A suitable discretization:

d4(g0)
1

2a

(
ψ(x) γ4 U4(x)ψ(x+ a4̂) − ψ(x+ a4̂) γ4 U

†
4 (x)ψ(x)

)
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Counterterms

There is also one counterterm of dimension three,
id3(g0)

a
ψ(x) γ4 ψ(x)

(already present in the bare Karsten-Wilczek action, with a fixed coefficient)

In perturbation theory the coefficients of all these counterterms are functions
of the coupling which start at order g2

0

They give rise at one loop to additional contributions to fermion lines

The rules for the corrections to fermion propagators, needed for our one-loop
calculations, can be easily derived

For external lines, they are given in momentum space respectively by

−ic4(g0) Γ
∑

ν

pν , −
ic3(g0)

a
Γ

for Boriçi-Creutz fermions, and by

−id4(g0) γ4 p4, −
id3(g0)

a
γ4

for Karsten-Wilczek fermions
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Counterterms

We can determine all these coefficients (at one loop) by requiring that the
renormalized self-energy assumes its standard form

For Boriçi-Creutz fermions we obtain then from our 1-loop calculations:

c3(g0) = 29.54170 ·
g2
0

16π2
CF +O(g4

0)

c4(g0) = 1.52766 ·
g2
0

16π2
CF +O(g4

0)

For Karsten-Wilczek fermions the coefficients are:

d3(g0) = −29.53230 ·
g2
0

16π2
CF +O(g4

0)

d4(g0) = −0.12554 ·
g2
0

16π2
CF +O(g4

0)

Note: for each action, one of two coefficients seems to be rather small
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Counterterms

We can determine all these coefficients (at one loop) by requiring that the
renormalized self-energy assumes its standard form

For Boriçi-Creutz fermions we obtain then from our 1-loop calculations:

c3(g0) = 29.54170 ·
g2
0

16π2
CF +O(g4

0)

c4(g0) = 1.52766 ·
g2
0

16π2
CF +O(g4

0)

For Karsten-Wilczek fermions the coefficients are:

d3(g0) = −29.53230 ·
g2
0

16π2
CF +O(g4

0)

d4(g0) = −0.12554 ·
g2
0

16π2
CF +O(g4

0)

Note: for each action, one of two coefficients seems to be rather small

Counterterm interaction vertices are generated as well – but they are at least
of order g3

0 , and thus they cannot contribute at one loop
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Counterterms

We need counterterms also for the pure gauge part of the actions of
minimally doubled fermions

Although at the bare level the breaking of hypercubic symmetry is a feature of
the fermionic actions only, in the renormalized theory it propagates (via the
interactions between quarks and gluons) also to the pure gauge sector

These counterterms must be of the form trFF , but with nonconventional
choices of the indices, reflecting the breaking of the hypercubic symmetry

Only purely gluonic counterterm possible for the Boriçi-Creutz action:

cP (g0)
∑

λρτ

trFλρ(x)Fρτ (x)

At one loop this counterterm is relevant only for gluon propagators

Denoting the fixed external indices at both ends with µ and ν, all possible
lattice discretizations of this counterterm give in momentum space the same
Feynman rule:

−cP (g0)

[
(pµ + pν)

∑

λ

pλ − p2 − δµν

(∑

λ

pλ

)2

]

The presence of this counterterm is essential for the correct renormalization of
the vacuum polarization Frontiers in pQFT – p.30



Counterterms

It is not hard to imagine that in the case of Karsten-Wilczek fermions the
temporal plaquettes will be renormalized differently from the other plaquettes

Indeed, the counterterm to be introduced contains an asymmetry between
these two kinds of plaquettes, and can be written in continuum form as

dP (g0)
∑

ρλ

trFρλ(x)Fρλ(x) δρ4

This is the only purely gluonic counterterm needed for this action, since
introducing also a δλ4 in the above expression will produce a vanishing object

It is immediate to write a lattice discretization for it, using the plaquette:

dP (g0)
β

2

∑

ρλ

(
1 −

1

NC

trP4λ(x)
)

