Future and summary

# A unitarity compatible integrand basis at two loops

Janusz Gluza

University of Silesia, Katowice

in collaboration with David Kosower and Krzysztof Kajda,

Phys.Rev. D83 (2011) 045012

11 September, Bielefeld

#### Outline



#### 2 QFT frontiers: basis at two loops



### Methods

Over the last decade or so modern methods of

• on-shell recursion relations (Britto, Cachazo, Feng, Witten,...)

and

• unitarity methods (Bern, Dixon, Kosower, ..., Ossola, Pittau, Papadopoulos, ..., Badger,....)

overtaken to a large extent traditional Feynman diagrammatic approach, including one-loop calculations

# Methods

Over the last decade or so modern methods of

• on-shell recursion relations (Britto, Cachazo, Feng, Witten,...)

and

• unitarity methods (Bern, Dixon, Kosower, ..., Ossola, Pittau, Papadopoulos, ..., Badger,....)

overtaken to a large extent traditional Feynman diagrammatic approach, including one-loop calculations

Knowledge of integrand basis

$$Amplitude = \sum_{j \in Basis} c_j * Integral_j + Rational$$

is important here.

#### One loop

Basis is known (independently of the given one-loop process), and include (scalar) integrals: boxes, triangles, bubbles and tadpoles)

$$\int d^d q \frac{1}{D_1 D_2 \dots D_n}$$

- Kallen, Toll (1965): triangles (n=3)  $\rightarrow$  bubbles (in 2 dim)
- Melrose (later van Neerven and Vermaseren): pentagon (n=5) → boxes (in 4 dim), see J.Fleischer's talk
- Lorenz invariance + Passarino and Veltman: tensor n-PF → m-PF scalar integrals (*m* ≤ *n*)

Efficient methods for finding decompositions at one loop

• *improved* tensor decomposition (Denner, Dittmaier, Fleischer, Riemann, Yundin)

Automatic packages: FeynArts, LoopTools, PJFRY

Efficient methods for finding decompositions at one loop

• *improved* tensor decomposition (Denner, Dittmaier, Fleischer, Riemann, Yundin)

Automatic packages: FeynArts, LoopTools, PJFRY

Knowledge of (scalar) basis and their analytic structure allowed to focus and find coefficients of reductions:

- Complex integration and contour deformation (Weinzierl, Soper, Nagy,...)
- On-shell and generalised unitarity methods (OPP, Kosower, ..., Mastrolia,...), integrand reduction techniques (Ellis, Giele, Kunszt, Melnikov, Tramontano, Heinrich, Reiter)

Automatic packages: BlackHat, Golem/Samurai, GoSam, Helac,

### Basis at two loops

At two loops we have to work harder;

#### Basis at two loops

- At two loops we have to work harder;
- It was proved that basis is finite in general (for any topology, abstract proof by A.Smirnov and Petuchov), and proved many times in practice using IBP relations (Chetyrkin-Tkachov)

$$0 = \prod_{i=1}^{L} \left( \int \frac{d^{d}\ell_{i}}{(2\pi)^{d}} \right) \frac{\partial}{\partial \ell_{j}} \cdot \left( \frac{v^{(j)}}{D_{1}(\ell_{1}, \ldots \ell_{L}) \cdots D_{m}(\ell_{1}, \ldots \ell_{L})} \right)$$

#### Basis at two loops

- At two loops we have to work harder;
- It was proved that basis is finite in general (for any topology, abstract proof by A.Smirnov and Petuchov), and proved many times in practice using IBP relations (Chetyrkin-Tkachov)

$$0 = \prod_{i=1}^{L} \left( \int \frac{d^{d}\ell_{i}}{(2\pi)^{d}} \right) \frac{\partial}{\partial \ell_{j}} \cdot \left( \frac{v^{(j)}}{D_{1}(\ell_{1}, \ldots \ell_{L}) \cdots D_{m}(\ell_{1}, \ldots \ell_{L})} \right)$$

• Automation through a public software AIR, FIRE, Reduze, (plus IdSolver, etc)

• if we would like to solve MIs analytically (see Smirnov's textbooks on MB techniques);

- if we would like to solve MIs analytically (see Smirnov's textbooks on MB techniques);
- it also matters in differential eqns. method (introducing numerators or dots on specific lines will change IR and UV behaviour of integrals). Plus, a clever choice of integrals can decouple *ε*-expanded diff. eqns.

- if we would like to solve MIs analytically (see Smirnov's textbooks on MB techniques);
- it also matters in differential eqns. method (introducing numerators or dots on specific lines will change IR and UV behaviour of integrals). Plus, a clever choice of integrals can decouple *ε*-expanded diff. eqns.

