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Methods

Over the last decade or so modern methods of

• on-shell recursion relations (Britto, Cachazo, Feng, Witten,...)

and

• unitarity methods (Bern, Dixon, Kosower, ..., Ossola, Pittau,

Papadopoulos, ..., Badger,.....)

overtaken to a large extent traditional Feynman diagrammatic

approach, including one-loop calculations
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Methods

Over the last decade or so modern methods of

• on-shell recursion relations (Britto, Cachazo, Feng, Witten,...)

and

• unitarity methods (Bern, Dixon, Kosower, ..., Ossola, Pittau,

Papadopoulos, ..., Badger,.....)

overtaken to a large extent traditional Feynman diagrammatic

approach, including one-loop calculations

Knowledge of integrand basis

Amplitude =
∑

j∈Basis

cj ∗ Integralj + Rational

is important here.
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One loop

Basis is known (independently of the given one-loop process),

and include (scalar) integrals: boxes, triangles, bubbles and

tadpoles)

∫

ddq
1

D1D2...Dn

• Kallen, Toll (1965): triangles (n=3) → bubbles (in 2 dim)

• Melrose (later van Neerven and Vermaseren):

pentagon (n=5) → boxes (in 4 dim), see J.Fleischer’s talk

• Lorenz invariance + Passarino and Veltman:

tensor n-PF → m-PF scalar integrals (m ≤ n)
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Efficient methods for finding decompositions at one

loop
• improved tensor decomposition (Denner, Dittmaier, Fleischer,

Riemann, Yundin)

Automatic packages: FeynArts, LoopTools, PJFRY

Knowledge of (scalar) basis and their analytic structure allowed

to focus and find coefficients of reductions:

• Complex integration and contour deformation (Weinzierl,

Soper, Nagy,...)

• On-shell and generalised unitarity methods (OPP, Kosower,

..., Mastrolia,...), integrand reduction techniques (Ellis, Giele,

Kunszt,Melnikov, Tramontano, Heinrich, Reiter)

Automatic packages: BlackHat, Golem/Samurai, GoSam,

Helac,
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Basis at two loops

• At two loops we have to work harder;

• It was proved that basis is finite in general (for any

topology, abstract proof by A.Smirnov and Petuchov), and

proved many times in practice using IBP relations

(Chetyrkin-Tkachov)

0 =

L∏

i=1

(∫
ddℓi

(2π)d

)
∂

∂ℓj
·

(

v (j)

D1(ℓ1, . . . ℓL) · · ·Dm(ℓ1, . . . ℓL)

)
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Basis at two loops

• At two loops we have to work harder;

• It was proved that basis is finite in general (for any

topology, abstract proof by A.Smirnov and Petuchov), and

proved many times in practice using IBP relations

(Chetyrkin-Tkachov)

0 =

L∏

i=1

(∫
ddℓi

(2π)d

)
∂

∂ℓj
·

(

v (j)

D1(ℓ1, . . . ℓL) · · ·Dm(ℓ1, . . . ℓL)

)

• Automation through a public software AIR, FIRE, Reduze,

(plus IdSolver, etc)
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The point is that there is plenty of possible choices for MIs. The
choice of basis integrals makes a difference, e.g.

• if we would like to solve MIs analytically (see Smirnov’s

textbooks on MB techniques);

• it also matters in differential eqns. method (introducing

numerators or dots on specific lines will change IR and UV
behaviour of integrals). Plus, a clever choice of integrals can

decouple ǫ-expanded diff. eqns.
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The point is that there is plenty of possible choices for MIs. The
choice of basis integrals makes a difference, e.g.

• if we would like to solve MIs analytically (see Smirnov’s

textbooks on MB techniques);

• it also matters in differential eqns. method (introducing

numerators or dots on specific lines will change IR and UV
behaviour of integrals). Plus, a clever choice of integrals can

decouple ǫ-expanded diff. eqns.

(i) IBPs create doubled ("dotted") propagators

e.g.

∂

∂ℓµ

1

(ℓ− K )2
∼

1

[(ℓ− K )2]2
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• Stronger logarithmic singularities,

• They can also create artificial 1/ǫ factors in front of MIs

(which must be then determined to higher level in ǫ)
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Dotted propagators can result in

• Stronger logarithmic singularities,

• They can also create artificial 1/ǫ factors in front of MIs

(which must be then determined to higher level in ǫ)

So better if we avoid them, also in the unitarity approach.
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Moreover, in the unitarity approach

(ii) Coefficients cj are functions of the external spinors

(depend on ǫ in addition)

Amplitude =
∑

j∈Basis

cj(ǫ, ...) ∗ Integralj + Rational
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What else?