The Feynman rule for this counterterm reads

−dP (g0)
[
pµpν (δµ4 + δν4) − δµν

(
p2 δµ4δν4 + p2

4

)]

and again is exactly what is needed in the vacuum polarization
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Counterterms

The hypercubic breaking terms of the vacuum polarization disappear when the
coefficient of the gluonic counterterm has the value

cP (g0) = −0.9094 ·
g2
0

16π2
C2 +O(g4

0)

for Boriçi-Creutz fermions and

dP (g0) = −12.69766 ·
g2
0

16π2
C2 +O(g4

0)

for Karsten-Wilczek fermions
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Counterterms

The hypercubic breaking terms of the vacuum polarization disappear when the
coefficient of the gluonic counterterm has the value

cP (g0) = −0.9094 ·
g2
0

16π2
C2 +O(g4

0)

for Boriçi-Creutz fermions and

dP (g0) = −12.69766 ·
g2
0

16π2
C2 +O(g4

0)

for Karsten-Wilczek fermions

All counterterms remain of the same form at all orders of perturbation theory –
only the values of their coefficients depend on the number of loops

The same counterterms appear at the nonperturbative level, and will be
required for consistent Monte Carlo simulations of these fermions
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Counterterms

The hypercubic breaking terms of the vacuum polarization disappear when the
coefficient of the gluonic counterterm has the value

cP (g0) = −0.9094 ·
g2
0

16π2
C2 +O(g4

0)

for Boriçi-Creutz fermions and

dP (g0) = −12.69766 ·
g2
0

16π2
C2 +O(g4

0)

for Karsten-Wilczek fermions

All counterterms remain of the same form at all orders of perturbation theory –
only the values of their coefficients depend on the number of loops

The same counterterms appear at the nonperturbative level, and will be
required for consistent Monte Carlo simulations of these fermions

Counterterms not only provide additional Feynman rules for the calculation of
loop amplitudes

They can modify Ward identities and hence, in particular, contribute
additional terms to the conserved currents
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Conserved currents

ZV and ZA (of the local currents) are not equal to one

The local vector and axial currents are not conserved

We need to consider the chiral Ward identities in order to work with currents
which are protected from renormalization

We have constructed the conserved vector and axial currents, and verified that
at one loop their renormalization constants are equal to one

We act on the Boriçi-Creutz action in position space

S = a4
∑

x

[
1

2a

∑

µ

[
ψ(x) (γµ + iγ′

µ)Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ − iγ′
µ)U†

µ(x)ψ(x)
]

+ ψ(x)
(
m0 −

2iΓ

a

)
ψ(x)

]

with the vector transformation

δV ψ = iαψ, δV ψ = −iαψ

or the axial transformation

δAψ = iα γ5ψ, δAψ = iαψγ5 Frontiers in pQFT – p.33



Conserved currents

We then obtain the conserved vector current for Boriçi-Creutz fermions as

V cons
µ (x) =

1

2

[
ψ(x) (γµ+i γ′

µ)Uµ(x)ψ(x+aµ̂)+ψ(x+aµ̂) (γµ−i γ
′
µ)U†

µ(x)ψ(x)

]

while the axial current (conserved in the case m0 = 0) is

Acons
µ (x) =

1

2

[
ψ(x) (γµ+i γ′

µ) γ5 Uµ(x)ψ(x+aµ̂)+ψ(x+aµ̂) (γµ−i γ
′
µ) γ5 U

†
µ(x)ψ(x)

]

We have computed the renormalization of these point-split currents

The sum of vertex, sails and operator tadpole gives (in the vector case)

g2
0

16π2
CF γµ

[
−log a2p2−6.80664+(1−α)

(
log a2p2−4.79202

)]
+ccv

1 (g0) Γ

where the coefficient of the mixing is ccv
1 (g0) = −1.52766 ·

g2

0

16π2 CF +O(g4
0)

The term proportional to γµ exactly compensates the contribution of Σ1(p)

from the quark self-energy (wave-function renormalization)
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Conserved currents