(i) IBPs create doubled ("dotted") propagators

$$rac{\partial}{\partial \ell_{\mu}} rac{1}{(\ell-K)^2} \sim rac{1}{[(\ell-K)^2]^2}$$



Dotted propagators can result in

- Stronger logarithmic singularities,
- They can also create artificial 1/ε factors in front of MIs (which must be then determined to higher level in ε)

Dotted propagators can result in

- Stronger logarithmic singularities,
- They can also create artificial 1/ε factors in front of MIs (which must be then determined to higher level in ε)

So better if we avoid them, also in the unitarity approach.

#### Moreover, in the unitarity approach

(ii) Coefficients  $c_j$  are functions of the external spinors (depend on  $\epsilon$  in addition)

Amplitude = 
$$\sum_{j \in \text{Basis}} c_j(\epsilon, ...) * \text{Integral}_j + \text{Rational}$$

## What else?

#### What else?

- (iii) At two loops number of master integrals for a given topology often depend on the number and arrangement of external massive legs, in general
- Even more: dependence on relations among masses of external legs



We can do nothing about (ii) and (iii), but we can attack (i) [dotted propagators] We can do nothing about (ii) and (iii), but we can attack (i) [dotted propagators]

Besides, we distinguished two kinds of bases:

- (iv) bases to all orders in  $\epsilon$  (*d*-dimensional basis)
- (v) ignoring  $\mathcal{O}(\epsilon)$  in amplitudes (regulated 4-dimensional basis)

We can do nothing about (ii) and (iii), but we can attack (i) [dotted propagators]

Besides, we distinguished two kinds of bases:

- (iv) bases to all orders in  $\epsilon$  (*d*-dimensional basis)
- (v) ignoring  $\mathcal{O}(\epsilon)$  in amplitudes (regulated 4-dimensional basis)

Our aim is to reduce any high-multiplicity two-loop integral (including numerators) to the above classes of basis integrals, which are free of higher powers of propagators.

# Convention, planar topologies



Nonplanar cases would come with an external leg attached to the vertical, internal line.

# Convention, planar topologies



Nonplanar cases would come with an external leg attached to the vertical, internal line.



$$\begin{split} P_{n_{1},n_{2}} &= (-i)^{2} \int \frac{d^{d}\ell_{1}}{(2\pi)^{d}} \frac{d^{d}\ell_{2}}{(2\pi)^{d}} \frac{1}{\ell_{1}^{2}(\ell_{1}-K_{1})^{2}\cdots(\ell_{1}-K_{1}\dots n_{1})^{2}(\ell_{1}+\ell_{2}+K_{n_{1}+n_{2}+2})^{2}} \\ &\times \frac{1}{\ell_{2}^{2}(\ell_{2}-K_{n_{1}+n_{2}+1})^{2}\cdots(\ell_{1}-K_{(n_{1}+2)}\dots (n_{1}+n_{2}+1))^{2}}, \\ P_{n_{1},n_{2}}^{*} &= (-i)^{2} \int \frac{d^{d}\ell_{1}}{(2\pi)^{d}} \frac{d^{d}\ell_{2}}{(2\pi)^{d}} \frac{1}{\ell_{1}^{2}(\ell_{1}-K_{1})^{2}\cdots(\ell_{1}-K_{1}\dots n_{1})^{2}(\ell_{1}+\ell_{2})^{2}} \\ &\times \frac{1}{\ell_{2}^{2}(\ell_{2}-K_{n_{1}+n_{2}+1})^{2}\cdots(\ell_{1}-K_{(n_{1}+2)}\dots (n_{1}+n_{2}+1))^{2}}, \\ P_{n_{1},n_{2}}^{**} &= (-i)^{2} \int \frac{d^{d}\ell_{1}}{(2\pi)^{d}} \frac{d^{d}\ell_{2}}{(2\pi)^{d}} \frac{1}{\ell_{1}^{2}(\ell_{1}-K_{1})^{2}\cdots(\ell_{1}-K_{1}\dots n_{1})^{2}(\ell_{1}+\ell_{2})^{2}} \\ &\times \frac{1}{\ell_{2}^{2}(\ell_{2}-K_{n_{1}+n_{2}})^{2}\cdots(\ell_{1}-K_{1}\dots n_{1})^{2}(\ell_{1}+\ell_{2})^{2}}, \end{split}$$