(iii) At two loops number of master integrals for a given

topology often depend on the number and arrangement of

external massive legs, in general

Even more: dependence on relations among masses of

external legs

Integral #MIs

P∗∗

2,2 =2

P∗∗

2,2, {1} =2

P∗∗

2,2, {1, 2} =3

P∗∗

2,2, {1,3} =2

P∗∗

2,2, {1,4} =2

P∗∗

2,2, {1, 2, 3} =3

P∗∗

2,2, {1, 2, 3, 4} =4
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(iv) bases to all orders in ǫ (d -dimensional basis)

(v) ignoring O(ǫ) in amplitudes (regulated 4-dimensional

basis)
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We can do nothing about (ii) and (iii),

but we can attack (i) [dotted propagators]

Besides, we distinguished two kinds of bases:

(iv) bases to all orders in ǫ (d -dimensional basis)

(v) ignoring O(ǫ) in amplitudes (regulated 4-dimensional

basis)

Our aim is to reduce any high-multiplicity two-loop integral

(including numerators) to the above classes of basis integrals,

which are free of higher powers of propagators.
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Convention, planar topologies

Pn1,n2
P∗

n1,n2

P∗∗
n1,n2

Nonplanar cases would come with an external leg attached to the vertical,

internal line.
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Convention, planar topologies

Pn1,n2
P∗

n1,n2

P∗∗
n1,n2

Nonplanar cases would come with an external leg attached to the vertical,

internal line.

In1,n2
I∗n1,n2
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Pn1,n2
= (−i)2

∫
ddℓ1

(2π)d

ddℓ2

(2π)d

1

ℓ2
1(ℓ1 − K1)2

· · · (ℓ1 − K1···n1
)2(ℓ1 + ℓ2 + Kn1+n2+2)2

×

1

ℓ2
2(ℓ2 − Kn1+n2+1)2

· · · (ℓ1 − K(n1+2)···(n1+n2+1))2
,

P
∗

n1,n2
= (−i)2

∫
ddℓ1

(2π)d

ddℓ2

(2π)d

1

ℓ2
1(ℓ1 − K1)2

· · · (ℓ1 − K1···n1
)2(ℓ1 + ℓ2)2

×

1

ℓ2
2(ℓ2 − Kn1+n2+1)2

· · · (ℓ1 − K(n1+2)···(n1+n2+1))2
,

P
∗∗

n1,n2
= (−i)2

∫
ddℓ1

(2π)d

ddℓ2

(2π)d

1

ℓ2
1(ℓ1 − K1)2

· · · (ℓ1 − K1···n1
)2(ℓ1 + ℓ2)2

×

1

ℓ2
2(ℓ2 − Kn1+n2

)2
· · · (ℓ1 − K(n1+1)···(n1+n2))

2
,
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Pn1,n2
= (−i)2

∫
ddℓ1

(2π)d

ddℓ2

(2π)d

1

ℓ2
1(ℓ1 − K1)2

· · · (ℓ1 − K1···n1
)2(ℓ1 + ℓ2 + Kn1+n2+2)2

×

1

ℓ2
2(ℓ2 − Kn1+n2+1)2

· · · (ℓ1 − K(n1+2)···(n1+n2+1))2
,

P
∗

n1,n2
= (−i)2

∫
ddℓ1

(2π)d

ddℓ2

(2π)d

1

ℓ2
1(ℓ1 − K1)2

· · · (ℓ1 − K1···n1
)2(ℓ1 + ℓ2)2

×

1

ℓ2
2(ℓ2 − Kn1+n2+1)2

· · · (ℓ1 − K(n1+2)···(n1+n2+1))2
,

P
∗∗

n1,n2
= (−i)2

∫
ddℓ1

(2π)d

ddℓ2

(2π)d

1

ℓ2
1(ℓ1 − K1)2

· · · (ℓ1 − K1···n1
)2(ℓ1 + ℓ2)2

×

1

ℓ2
2(ℓ2 − Kn1+n2

)2
· · · (ℓ1 − K(n1+1)···(n1+n2))