We then obtain the conserved vector current for Boriçi-Creutz fermions as

V cons
µ (x) =

1

2

[
ψ(x) (γµ+i γ′

µ)Uµ(x)ψ(x+aµ̂)+ψ(x+aµ̂) (γµ−i γ
′
µ)U†

µ(x)ψ(x)

]

while the axial current (conserved in the case m0 = 0) is

Acons
µ (x) =

1

2

[
ψ(x) (γµ+i γ′

µ) γ5 Uµ(x)ψ(x+aµ̂)+ψ(x+aµ̂) (γµ−i γ
′
µ) γ5 U

†
µ(x)ψ(x)

]

We have computed the renormalization of these point-split currents

The sum of vertex, sails and operator tadpole gives (in the vector case)

g2
0

16π2
CF γµ

[
−log a2p2−6.80664+(1−α)

(
log a2p2−4.79202

)]
+ccv

1 (g0) Γ

where the coefficient of the mixing is ccv
1 (g0) = −1.52766 ·

g2

0

16π2 CF +O(g4
0)

The term proportional to γµ exactly compensates the contribution of Σ1(p)

from the quark self-energy (wave-function renormalization)

But what about the mixing term, proportional to Γ ?

We should take into account the counterterms . . . Frontiers in pQFT – p.34



Conserved currents

The counterterm ψ(x)
iΓ

a
ψ(x) does not modify the Ward identities

On the contrary, the counterterm

c4(g0)

4

∑

µ

∑

ν

(
ψ(x) γν Uµ(x)ψ(x+ aµ̂) + ψ(x+ aµ̂) γν U

†
µ(x)ψ(x)

)

generates new terms in the Ward identities and then in the conserved currents

The additional term in the conserved vector current so generated reads

c4(g0)

4

[
ψ(x)

(∑

ν

γν

)
Uµ(x)ψ(x+ aµ̂) + ψ(x+ aµ̂)

(∑

ν

γν

)
U†

µ(x)ψ(x)
]

Its 1-loop contribution is easy to compute ( c4 is already of order g2
0 !): c4(g0) Γ

The value of c4 is known from the self-energy ⇒ c4(g0) Γ = −ccv
1 (g0) Γ

Only this value of c4 exactly cancels the Γ mixing term present in the 1-loop
conserved current without counterterms

Thus, we obtain that the renormalization constant of these point-split currents
is one – which confirms that they are conserved currents

Everything is consistent. . . Frontiers in pQFT – p.35



Conserved currents

Let us now consider the Karsten-Wilczek action in position space:

S = a4
∑

x

[
1

2a

4∑

µ=1

[
ψ(x) (γµ − iγ4 (1 − δµ4))Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ + iγ4 (1 − δµ4))U
†
µ(x)ψ(x)

]
+ ψ(x)

(
m0 +

3iγ4

a

)
ψ(x)

]
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Conserved currents

Let us now consider the Karsten-Wilczek action in position space:

S = a4
∑

x

[
1

2a

4∑

µ=1

[
ψ(x) (γµ − iγ4 (1 − δµ4))Uµ(x)ψ(x+ aµ̂)

−ψ(x+ aµ̂) (γµ + iγ4 (1 − δµ4))U
†
µ(x)ψ(x)

]
+ ψ(x)

(
m0 +

3iγ4

a

)
ψ(x)

]

Adding the counterterms, application of the chiral Ward identities gives for the
conserved axial current of Karsten-Wilczek fermions

Ac
µ(x) =

1

2

(
ψ(x) (γµ − iγ4 (1 − δµ4)) γ5 Uµ(x)ψ(x+ aµ̂)

+ψ(x+ aµ̂) (γµ + iγ4 (1 − δµ4)) γ5 U
†
µ(x)ψ(x)

)

+
d4(g0)

2

(
ψ(x) γ4γ5 U4(x)ψ(x+ a4̂) + ψ(x+ a4̂) γ4γ5 U

†
4 (x)ψ(x)

)

Once more, is a simple expression which involve only nearest-neighbour sites

We checked explicitly that its renormalization constant is one
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Importance of perturbation theory

We have learned (only using perturbation theory!) that:

one needs to add three counterterms (two in quenched QCD)

one of these counterterms comes with a very small coefficient

For more than two years, nobody had suspected that there could be
counterterms – until we carried out these 1-loop calculations

Perturbation theory has thus been essential for the discovery of some key
features of this class of fermions

Even with that, it took some time to understand what was happening . . .