$$\begin{split} P_{n_{1},n_{2}} &= (-i)^{2} \int \frac{d^{d}\ell_{1}}{(2\pi)^{d}} \frac{d^{d}\ell_{2}}{(2\pi)^{d}} \frac{1}{\ell_{1}^{2}(\ell_{1}-K_{1})^{2}\cdots(\ell_{1}-K_{1}\dots n_{1})^{2}(\ell_{1}+\ell_{2}+K_{n_{1}+n_{2}+2})^{2}} \\ &\times \frac{1}{\ell_{2}^{2}(\ell_{2}-K_{n_{1}+n_{2}+1})^{2}\cdots(\ell_{1}-K_{(n_{1}+2)}\dots (n_{1}+n_{2}+1))^{2}}, \\ P_{n_{1},n_{2}}^{*} &= (-i)^{2} \int \frac{d^{d}\ell_{1}}{(2\pi)^{d}} \frac{d^{d}\ell_{2}}{(2\pi)^{d}} \frac{1}{\ell_{1}^{2}(\ell_{1}-K_{1})^{2}\cdots(\ell_{1}-K_{1}\dots n_{1})^{2}(\ell_{1}+\ell_{2})^{2}} \\ &\times \frac{1}{\ell_{2}^{2}(\ell_{2}-K_{n_{1}+n_{2}+1})^{2}\cdots(\ell_{1}-K_{(n_{1}+2)}\dots (n_{1}+n_{2}+1))^{2}}, \\ P_{n_{1},n_{2}}^{**} &= (-i)^{2} \int \frac{d^{d}\ell_{1}}{(2\pi)^{d}} \frac{d^{d}\ell_{2}}{(2\pi)^{d}} \frac{1}{\ell_{1}^{2}(\ell_{1}-K_{1})^{2}\cdots(\ell_{1}-K_{1}\dots n_{1})^{2}(\ell_{1}+\ell_{2})^{2}} \\ &\times \frac{1}{\ell_{2}^{2}(\ell_{2}-K_{n_{1}+n_{2}})^{2}\cdots(\ell_{1}-K_{(n_{1}+1)}\dots (n_{1}+n_{2}))^{2}}, \end{split}$$

#### At one loop

$$G\begin{pmatrix} p_1, \cdots, p_l \\ q_1, \cdots, q_l \end{pmatrix} \equiv \det_{i,j \in I \times I} (2p_i \cdot q_j),$$

We can expand each of the four-dimensional vectors  $v_j$  in a basis of four chosen external momenta  $b_1, b_2, b_3, b_4$ ,

$$\begin{array}{ll} v_{j}^{\mu} & = & \displaystyle \frac{1}{G(b_{1},b_{2},b_{3},b_{4})} \bigg[ G\bigg( \begin{matrix} v,b_{2},b_{3},b_{4} \\ b_{1},b_{2},b_{3},b_{4} \end{matrix} \bigg) b_{1}^{\mu} + G\bigg( \begin{matrix} b_{1},v,b_{3},b_{4} \\ b_{1},b_{2},b_{3},b_{4} \end{matrix} \bigg) b_{2}^{\mu} \\ & + & \displaystyle G\bigg( \begin{matrix} b_{1},b_{2},v,b_{4} \\ b_{1},b_{2},b_{3},b_{4} \end{matrix} \bigg) b_{3}^{\mu} + G\bigg( \begin{matrix} b_{1},b_{2},b_{3},v \\ b_{1},b_{2},b_{3},b_{4} \end{matrix} \bigg) b_{4}^{\mu} \bigg] \,. \end{array}$$

We can express  $v_i$  by  $b_i$ , then  $\ell \cdot b_i$  are all reducible, e.g.

$$\ell \cdot b_1 = \frac{1}{2} \big[ (\ell - K)^2 - (\ell - K - b_1)^2 + (K + b_1)^2 - K^2 \big]$$

# I. Reduction of High-Multiplicity Integrals with Non-Trivial Numerators

talk "From tensor integral to IBP" by Mohammad Assadsolimami

At two loops, for  $n_1 \ge 4$ , tensor integrals ( $\ell \equiv \ell_1, \ell_2$ )  $P_{n_1,n_2}[\ell \cdot v_1 \ell \cdot v_2 \cdots \ell \cdot v_n]$  can be similarly expanded with the external momenta  $b_1, \ldots, b_4$  chosen amongst the first  $n_1$  momenta. Then  $\ell_1 \cdot K_j$ ,  $1 \le j \le n_1$ , are reducible

$$\ell_{1} \cdot K_{j} = \frac{1}{2} \left[ \underbrace{(\ell_{1} - K_{1\cdots(j-1)})^{2} - (\ell_{1} - K_{1\cdots j})^{2}}_{e.g.\ P_{n_{1}-1,n_{2}}} + \underbrace{K_{1\cdots j}^{2} - K_{1\cdots(j-1)}^{2}}_{simpler\ tensors} \right]$$

Similarly for  $\ell_2$ . We end up with basis containing  $P_{n_1 \le 4, n_2 < n_1}^{\natural, *, **}$ and (scalar, reducible or irreducible numerators) or general  $(n_1, n_2)$  but with trivial numerators (without  $\ell_i$ )