2
,

P
∗

n1,n2
(K1, . . . ,Kn1+n2+1) = Pn1,n2

(K1, . . . ,Kn1+n2+1, 0) ,

P
∗∗

n1,n2
(K1, . . . ,Kn1+n2

) = P
∗

n1,n2
(K1, . . . ,Kn1

, 0,Kn1+1, . . . ,Kn1+n2
) .
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At one loop

G

(
p1, · · · ,pl

q1, · · · ,ql

)

≡ det
i ,j∈l×l

(2pi · qj) ,

We can expand each of the four-dimensional vectors vj in a
basis of four chosen external momenta b1,b2,b3,b4,

vµ

j =
1

G(b1, b2, b3, b4)

[

G

(
v , b2, b3, b4

b1, b2, b3, b4

)

bµ

1 + G

(
b1, v , b3, b4

b1, b2, b3, b4

)

bµ

2

+ G

(
b1, b2, v , b4

b1, b2, b3, b4

)

b
µ

3 + G

(
b1, b2, b3, v

b1, b2, b3, b4

)

b
µ

4

]

.

We can express vj by bi , then ℓ · bi are all reducible, e.g.

ℓ · b1 =
1

2

[
(ℓ− K )2 − (ℓ− K − b1)

2 + (K + b1)
2 − K 2

]
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I. Reduction of High-Multiplicity Integrals with

Non-Trivial Numerators

talk "From tensor integral to IBP" by Mohammad Assadsolimami

At two loops, for n1 ≥ 4, tensor integrals (ℓ ≡ ℓ1, ℓ2)

Pn1,n2
[ℓ · v1 ℓ · v2 · · · ℓ · vn] can be similarly expanded with the

external momenta b1, . . . ,b4 chosen amongst the first n1

momenta. Then ℓ1 · Kj , 1 ≤ j ≤ n1, are reducible

ℓ1 · Kj =
1

2

[
(ℓ1 − K1···(j−1))

2 − (ℓ1 − K1···j)
2

︸ ︷︷ ︸

e.g. Pn1−1,n2

+K 2
1···j − K 2

1···(j−1)
︸ ︷︷ ︸

simpler tensors

]

Similarly for ℓ2. We end up with basis containing P
♮,∗,∗∗
n1≤4,n2<n1

and (scalar, reducible or irreducible numerators) or general

(n1,n2) but with trivial numerators (without ℓi )



Introduction QFT frontiers: basis at two loops Future and summary

II. Reduction of High-Multiplicity Integrals with Trivial

Numerators

Still trivial numerators but with arbitrary number of external

legs, n1 ≥ 5.

At one loop:

In[P(ℓ)] ≡ −i

∫
dDℓ

(2π)D

P(ℓ)

ℓ2(ℓ− K1)2(ℓ− K12)2 · · · (ℓ− K1···(n−1))2
,
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II. Reduction of High-Multiplicity Integrals with Trivial

Numerators

Still trivial numerators but with arbitrary number of external

legs, n1 ≥ 5.

At one loop:

In[P(ℓ)] ≡ −i

∫
dDℓ

(2π)D

P(ℓ)

ℓ2(ℓ− K1)2(ℓ− K12)2 · · · (ℓ− K1···(n−1))2
,

n ≥ 6. In general, (external momenta are 4 dimensional)

G

(
ℓ,1,2,3,4

5,1,2,3,4

)

= 0

so

In

[

G

(
ℓ,1,2,3,4

5,1,2,3,4

)]

= 0 , (n ≥ 6)
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G

(

ℓ, 1, 2, 3, 4

5, 1, 2, 3, 4

)

= −ℓ2 G

(

1, 2, 3, 4

5, 2, 3, 4

)

+ (ℓ− K1)
2 G

(

1, 2, 3, 4

5,K12, 3, 4

)

−(ℓ− K12)
2 G

(

1, 2, 3, 4

5, 1,K23, 4

)

+ (ℓ− K123)
2 G

(

1, 2, 3, 4

5, 1, 2,K34

)

+(ℓ− K1234)
2 G

(

1, 2, 3, 4

1, 2, 3,K45

)

− (ℓ− K12345)
2 G

(

1, 2, 3, 4

1, 2, 3, 4

)

−K 2
1 G

(

1, 2, 3, 4

5,K12, 3, 4

)

+ K 2
12 G

(

1, 2, 3, 4

5, 1,K23, 4

)