All this is also an example of the usefulness of perturbative techniques in
helping to unfold theoretical aspects of (new) lattice formulations

This is practically all that is known at the moment about these actions . . .

Next task: determine the coefficients of these counterterms nonperturbatively

this particular work is being done now in Mainz
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Domain-wall fermions

Domain-wall fermions (Kaplan, 1992; Shamir, 1993): chiral symmetry

The exact chiral symmetry reduces the leading discretization errors from
O(a) to O(a2)

⇒ automatic O(a) improvement

Simulations use lattices with a finite number of points Ns in the extra
fifth dimension

⇒ overlap between the modes on the two opposite walls

⇒ violations of chiral symmetry

Only in the theoretical limit in which the extension of the fifth dimension
becomes infinite the chiral modes can fully decouple from each other,
yielding an exact chiral symmetry

Aim: investigate the magnitude of these chirality-violating effects using
perturbative calculations

The focus is at small Ns, where the simulations are currently performed

We had to derive the required propagator functions
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Domain-wall fermions

Five-dimensional domain-wall action:

∑

x

Ns∑

s=1

[
1

2

∑

µ

(
ψs(x)(γµ−r)Uµ(x)ψs(x+µ̂)−ψs(x)(γµ+r)U†

µ(x−µ̂)ψs(x−µ̂)
)

+
(
ψs(x)P+ψs+1(x) + ψs(x)P−ψs−1(x)

)
+ (M − 1 + 4r)ψs(x)ψs(x)

+m
∑

x

(
ψNs

(x)P+ψ1(x) + ψ1(x)P−ψNs
(x)
)

with:

0 < M < 2
⇒ correct structure of chiral modes (with no doublers)

r = −1

Chiral projectors: P± = (1 ± γ5)/2
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Domain-wall fermions

In (four-dimensional) momentum space the action becomes

δs,t

∑

µ

iγµ sin pµ + (W+
st (p) +mM+

st)P+ + (W−
st (p) +mM−

st)P−

where

W+(p) =




−W (p) 1

−W (p)
. . .

. . . 1
−W (p)




M+ =

(

1

)

W−(p) =




−W (p)

1 −W (p)

. . .
. . .
1 −W (p)


 M− =

(
1
)

and one puts
W (p) = 1 −M + 2

∑

λ

sin2 pλ

2
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Chiral mode

This is a Wilson action endowed with an additional flavor index s, plus a
special mass matrix for these flavors

It can be imagined as having several flavors of lattice Dirac fermions, mixed in
a very special way so that a large mass hierarchy is generated

The mass matrix governs the mixing among the flavors and induces a
sophisticated structure on the flavor space, which at the end produces one
chiral mode which is nearly massless together with Ns − 1 heavy fermions

To determine the chiral mode one must diagonalize (in the fifth dimension) the
mass matrix – however this is not hermitian =⇒ diagonalize D†D

Chiral mode:

χ0(x) =
√

1 − w2
0

∑

s

(P+w
s−1
0 ψs(x) + P−w

Ns−s
0 ψs(x))

where w0 = W (0) = 1 −M

We see from the damping factors ws−1
0 and wNs−s

0 that the chiral mode is
exponentially localized near the boundaries of the fifth dimension
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Chiral mode

However: the domain-wall height M (and thus w0) are additively renormalized

The standard “physical” quark fields (chiral modes) used in Monte Carlo
simulations are instead constructed only from quark fields exactly located at
the boundaries:

q(x) = P+ψ1(x) + P−ψNs
(x)

q(x) = ψNs

(x)P+ + ψ1(x)P−

These physical quark fields q(x) are more convenient to use than χ0(x),
because of the renormalization of w0

Moreover, at finite Ns there is anyway an additional issue: χ0(x) is not exactly
the chiral mode