# II. Reduction of High-Multiplicity Integrals with Trivial Numerators

Still trivial numerators but with arbitrary number of external legs,  $n_1 \ge 5$ . At one loop:

$$I_n[\mathcal{P}(\ell)] \equiv -i \int \frac{d^D \ell}{(2\pi)^D} \frac{\mathcal{P}(\ell)}{\ell^2 (\ell - K_1)^2 (\ell - K_{12})^2 \cdots (\ell - K_{1\cdots(n-1)})^2},$$

# II. Reduction of High-Multiplicity Integrals with Trivial Numerators

Still trivial numerators but with arbitrary number of external legs,  $n_1 \ge 5$ . At one loop:

$$I_n[\mathcal{P}(\ell)] \equiv -i \int \frac{d^D \ell}{(2\pi)^D} \frac{\mathcal{P}(\ell)}{\ell^2 (\ell - K_1)^2 (\ell - K_{12})^2 \cdots (\ell - K_{1\cdots(n-1)})^2},$$

 $n \ge 6$ . In general, (external momenta are 4 dimensional)

$$G\binom{\ell,1,2,3,4}{5,1,2,3,4} = 0$$

S0

$$I_n \Big[ G \Big( egin{array}{c} \ell, 1, 2, 3, 4 \\ 5, 1, 2, 3, 4 \Big) \Big] = 0 \,, \qquad (n \ge 6)$$

$$\begin{split} G \begin{pmatrix} \ell, 1, 2, 3, 4 \\ 5, 1, 2, 3, 4 \end{pmatrix} &= -\ell^2 \, G \begin{pmatrix} 1, 2, 3, 4 \\ 5, 2, 3, 4 \end{pmatrix} + (\ell - \mathcal{K}_1)^2 \, G \begin{pmatrix} 1, 2, 3, 4 \\ 5, \mathcal{K}_{12}, 3, 4 \end{pmatrix} \\ &- (\ell - \mathcal{K}_{12})^2 \, G \begin{pmatrix} 1, 2, 3, 4 \\ 5, 1, \mathcal{K}_{23}, 4 \end{pmatrix} + (\ell - \mathcal{K}_{123})^2 \, G \begin{pmatrix} 1, 2, 3, 4 \\ 5, 1, 2, \mathcal{K}_{34} \end{pmatrix} \\ &+ (\ell - \mathcal{K}_{1234})^2 \, G \begin{pmatrix} 1, 2, 3, 4 \\ 1, 2, 3, \mathcal{K}_{45} \end{pmatrix} - (\ell - \mathcal{K}_{12345})^2 \, G \begin{pmatrix} 1, 2, 3, 4 \\ 1, 2, 3, \mathcal{K}_{45} \end{pmatrix} \\ &- \mathcal{K}_1^2 \, G \begin{pmatrix} 1, 2, 3, 4 \\ 5, \mathcal{K}_{12}, 3, 4 \end{pmatrix} + \mathcal{K}_{12}^2 \, G \begin{pmatrix} 1, 2, 3, 4 \\ 5, 1, \mathcal{K}_{23}, 4 \end{pmatrix} - \mathcal{K}_{123}^2 \, G \begin{pmatrix} 1, 2, 3, 4 \\ 5, 1, 2, \mathcal{K}_{34} \end{pmatrix} \\ &- \mathcal{K}_{1234}^2 \, G \begin{pmatrix} 1, 2, 3, 4 \\ 1, 2, 3, \mathcal{K}_{45} \end{pmatrix} + \mathcal{K}_{12345}^2 \, G \begin{pmatrix} 1, 2, 3, 4 \\ 1, 2, 3, \mathcal{K}_{4} \end{pmatrix} , \end{split}$$

$$I_{n}(K_{1},...,K_{n}) = c_{1}I_{n-1}(K_{n1},K_{2},...,K_{n-1}) + c_{2}I_{n-1}(K_{12},K_{3},...,K_{n}) + c_{3}I_{n-1}(K_{1},K_{23},K_{4},...,K_{n}) + c_{4}I_{n-1}(K_{1},K_{2},K_{34},K_{5},...,K_{n}) + c_{5}I_{n-1}(K_{1},...,K_{45},...,K_{n}) + c_{6}I_{n-1}(K_{1},...,K_{56},...,K_{n})$$

$$e.g. \quad c_1 = \frac{1}{c_0} G\binom{1,2,3,4}{5,2,3,4}, c_2 = \dots$$

$$c_0 = -K_1^2 G\binom{1,2,3,4}{5,K_{12},3,4} + K_{12}^2 G\binom{1,2,3,4}{5,1,K_{23},4} - K_{123}^2 G\binom{1,2,3,4}{5,1,2,K_{34}}$$

$$-K_{1234}^2 G\binom{1,2,3,4}{1,2,3,K_{45}} + K_{12345}^2 G\binom{1,2,3,4}{1,2,3,4},$$