− K 2
123 G

(

1, 2, 3, 4

5, 1, 2,K34

)

−K 2
1234 G

(

1, 2, 3, 4

1, 2, 3,K45

)

+ K 2
12345 G

(

1, 2, 3, 4

1, 2, 3, 4

)

,
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In(K1, . . . ,Kn) = c1In−1(Kn1,K2, . . . ,Kn−1) + c2In−1(K12,K3, . . . ,Kn)

+c3In−1(K1,K23,K4, . . . ,Kn) + c4In−1(K1,K2,K34,K5, . . . ,Kn)

+c5In−1(K1, . . . ,K45, . . . ,Kn) + c6In−1(K1, . . . ,K56, . . . ,Kn)

e.g. c1 =
1

c0

G

(

1, 2, 3, 4

5, 2, 3, 4

)

, c2 = ...

c0 = −K 2
1 G

(

1, 2, 3, 4

5,K12, 3, 4

)

+ K 2
12 G

(

1, 2, 3, 4

5, 1,K23, 4

)

− K 2
123 G

(

1, 2, 3, 4

5, 1, 2,K34

)

−K 2
1234 G

(

1, 2, 3, 4

1, 2, 3,K45

)

+ K 2
12345 G

(

1, 2, 3, 4

1, 2, 3, 4

)

,

Similarly, at two loops:

Pn1,n2
(K1, . . . ,Kn1+n2+2) =

c1Pn1−1,n2
(K2, . . . ,K(n1+n2+2)1) + c2Pn1−1,n2

(K12,K3, . . . ,Kn1+n2+2)

+c3Pn1−1,n2
(K1,K23,K4, . . . ,Kn1+n2+2) + c4Pn1−1,n2

(K1,K2,K34,K5, . . . ,Kn1+n2+2)

+c5Pn1−1,n2
(K1, . . . ,K45, . . . ,Kn1+n2+2) + c6Pn1−1,n2

(K1, . . . ,K56, . . . ,Kn1+n2+2) ,

We arrived at: Pn1,n2
with n2 ≤ n1 ≤ 4
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III. Truly Irreducible Numerators and IBPs.

Avoiding dotted propagators.

For Pn1<4,n2≤n1
, which can still include truly irreducible

numerators, the IBP machinery has to be used.

As already discussed, we want to avoid simultanously

appearance of doubled propagators in the basis.

∫
ddℓ1

(2π)d

∫
ddℓ2

(2π)d

∂

∂ℓµj

vµ

D(ℓ1, ℓ2, {Ki})
,

∂

∂ℓµ

1

(ℓ− K )2
= 2

(ℓ− K )µ

[(ℓ− K )2]2
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First idea: we can choose vectors whose dot product with the

numerator resulting from differentiating any propagator

vanishes

v · (ℓ− K ) = 0

However, it is a too strong constraint, it is sufficient to require

that

v · (ℓ− K ) ∝ (ℓ− K )2

We impose this constraint for every propagator (σj = ±1,0)

[
σj1v1 + σj2v2

]
·(σj1ℓ1 + σj2ℓ2 − Kj)+uj (σj1ℓ1 + σj2ℓ2 − Kj)

2 = 0

uj = Polyn{ℓ · b}
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IBP-generating vectors

[
σj1v1 + σj2v2

]
· (σj1ℓ1 + σj2ℓ2 −Kj) + uj (σj1ℓ1 + σj2ℓ2 −Kj)

2 = 0

v
µ
i = c

(ℓ1)
i ℓµ1 + c

(ℓ2)
i ℓµ2 +

∑

b∈B

c
(b)
i bµ

Each of the coefficients c
(x)
i is again a polynomial in the various

independent Lorentz invariants
V = {ℓ2

1 , ℓ1 · ℓ2, ℓ
2
2 , {ℓ1 · b}b∈B , {ℓ2 · b}b∈B, s12}, e.g. for dim. 2

c
(p)
i = c

(p)
i,1 s12 +

∑

b∈B

c
(p)
i,b1ℓ1 · b +

∑

b∈B

c
(p)
i,b2ℓ2 · b + c

(p)
i,2 ℓ

2
1 + c

(p)
i,3 ℓ1 · ℓ2 + c

(p)
i,4 ℓ

2
2

where c
(p)
i,1 depends on χij =

sij

s12
, χi···j =

si···j

s12
, µi =

m2
i

s12
,
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We can assemble the set of equations into a single matrix

equation

c̃E = 0

where c̃ (rows) gathers all coefficients

(cℓ1

1 , ..., cb4

1 , cℓ1

2 , ..., cb4

2 ,u1, ...,un) and E is (2nB + 4 + nd)× nd

matrix, which depends on chosen topology [propagators]