χ0(x) is in fact an eigenvector of the mass matrix only up to terms of order

Ns e
−Nsα(0)

where α(0) is defined by

cosh(α(0)) =
1 + w2

0

2|w0|
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Axial current

One has to consider 4- as well as 5-dimensional objects, and the relations
between them → appropriate expressions for currents and operators

Variation of the action with respect to the 5-dimensional axial transformation

δψs(x) = iq(s) (αA)a
s(x)

λa

2
ψs(x)

δψs(x) = −iq(s)ψs(x) (αA)a
s(x)

λa

2

For each fixed 4-dimensional slice s is like a vector transformation – what
makes the difference (in the fifth dimension) is

q(s) =

{
1 , 1 ≤ s ≤ Ns/2

−1 , Ns/2 < s ≤ Ns

Consider the 5-dimensional current which for µ = 1, . . . , 4 is the conserved
vector current for Wilson fermions (with r = −1):

ja
µ(x, s) =

1

2
ψs(x) (γµ+1)Uµ(x)

λa

2
ψs(x+µ̂)+

1

2
ψs(x+µ̂) (γµ−1)U†

µ(x)
λa

2
ψs(x)

while its fifth component , which couples neighboring s-slices, is:

ja
5 (x, s) =

{
ψs(x)P+

λa

2
ψs+1(x) − ψs+1(x)P−

λa

2
ψs(x) , 1 ≤ s < Ns

ψNs

(x)P+
λa

2
ψ1(x) − ψ1(x)P−

λa

2
ψNs

(x) , s = Ns
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Axial current

Continuity equation:
∑

µ

∇µ j
a
µ(x, s) =





−ja
5 (x, 1) −mja

5 (x,Ns) , s = 1

−∇5 j
a
5 (x, s) , 1 < s < Ns

ja
5 (x,Ns − 1) +mja

5 (x,Ns) , s = Ns

The 4-dimensional axial current is given by

Aa
µ(x) = −

Ns∑

s=1

q(s) ja
µ(x, s)

and satisfies the PCAC equation (Furman e Shamir, 1995)

∇µAa
µ(x) = 2 ja

5 (x,
Ns

2
) + 2m ja

5 (x,Ns)
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Axial current

Continuity equation:
∑

µ

∇µ j
a
µ(x, s) =





−ja
5 (x, 1) −mja

5 (x,Ns) , s = 1

−∇5 j
a
5 (x, s) , 1 < s < Ns

ja
5 (x,Ns − 1) +mja

5 (x,Ns) , s = Ns

The 4-dimensional axial current is given by

Aa
µ(x) = −

Ns∑

s=1

q(s) ja
µ(x, s)

and satisfies the PCAC equation (Furman e Shamir, 1995)

∇µAa
µ(x) = 2 ja

5 (x,
Ns

2
) + 2m ja

5 (x,Ns)

The term ja
5 (x,

Ns

2
) is nonzero only for Ns <∞, and measures the violations

of chiral symmetry when the distance between the two walls is not infinite
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Axial current

Continuity equation:
∑

µ

∇µ j
a
µ(x, s) =





−ja
5 (x, 1) −mja

5 (x,Ns) , s = 1

−∇5 j
a
5 (x, s) , 1 < s < Ns

ja
5 (x,Ns − 1) +mja

5 (x,Ns) , s = Ns

The 4-dimensional axial current is given by

Aa
µ(x) = −

Ns∑

s=1

q(s) ja
µ(x, s)

and satisfies the PCAC equation (Furman e Shamir, 1995)

∇µAa
µ(x) = 2 ja

5 (x,
Ns

2
) + 2m ja

5 (x,Ns)

The term ja
5 (x,

Ns

2
) is nonzero only for Ns <∞, and measures the violations

of chiral symmetry when the distance between the two walls is not infinite

It is like a γ5 located at the middle point of the fifth dimension

In fact, since ja
5 (x,Ns) = q(x)γ5

λa

2
q(x), the term 2m ja

5 (x,Ns) = 2mP (x) is
like a γ5 located on the domain walls

One is in general interested in various observables which can measure the
amount of chiral symmetry breaking Frontiers in pQFT – p.45



Propagators for finite Ns

Tree-level quark propagator 〈ψs(−p)ψt(p)〉 for massless quarks:

∑

u

[(
−iγµ sin pµ δs,u+W−

su(p)
)
GR

ut(p)P++
(
−iγµ sin pµ δs,u+W+

su(p)
)
GL

ut(p)P−

]

where the expressions of the function GR(p) and GL(p) are

GR
st(p) =

A(p)

F (p)

[
(1 −W (p)e−α(p))(e−2Nsα(p) − 1)e(s+t)α(p)

+2W (p) sinh(α(p))(e(s−t)α(p) + e−(s−t)α(p))

+(1 −W (p)eα(p))(1 − e2Nsα(p))e−(s+t)α(p)

]

+A(p)
(
e(Ns−|s−t|)α(p) + e−(Ns−|s−t|)α(p)

)

and
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Propagators for finite Ns

GL
st(p) =

A(p)

F (p)

[
(e−2α(p) −W (p)e−α(p))(e−2Nsα(p) − 1)e(s+t)α(p)

+2W (p) sinh(α(p))(e(s−t)α(p) + e−(s−t)α(p))

+(e2α(p) −W (p)eα(p))(1 − e2Nsα(p))e−(s+t)α(p)

]

+A(p)
(
e(Ns−|s−t|)α(p) + e−(Ns−|s−t|)α(p)

)

where

A(p) =
1

2W (p) sinh(α(p))

1

2 sinh(Nsα(p))

F (p) = eNsα(p)(1 −W (p)eα(p))

−e−Nsα(p)(1 −W (p)e−α(p))

and α(p) is defined by the positive solution of the equation

cosh(α(p)) =
1 +W 2(p) +

∑
λ

sin2 pλ

2|W (p)|
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Propagators for finite Ns

These are the only calculations which use the exact propagator at finite Ns:

S. C., “Chiral violations in domain-wall QCD from one-loop perturbation
theory at finite Ns”
Physical Review D75 (2007) 054505

S. C., “Perturbative chiral violations for domain-wall QCD with improved
gauge actions”
Nuclear Physics B801 (2008) 220

Matrix elements of observables contain states and operators constructed from
the physical quark fields, and this requires additional propagators

The additional propagators which connect the 4-dimensional physical quark
fields with the 5-dimensional quark fields which appear in the Lagrangian had
not yet been computed for finite Ns
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Propagators of the physical fields

We have then derived the expressions of these propagators for the case of
finite Ns:

〈q(−p)ψs(p)〉 = P+〈ψ1(−p)ψs(p)〉 + P−〈ψNs
(−p)ψs(p)〉

=
(
iγµ sin pµ

E(p)
+ e−Nsα(p) 2W (p) sinh(α(p))

E(p)
(
1 − e−2Nsα(p)

)
)

×
((
e−(Ns−s)α(p) − e−2Nsα(p)e(Ns−s)α(p)

)
P+

+
(
e−(s−1)α(p) − e−2Nsα(p)e(s−1)α(p)

)
P−

)

−
1

1 − e−2Nsα(p)
e−α(p)

((
e−(s−1)α(p) − e−2(Ns−1)α(p)e(s−1)α(p)

)
P+

+
(
e−(Ns−s)α(p) − e−2(Ns−1)α(p)e(Ns−s)α(p)

)
P−

)

where
E(p) = 1 −W (p)eα(p) − e−2Nsα(p)

(
1 −W (p)e−α(p)

)

〈ψs(−p)q(p)〉 gives a similar expression
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Propagators of the physical fields

For the calculation of perturbative amplitudes one also needs the knowledge of
the expressions of these new propagators for small momentum :

〈q(−p)ψs(p)〉c =−
1 − w2

0

1 − w2Ns

0

i6p + wNs

0 (1 − w2
0)

p2 + w2Ns

0 (1 − w2
0)

2

((
wNs−s

0 − w2Ns

0 w
−(Ns−s)
0

)
P+

+
(
ws−1

0 − w2Ns

0 w
−(s−1)
0

)
P−

)