Similarly, at two loops:

$$\begin{aligned} &P_{n_1,n_2}(K_1,\ldots,K_{n_1+n_2+2}) &= \\ &c_1P_{n_1-1,n_2}(K_2,\ldots,K_{(n_1+n_2+2)1}) + c_2P_{n_1-1,n_2}(K_{12},K_3,\ldots,K_{n_1+n_2+2}) \\ &+ c_3P_{n_1-1,n_2}(K_1,K_{23},K_4,\ldots,K_{n_1+n_2+2}) + c_4P_{n_1-1,n_2}(K_1,K_2,K_{34},K_5,\ldots,K_{n_1+n_2+2}) \\ &+ c_5P_{n_1-1,n_2}(K_1,\ldots,K_{45},\ldots,K_{n_1+n_2+2}) + c_6P_{n_1-1,n_2}(K_1,\ldots,K_{56},\ldots,K_{n_1+n_2+2}), \end{aligned}$$

We arrived at:  $P_{n_1,n_2}$  with  $n_2 \le n_1 \le 4$ 

# III. Truly Irreducible Numerators and IBPs.

# Avoiding dotted propagators.

For  $P_{n_1 < 4, n_2 \le n_1}$ , which can still include truly irreducible numerators, the IBP machinery has to be used.

As already discussed, we want to avoid simultanously appearance of doubled propagators in the basis.

$$\int \frac{d^d \ell_1}{(2\pi)^d} \int \frac{d^d \ell_2}{(2\pi)^d} \frac{\partial}{\partial \ell_{\mu j}} \frac{v^\mu}{D(\ell_1, \ell_2, \{K_i\})},$$
$$\frac{\partial}{\partial \ell_\mu} \frac{1}{(\ell - K)^2} = 2 \frac{(\ell - K)^\mu}{[(\ell - K)^2]^2}$$

First idea: we can choose vectors whose dot product with the numerator resulting from differentiating any propagator vanishes

$$\prime \cdot (\ell - K) = 0$$

However, it is a too strong constraint, it is sufficient to require that

$$\mathbf{v}\cdot(\ell-\mathbf{K})\propto(\ell-\mathbf{K})^2$$

We impose this constraint for every propagator ( $\sigma_i = \pm 1, 0$ )

$$\left[\sigma_{j1}\boldsymbol{v}_{1}+\sigma_{j2}\boldsymbol{v}_{2}\right]\cdot\left(\sigma_{j1}\ell_{1}+\sigma_{j2}\ell_{2}-\boldsymbol{K}_{j}\right)+\boldsymbol{u}_{j}\left(\sigma_{j1}\ell_{1}+\sigma_{j2}\ell_{2}-\boldsymbol{K}_{j}\right)^{2}=\boldsymbol{0}$$

$$u_j = Polyn\{\ell \cdot b\}$$

#### **IBP-generating vectors**

$$\left[\sigma_{j1}\mathbf{v}_{1}+\sigma_{j2}\mathbf{v}_{2}\right]\cdot\left(\sigma_{j1}\ell_{1}+\sigma_{j2}\ell_{2}-K_{j}\right)+u_{j}\left(\sigma_{j1}\ell_{1}+\sigma_{j2}\ell_{2}-K_{j}\right)^{2}=0$$

$$v_i^\mu = c_i^{(\ell_1)} \ell_1^\mu + c_i^{(\ell_2)} \ell_2^\mu + \sum_{b \in B} c_i^{(b)} b^\mu$$

Each of the coefficients  $c_i^{(x)}$  is again a polynomial in the various independent Lorentz invariants  $V = \{\ell_1^2, \ell_1 \cdot \ell_2, \ell_2^2, \{\ell_1 \cdot b\}_{b \in B}, \{\ell_2 \cdot b\}_{b \in B}, s_{12}\}$ , e.g. for dim. 2

$$c_{i}^{(p)} = c_{i,1}^{(p)} s_{12} + \sum_{b \in B} c_{i,b1}^{(p)} \ell_1 \cdot b + \sum_{b \in B} c_{i,b2}^{(p)} \ell_2 \cdot b + c_{i,2}^{(p)} \ell_1^2 + c_{i,3}^{(p)} \ell_1 \cdot \ell_2 + c_{i,4}^{(p)} \ell_2^2$$

where  $c_{i,1}^{(p)}$  depends on  $\chi_{ij} = \frac{s_{ij}}{s_{12}}, \chi_{i\cdots j} = \frac{s_{i\cdots j}}{s_{12}}, \mu_i = \frac{m_i^2}{s_{12}}$ ,