For the planar double box

v
µ
i = c

(ℓ1)
i ℓµ1 + c

(ℓ2)
i ℓµ2 + c

(1)
i k

µ
1 + c

(2)
i k

µ
2 + c

(4)
i k

µ
4

where e.g.

c(ℓ1)({ℓ2
1 , ℓ1 · ℓ2, ℓ

2
2 , ℓ1 · k1 , ℓ1 · k2 , ℓ1 · k4 , ℓ2 · k1 , ℓ2 · k3 , ℓ2 · k4 , s12}

︸ ︷︷ ︸

symbols

)

vector:

c̃ =
(
c
(ℓ1)
1 c

(ℓ2)
1 c

(1)
1 c

(2)
1 c

(4)
1 c

(ℓ1)
2 c

(ℓ2)
2 c

(1)
2 c

(2)
2 c

(4)
2 u1...7

)
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Coefficients found (syzygies) using Gröbner basis (another

algorithm by Robert Schabinger)

In this way, e.g. for P∗∗
2,2, the IBP generating vectors (of dim. 2)

are:

v1;1 = −2(k4 ·ℓ1 + ℓ2
1)k

µ
1 − ℓ2

1k
µ
2 + (2k1 ·ℓ1 − ℓ2

1)k
µ
4

+ (4k1 ·ℓ1 + 2k2 ·ℓ1 + 2k4 ·ℓ1 − s12)ℓ
µ
1 ,

v1;2 = 2(ℓ2
2 − k4 ·ℓ2)k

µ
1 + ℓ2

2k
µ
2 + (2k1 ·ℓ2 + ℓ2

2)k
µ
4

+ (2k3 ·ℓ2 − 2k1 ·ℓ2 − s12)ℓ
µ
2 ;

There are another two pairs of solutions of dim. 4.
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∂

∂ℓµ1

[
v1;1

ℓ2
1(ℓ1 − K12)2(ℓ1 + ℓ2)2ℓ2

2(ℓ1 − k1)2(ℓ2 − K34)2

]

=
1

ℓ2
1(ℓ1 − K12)2(ℓ1 + ℓ2)2ℓ2

2(ℓ1 − k1)2(ℓ2 − K34)2

× (2dk1 · ℓ1 − 2k3 · ℓ1 − s12)− (8k1 · ℓ1 − 8k3 · ℓ1 − 4s12 + s14)

+
4

(ℓ1 + ℓ2)2
(2k1 · ℓ2k1 · ℓ1 − 2k1 · ℓ1k4 · ℓ2 + k1 · ℓ2ℓ

2
1

− k3 · ℓ2ℓ
2
1 + 2k1 · ℓ1ℓ

2
2 + k2 · ℓ1ℓ

2
2 + k4 · ℓ1ℓ

2
2 + (ℓ2

1 − ℓ2
2)s12/2)

)
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∂

∂ℓµ1

[
v1;1

ℓ2
1(ℓ1 − K12)2(ℓ1 + ℓ2)2ℓ2

2(ℓ1 − k1)2(ℓ2 − K34)2

]

=
1

ℓ2
1(ℓ1 − K12)2(ℓ1 + ℓ2)2ℓ2

2(ℓ1 − k1)2(ℓ2 − K34)2

× (2dk1 · ℓ1 − 2k3 · ℓ1 − s12)− (8k1 · ℓ1 − 8k3 · ℓ1 − 4s12 + s14)

+
4

(ℓ1 + ℓ2)2
(2k1 · ℓ2k1 · ℓ1 − 2k1 · ℓ1k4 · ℓ2 + k1 · ℓ2ℓ

2
1

− k3 · ℓ2ℓ
2
1 + 2k1 · ℓ1ℓ

2
2 + k2 · ℓ1ℓ

2
2 + k4 · ℓ1ℓ

2
2 + (ℓ2

1 − ℓ2
2)s12/2)

)

∂

∂ℓµ2

[
v1;2

ℓ2
1(ℓ1 − K12)2(ℓ1 + ℓ2)2ℓ2

2(ℓ1 − k1)2(ℓ2 − K34)2

]