−
1

1 − w2Ns

0

w0

((
ws−1

0 − w
2(Ns−1)
0 w

−(s−1)
0

)
P+

+
(
wNs−s

0 − w
2(Ns−1)
0 w

−(Ns−s)
0

)
P−

)

and a similar expression for 〈ψs(−p)q(p)〉c

The factors 1 − w2
0 are related to the sums of the tree-level exponential

damping factors over the fifth dimension:

lim
Ns→∞

Ns∑

s=1

(
wNs−s

0 P+ + ws−1
0 P−

)2

=
1

1 − w2
0

Since w0 = e−α(0), it is easy to see that the terms which are proportional to
wNs

0 = e−Nsα(0) rapidly approach zero when Ns becomes large
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Residual mass at tree level

Finally, we also need the tree-level propagator of the physical fields

The function that describes the propagation of the physical fields alone is

〈q(−p)q(p)〉 =
1

E(p)

(
iγµ sin pµ (1− e−2Nsα(p))+ e−Nsα(p) · 2W (p) sinh(α(p))

)

In the limit of small momentum this expression becomes

〈q(−p)q(p)〉c = −(1 − w2
0)

i6p + wNs

0 (1 − w2
0)

p2 + w2Ns

0 (1 − w2
0)

2

Thus, domain-wall fermions present at finite Ns some new peculiar features

Although in the Lagrangian all quark fields are massless , the truncation at
finite Ns generates already at tree level a nonvanishing residual mass of the
physical fields (Vranas, . . . )

am(0)
res = −wNs

0 (1 − w2
0) = −(1 −M)Ns ·M(2 −M)
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Residual mass at tree level

As expected, this tree-level residual mass vanishes when Ns = ∞

The sign can be inferred from the general expression of a fermion propagator
of mass µ for small momentum in Euclidean space:

−i6p + µ

p2 + µ2
=

1

i6p + µ

Since we work with even Ns (where the fermion determinant can be proven to

be positive) , m(0)
res is always a negative quantity

With our calculations we have thus reproduced, up to a sign, the result for m(0)
res

found by Shamir, Vranas, Kikukawa, Neuberger, Blum, Wingate, Soni, . . .

That result was derived by considering the quadratic operator D†D, which
could perhaps explain the sign discrepancy

Radiative corrections also give additional contributions to mres

We will see that when the one-loop corrections are taken into account, the
residual mass changes sign and becomes positive
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Residual mass at tree level

Residual mass at tree level in lattice units.

M Ns = 8 Ns = 12 Ns = 16 Ns = 20 Ns = 24 Ns = 28 Ns = 32 Ns = 48 Ns = ∞

0.1 -12.91556 -8.47390 -5.55973 -3.64774 -2.39328 -1.57023 -1.03023 -0.19090 0

0.2 -9.53767 -3.90663 -1.60015 -0.65542 -0.26846 -0.10996 -0.04504 -0.00127 0

0.3 -4.64274 -1.11472 -0.26764 -0.06426 -0.01543 -0.00370 -0.00089 0.00000 0

0.4 -1.69750 -0.22000 -0.02851 -0.00370 -0.00048 -0.00006 -0.00001 0.00000 0

0.5 -0.46264 -0.02891 -0.00181 -0.00011 -0.00001 0.00000 0.00000 0.00000 0

0.6 -0.08693 -0.00223 -0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 0

0.7 -0.00943 -0.00008 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0

0.8 -0.00039 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0

0.9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0

1.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0

1.1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0

1.2 -0.00039 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0

1.3 -0.00943 -0.00008 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0

1.4 -0.08693 -0.00223 -0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 0

1.5 -0.46264 -0.02891 -0.00181 -0.00011 -0.00001 0.00000 0.00000 0.00000 0

1.6 -1.69750 -0.22000 -0.02851 -0.00370 -0.00048 -0.00006 -0.00001 0.00000 0

1.7 -4.64274 -1.11472 -0.26764 -0.06426 -0.01543 -0.00370 -0.00089 0.00000 0

1.8 -9.53767 -3.90663 -1.60015 -0.65542 -0.26846 -0.10996 -0.04504 -0.00127 0

1.9 -12.91556 -8.47390 -5.55973 -3.64774 -2.39328 -1.57023 -1.03023 -0.19090 0
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1-loop results for Σ0

Quark self-energy (where for brevity ḡ2 = (g2
0/16π2)CF ) :

Σq(p) =
ḡ2

1 − w2
0

[
Σ0

a
+i6p

(
c
(Ns,M)
Σ1

log a2p2+Σ1

)
−
(
i6p−wNs

0 (1−w2
0)
) 2w0

1 − w2
0

Σ3

]

Coefficient of ḡ2 for the complete result of Σ0, in Feynman gauge.