We can assemble the set of equations into a single matrix equation

$$\tilde{c}E = 0$$

where  $\tilde{c}$  (rows) gathers all coefficients  $(c_1^{\ell_1}, ..., c_1^{b_4}, c_2^{\ell_1}, ..., c_2^{b_4}, u_1, ..., u_n)$  and E is  $(2n_B + 4 + n_d) \times n_d$  matrix, which depends on chosen topology [propagators] For the planar double box

$$\mathcal{W}^{\mu}_{i} = m{c}^{(\ell_{1})}_{i}\ell^{\mu}_{1} + m{c}^{(\ell_{2})}_{i}\ell^{\mu}_{2} + m{c}^{(1)}_{i}k^{\mu}_{1} + m{c}^{(2)}_{i}k^{\mu}_{2} + m{c}^{(4)}_{i}k^{\mu}_{4}$$

where e.g.

$$c^{(\ell_1)}(\{\underbrace{\ell_1^2, \ell_1 \cdot \ell_2, \ell_2^2, \ell_1 \cdot k_1, \ell_1 \cdot k_2, \ell_1 \cdot k_4, \ell_2 \cdot k_1, \ell_2 \cdot k_3, \ell_2 \cdot k_4, s_{12}\}}_{symbols})$$

vector:

$$\tilde{c} = (c_1^{(\ell_1)} c_1^{(\ell_2)} c_1^{(1)} c_1^{(2)} c_1^{(4)} c_2^{(\ell_1)} c_2^{(\ell_2)} c_2^{(1)} c_2^{(2)} c_2^{(4)} u_{1\dots 7})$$

|                                                                               | 1 22                  | $-k_1\cdot\ell_1+\ell_1^2$                       | $-k_1\cdot\ell_1-k_2\cdot\ell_1+\ell_1^2$                                    |                                                   | 0                                                              |      |
|-------------------------------------------------------------------------------|-----------------------|--------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|------|
|                                                                               | $\ell_1 \cdot \ell_2$ | $-k_1\cdot\ell_2+\ell_1\cdot\ell_2$              | $k_3\cdot\ell_2+k_4\cdot\ell_2+\ell_1\cdot\ell_2$                            |                                                   | 0                                                              |      |
|                                                                               | $k_1 \cdot \ell_1$    | $k_1 \cdot \ell_1$                               | $k_1 \cdot \ell_1 - s_{12}/2$                                                |                                                   | 0                                                              |      |
|                                                                               | $k_2 \cdot \ell_1$    | $k_2 \cdot \ell_1 - s_{12}/2$                    | $k_2 \cdot \ell_1 - s_{12}/2$                                                |                                                   | 0                                                              |      |
|                                                                               | $k_4 \cdot \ell_1$    | $k_4 \cdot \ell_1 - \chi_{14} s_{12}/2$          | $k_4 \cdot \ell_1 + s_{12}/2$                                                |                                                   | 0                                                              |      |
|                                                                               | 0                     | 0                                                | 0                                                                            | e,                                                | $1 \cdot \ell_2$                                               |      |
|                                                                               | 0                     | 0                                                | 0                                                                            |                                                   | $\ell_2^2$                                                     |      |
|                                                                               | 0                     | 0                                                | 0                                                                            | k                                                 | $1 \cdot \ell_2$                                               |      |
| E = 8                                                                         | 3 0                   | 0                                                | 0                                                                            | $-k_1 \cdot \ell_2 - k_1$                         | $k_3 \cdot \ell_2 - k_4 \cdot \ell_2$                          |      |
|                                                                               | 0                     | 0                                                | 0                                                                            | k,                                                | · l2 3                                                         |      |
|                                                                               | $\ell_{1}^{2}/4$      | 0                                                | 0                                                                            |                                                   | 0                                                              |      |
|                                                                               | 0                     | $ \ell_1^2/4 - k_1 \cdot \ell_1/2 $              | 0                                                                            |                                                   | 0                                                              |      |
|                                                                               | 0                     | 0                                                | $\ell_1^2/4 + s_{12}/4 - k_1 \cdot \ell_1/2 - k_2 \cdot \ell_1/2$            |                                                   | 0                                                              |      |
|                                                                               | 0                     | 0                                                | 0                                                                            | e                                                 | 2/4                                                            |      |
|                                                                               | 0                     | 0                                                | 0                                                                            |                                                   | 0                                                              |      |
|                                                                               | 0                     | 0                                                | 0                                                                            |                                                   | 0                                                              |      |