=
1

ℓ2
1(ℓ1 − K12)2(ℓ1 + ℓ2)2ℓ2

2(ℓ1 − k1)2(ℓ2 − K34)2

× (2dk1 · ℓ2 − 2k3 · ℓ2 + s12)− (8k1 · ℓ2 − 8k3 · ℓ2 + 4s12 + s14)

−
4

(ℓ1 + ℓ2)2
(2k1 · ℓ2k3 · ℓ2 − 2k1 · ℓ1k4 · ℓ2 + k1 · ℓ2ℓ

2
1

− k3 · ℓ2ℓ
2
1 + 2k1 · ℓ1ℓ

2
2 + k2 · ℓ1ℓ

2
2 + k4 · ℓ1ℓ

2
2 + (ℓ2

1 − ℓ2
2)s12/2)

)
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Final operations

• Find and apply IBP-generating vectors to each of the

integrals in the basis list

• Vectors will depend on number and pattern of external

masses

• Number of truly-irreducible integrals ("master integrals")

also depends on number and pattern of external masses
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Some solutions (in d dimensions)

• Massless, one-mass, diagonal two-mass, long-side

two-mass double boxes (here five IBP-generating vectors

of dim. 4): two integrals

P∗∗[1], P∗∗
2,2[k1 · ℓ2]
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Some solutions (in d dimensions)

• Short-side two-mass (four IBP-generating vectors, of dim.

4), three-mass double boxes: 3 IBP-gen. vectors of dim 4,

2 of dim 6,fixed numerically): three integrals

P∗∗[1], P∗∗
2,2[k1 · ℓ2], P∗∗

2,2[k4 · ℓ2]
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Some solutions (in d dimensions)

• Four-mass double box: four integrals: e.g.

P∗∗
2,2[1] ,P

∗∗
2,2[k1 ·ℓ2] ,P

∗∗
2,2[k4 ·ℓ1] ,P

∗∗
2,2[k1 ·ℓ2k4 ·ℓ1]

• massless pentabox (six IBP-gen. vectors of dim. 4, three

of dim. 6, fixed numerically): three integrals

P∗∗
3,2[1], P∗∗

3,2[k1 · ℓ2], P∗∗
3,2[k5 · ℓ1]
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d-dimensional and 4-dim basis, exploring Gram

determinants. I. Pentagons

At one loop, in d dimensions, they are independent basis

elements.

Expanding in d = 4 − 2ǫ, only the O(ǫ) terms are independent,

so that the integral can be eliminated from the basis.

G

(
ℓ1,1,2,3,4

ℓ1,1,2,3,4

)

= O(ǫ)

then also

I5[G(ℓ,1,2,3,4)]O(ǫ)

[Integral itself is UV finite by power counting and vanishes in all

regions that give rise to soft and collinear singularities, where

also Gram determinant vanishes]
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G

(
ℓ1, 1, 2, 3,4

ℓ1, 1, 2, 3,4

)

=

d0
︸︷︷︸

pentagon

+d1ℓ
2 + d2(ℓ− K1)

2 + d3(ℓ− K12)
2 + d4(ℓ− K123)

2 + d5(ℓ− K1234)
2

︸ ︷︷ ︸

boxes

−ℓ
2

G

(
1,2, 3, 4

ℓ, 2, 3, 4

)

+ (ℓ− K1)
2

G

(
1, 2, 3,4

ℓ,K12, 3,4

)

− (ℓ− K12)
2

G

(
1, 2,3, 4

ℓ, 1,K23, 4

)

+(ℓ− K123)
2

G

(
1, 2, 3,4

ℓ, 1, 2,K34

)

− (ℓ− K1234)
2

G

(
1, 2,3, 4

ℓ, 1, 2,3

)

,

rest (two last rows) is proportional to odd powers of ℓ and

vanishes in d-dimensions

Insert this into the numerator of a five-point integral to obtain a

relation relating it to five box integrals, up to terms of O(ǫ)
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Vanishing Gram determinants at two loops, example

For P∗∗
2,2 integrals we haven’t found any useful, additional

relations.

Pentagonbox: 3 → 1 MIs.

Two additional relations from considering the following two

integrals:

P∗∗
3,2

[

G

(
ℓ1,1,2,3,5

ℓ2,1,2,3,5

)]

and P∗∗
3,2

[

k5 ·ℓ1G

(
ℓ1,1,2,3,5

ℓ2,1,2,3,5

)]
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Vanishing Gram determinants at two loops, example

For P∗∗
2,2 integrals we haven’t found any useful, additional

relations.