M Ns = 8 Ns = 12 Ns = 16 Ns = 20 Ns = 24 Ns = 28 Ns = 32 Ns = 48 Ns = ∞

0.1 17.85919 19.67880 19.25277 17.32109 14.66546 11.87550 9.30218 2.86309 0

0.2 21.82264 15.20660 8.97397 4.82019 2.44504 1.19446 0.56831 0.02488 0

0.3 15.28940 5.98758 1.99997 0.61538 0.18022 0.05106 0.01412 0.00007 0

0.4 7.55847 1.55410 0.27613 0.04548 0.00713 0.00108 0.00016 0.00000 0

0.5 2.79190 0.27543 0.02358 0.00186 0.00014 0.00001 0.00000 0.00000 0

0.6 0.76252 0.03191 0.00115 0.00004 0.00000 0.00000 0.00000 0.00000 0

0.7 0.15015 0.00250 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0

0.8 0.02561 0.00031 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0

0.9 0.00774 0.00012 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0

1.0 0.00418 0.00008 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0

1.1 0.00283 0.00007 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0

1.2 -0.00172 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0

1.3 -0.06252 -0.00073 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0

1.4 -0.44327 -0.01733 -0.00060 -0.00002 0.00000 0.00000 0.00000 0.00000 0

1.5 -1.85863 -0.18051 -0.01531 -0.00122 -0.00009 -0.00001 0.00000 0.00000 0

1.6 -5.42629 -1.12306 -0.20001 -0.03298 -0.00521 -0.00080 -0.00012 0.00000 0

1.7 -11.49207 -4.61264 -1.55867 -0.48269 -0.14194 -0.04034 -0.01120 -0.00006 0

1.8 -16.77186 -12.20090 -7.36730 -4.00994 -2.05105 -1.00765 -0.48138 -0.02129 0

1.9 -13.69620 -15.97157 -16.18935 -14.90821 -12.82561 -10.50396 -8.29629 -2.59956 0
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Automation of the calculations

At one loop two diagrams contribute to Σ0 (at order zero in p) and enter in the
calculation of the residual mass: the half-circle (or sunset) and the tadpole
diagrams

We have automated the calculations of the half-circle (and vertex ) diagrams
by developing suitable FORM codes, integrating afterwards the corresponding
expressions by means of Fortran codes

With these codes one is able to compute matrix elements for general values of
Ns and M

The numbers that we have obtained are valid both in the quenched and
unquenched cases, because at one loop internal quark loops can never
appear in the diagrams

In addition to running the standard numerical integration in 6 dimensions, we
have also redone the computation of the half-circle diagram by hand ,
including the calculation of the gamma algebra and the explicit exact
evaluation of the sums over the fifth-dimensional indices

This provides a rather strong check of our calculations, and also saves 2
dimensions in the numerical integration
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Conclusions

Lattice perturbation theory more involved than in the continuum:
more complicated propagators and vertices
more diagrams
lenghty integrals of trigonometric functions

Heavy use of algebraic manipulation programs (FORM)

LPT frequently applied for renormalizing operators

But there are also cases where significant discoveries were first made
using lattice perturbation theory:

nontrivial mixing structures of operators for structure functions
unexpected properties of hypercubic-breaking chiral actions
properties of domain-wall fermions for a finite extension of the fifth
dimension

→ in particular, the residual mass at tree level:

am(0)
res = −(1 −M)Ns ·M(2 −M)

more 1-loop observables measuring the breaking of chirality are
planned to be calculated . . . (with G. Rossi)

Lattice perturbation theory is still very useful . . .
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