|                                                                               | 0                     | 0                                                | 0                                                                            |                                                   | 0                                                              |      |
|                                                                               |                       | 0                                                | 0                                                                            |                                                   | $\ell_1^2 + \ell_1 \cdot \ell_2$                               | `    |
|                                                                               |                       | 0                                                | 0                                                                            |                                                   | $\ell_1 \cdot \ell_2 + \ell_2^2$                               |      |
|                                                                               |                       | 0                                                | 0                                                                            |                                                   | $k_1 \cdot \ell_1 + k_1 \cdot \ell_2$                          |      |
|                                                                               |                       | 0                                                | 0                                                                            |                                                   | $k_2 \cdot \ell_1 - k_1 \cdot \ell_2 - k_2 \cdot \ell_2 - k_1$ | .6   |
|                                                                               |                       | 0                                                | 0                                                                            |                                                   | $k_4 \cdot \ell_1 + k_4 \cdot \ell_2$                          |      |
|                                                                               |                       | $-k_1 \cdot \ell_1 + \ell_1 \cdot \ell_2$        | $k_1 \cdot \ell_1 + k_2 \cdot \ell_1 + \ldots$                               | 66                                                | 67+61-62                                                       |      |
| $\frac{-k_4 \cdot \ell_2 + \ell_2^2}{k_1 \cdot \ell_2 - \chi_1 s_{12}^8 / 2}$ |                       |                                                  | $-k_3 \cdot \ell_2 - k_4 \cdot \ell_2$                                       | $-k_3 \cdot \ell_2 - k_4 \cdot \ell_2 + \ell_2^2$ |                                                                |      |
|                                                                               |                       |                                                  | $k_1 \cdot \ell_2 + s_{12}/2$                                                | 2                                                 | $k_1 \cdot \ell_1 + k_1 \cdot \ell_2$                          |      |
| (                                                                             | $1 + \chi_{14})s$     | $k_{12}/2 - k_1 \cdot \ell_2 - k_3 \cdot \ell_3$ | $\ell_2 - k_4 \cdot \ell_2 = s_{12}/2 - k_1 \cdot \ell_2 - k_3 \cdot \ell_3$ | $2 - k_4 \cdot \ell_2$                            | $k_2 \cdot \ell_1 - k_1 \cdot \ell_2 - k_3 \cdot \ell_2 - k_4$ | . 65 |
|                                                                               |                       | $k_4 \cdot \ell_2$                               | $k_4 \cdot \ell_2 - s_{12}/$                                                 | 2                                                 | $k_4 \cdot \ell_1 + k_4 \cdot \ell_2$                          |      |
|                                                                               |                       | 0                                                | 0                                                                            |                                                   | 0                                                              |      |
|                                                                               |                       | 0                                                | 0                                                                            |                                                   | 0                                                              |      |
|                                                                               |                       | 0                                                | 0                                                                            |                                                   | 0                                                              |      |
|                                                                               |                       | 0                                                | 0                                                                            |                                                   | 0                                                              |      |
|                                                                               |                       | $-k_4 \cdot \ell_2/2 + \ell_2^2/4$               | 0                                                                            |                                                   | 0                                                              |      |
|                                                                               |                       | 0                                                | $\ell_2^2/4 + s_{12}/4 - k_3 \cdot \ell_2/2$                                 | $2 - k_4 \cdot \ell_2/2$                          | 0                                                              |      |
|                                                                               |                       | 0                                                | 0                                                                            |                                                   | $\ell_1^2/4 + \ell_1 \cdot \ell_2/2 + \ell_2^2/4$              | )    |