Pentagonbox: 3 → 1 MIs.

Two additional relations from considering the following two

integrals:

P∗∗
3,2

[

G

(
ℓ1,1,2,3,5

ℓ2,1,2,3,5

)]

and P∗∗
3,2

[

k5 ·ℓ1G

(
ℓ1,1,2,3,5

ℓ2,1,2,3,5

)]

These kind of Gram determinants all vanish when either loop

momentum approaches a potential (on-shell) collinear or soft

configuration, thereby removing the corresponding divergences

from the integral, and rendering it finite. In addition, the Gram

determinants vanish when both loop momenta are

four-dimensional, so that the integrals are of O(ǫ).
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Procedure

We first solve all d -dimensional IBP equations, and use the

solutions of those equations (in analytical or numerical form) to

reduce the integrals obtained from inserting Gram determinants

into the numerator; this will provide additional identities to O(ǫ0)
between the independent master integrals.
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• O(ǫ) Gram dets give no new equations for double boxes

P∗∗
2,2

• Reduce three integrals for the pentabox P∗∗
3,2 to one

• Reduce all double pentagons P∗∗
3,3 to simpler integrals
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Application: maximal generalized unitarity approach1

Kosower, Larsen, PRD2012,

Caron-Huot, Larsen, JHEP2012,

Johansson, Kosower, Larsen, 1208.1754

Basis is needed to ensure unique solutions to the coefficients

of the MIs.

1different approaches based on OPP generalization by Ossola, Mastrolia,

see also Simon Badger’s talk
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Where to go?

• At the moment frontiers at two loops include amplitudes

reduction methods and it is an active area of research,

represented by several groups

• There are many places for improvements and new ideas

• One example: chiral integrals in any gauge theory (to build

a basis with as many IR finite MIs as possible)

A(2) =
∑

i

ci(ǫ) Inti+Rational

Chiral double boxes as basis at two loops (Caron-Huot,

Larsen, 1205.0801)
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Summary

• Knowledge of an integral basis plays an important role in

modern unitarity calculations

• Two kinds of bases

• To be done: non-planar topologies; massive propagators

• To be done: maximally generalized unitarity cuts with (ǫ)
(and higher terms), master contours: 1208.1754

• Beyond two loops? (Zhang, Badger)
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Backup slides

Kosower, Larsen, PRD2012,

Caron-Huot, Larsen, JHEP2012,

Johansson, Kosower, Larsen, 1208.1754

R
1,3 → C

4,

∫
d4ℓ

(2π)4
NF δ

(
ℓ2
)
δ
(
(ℓ− k1)

2
)
δ
(
(ℓ− k1 − k2)

2
)
δ
(
(ℓ+ k4)

2
)
≡

∮

TQ

d4ℓ

(2π)4

NF (ℓ, · · · )

ℓ2(ℓ− k1)2(ℓ− k1 − k2)2(ℓ+ k4)2
,

TQ: four-torus encircling the solutions to the on-shell eqns.
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E.g. at two loops

∫
d4ℓ1

(2π)4

d4ℓ2

(2π)4
δ
(
ℓ2

1

)
δ
(
(ℓ1 − k1)

2
)
δ
(
(ℓ1 − K12)

2
)
δ
(
(ℓ1 + ℓ2)

2
)

×δ
(
ℓ2

2

)
δ
(
(ℓ2 − k4)

2
)
δ
(
(ℓ2 − K34)

2
)
,

On-shell constraints:

ℓ2
1 = 0 (ℓ1 − k1)

2 = 0 , (ℓ1 − K12)
2 = 0 ℓ2

2 = 0 , (ℓ2 − k4)
2 = 0 ,

(ℓ2 − K34)
2 = 0 , (ℓ1 + ℓ2)

2 = 0 .
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• On-shell constraints allow by choosing the integration

contours to encircle poles unique to each MI in the basis

decomposition, their coeff. can be extracted, so amplitude

can be determined

• Comparing # constraints (cuts) with dimensionality of the

integral: 1 degree of freedom remains (not so at 1-loop),

there is a Jacobian arising from solving the δ-functions

which helps to identify poles at specific locations

• Applied in the recent paper 1208.1754: uniqueness of

contours on Riemann spheres
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