Coefficients found (syzygies) using Gröbner basis (another algorithm by Robert Schabinger) In this way, e.g. for  $P_{2,2}^{**}$ , the IBP generating vectors (of dim. 2) are:

$$\begin{array}{rcl} \mathsf{v}_{1;1} &=& -2(k_4 \cdot \ell_1 + \ell_1^2)k_1^\mu - \ell_1^2k_2^\mu + (2k_1 \cdot \ell_1 - \ell_1^2)k_4^\mu \\ &+& (4k_1 \cdot \ell_1 + 2k_2 \cdot \ell_1 + 2k_4 \cdot \ell_1 - s_{12})\ell_1^\mu \,, \\ \mathsf{v}_{1;2} &=& 2(\ell_2^2 - k_4 \cdot \ell_2)k_1^\mu + \ell_2^2k_2^\mu + (2k_1 \cdot \ell_2 + \ell_2^2)k_4^\mu \\ &+& (2k_3 \cdot \ell_2 - 2k_1 \cdot \ell_2 - s_{12})\ell_2^\mu \,; \end{array}$$

There are another two pairs of solutions of dim. 4.

$$\begin{split} & \frac{\partial}{\partial \ell_1^{\mu}} \left[ \frac{V_{1;1}}{\ell_1^2 (\ell_1 - K_{12})^2 (\ell_1 + \ell_2)^2 \ell_2^2 (\ell_1 - k_1)^2 (\ell_2 - K_{34})^2} \right] \\ &= \frac{1}{\ell_1^2 (\ell_1 - K_{12})^2 (\ell_1 + \ell_2)^2 \ell_2^2 (\ell_1 - k_1)^2 (\ell_2 - K_{34})^2} \\ &\times (2dk_1 \cdot \ell_1 - 2k_3 \cdot \ell_1 - s_{12}) - (8k_1 \cdot \ell_1 - 8k_3 \cdot \ell_1 - 4s_{12} + s_{14}) \\ &+ \frac{4}{(\ell_1 + \ell_2)^2} (2k_1 \cdot \ell_2 k_1 \cdot \ell_1 - 2k_1 \cdot \ell_1 k_4 \cdot \ell_2 + k_1 \cdot \ell_2 \ell_1^2 \\ &- k_3 \cdot \ell_2 \ell_1^2 + 2k_1 \cdot \ell_1 \ell_2^2 + k_2 \cdot \ell_1 \ell_2^2 + k_4 \cdot \ell_1 \ell_2^2 + (\ell_1^2 - \ell_2^2) s_{12}/2)) \end{split}$$

$$\begin{split} & \frac{\partial}{\partial \ell_1^{\mu}} \left[ \frac{v_{1;1}}{\ell_1^2 (\ell_1 - K_{12})^2 (\ell_1 + \ell_2)^2 \ell_2^2 (\ell_1 - k_1)^2 (\ell_2 - K_{34})^2} \right] \\ &= \frac{1}{\ell_1^2 (\ell_1 - K_{12})^2 (\ell_1 + \ell_2)^2 \ell_2^2 (\ell_1 - k_1)^2 (\ell_2 - K_{34})^2} \\ &\times (2dk_1 \cdot \ell_1 - 2k_3 \cdot \ell_1 - s_{12}) - (8k_1 \cdot \ell_1 - 8k_3 \cdot \ell_1 - 4s_{12} + s_{14}) \\ &+ \frac{4}{(\ell_1 + \ell_2)^2} (2k_1 \cdot \ell_2 k_1 \cdot \ell_1 - 2k_1 \cdot \ell_1 k_4 \cdot \ell_2 + k_1 \cdot \ell_2 \ell_1^2 \\ &- k_3 \cdot \ell_2 \ell_1^2 + 2k_1 \cdot \ell_1 \ell_2^2 + k_2 \cdot \ell_1 \ell_2^2 + k_4 \cdot \ell_1 \ell_2^2 + (\ell_1^2 - \ell_2^2) s_{12}/2)) \\ &\frac{\partial}{\partial \ell_2^{\mu}} \left[ \frac{v_{1;2}}{\ell_1^2 (\ell_1 - K_{12})^2 (\ell_1 + \ell_2)^2 \ell_2^2 (\ell_1 - k_1)^2 (\ell_2 - K_{34})^2} \right] \\ &= \frac{1}{\ell_1^2 (\ell_1 - K_{12})^2 (\ell_1 + \ell_2)^2 \ell_2^2 (\ell_1 - k_1)^2 (\ell_2 - K_{34})^2} \\ &\times (2dk_1 \cdot \ell_2 - 2k_3 \cdot \ell_2 + s_{12}) - (8k_1 \cdot \ell_2 - 8k_3 \cdot \ell_2 + 4s_{12} + s_{14}) \\ &- \frac{4}{(\ell_1 + \ell_2)^2} (2k_1 \cdot \ell_2 k_3 \cdot \ell_2 - 2k_1 \cdot \ell_1 k_4 \cdot \ell_2 + k_1 \cdot \ell_2 \ell_1^2 \\ &- k_3 \cdot \ell_2 \ell_1^2 + 2k_1 \cdot \ell_1 \ell_2^2 + k_2 \cdot \ell_1 \ell_2^2 + k_4 \cdot \ell_1 \ell_2^2 + (\ell_1^2 - \ell_2^2) s_{12}/2)) \end{split}$$

#### **Final operations**

• Find and apply IBP-generating vectors to each of the integrals in the basis list

#### **Final operations**

- Find and apply IBP-generating vectors to each of the integrals in the basis list
- Vectors will depend on number and pattern of external masses

#### **Final operations**

- Find and apply IBP-generating vectors to each of the integrals in the basis list
- Vectors will depend on number and pattern of external masses
- Number of truly-irreducible integrals ("master integrals") also depends on number and pattern of external masses

# Some solutions (in *d* dimensions)

 Massless, one-mass, diagonal two-mass, long-side two-mass double boxes (here five IBP-generating vectors of dim. 4): two integrals



# Some solutions (in *d* dimensions)

Short-side two-mass (four IBP-generating vectors, of dim.
4), three-mass double boxes: 3 IBP-gen. vectors of dim 4, 2 of dim 6,fixed numerically): three integrals



# Some solutions (in *d* dimensions)

- Four-mass double box: four integrals: e.g.
   P\_{2,2}^{\*\*}[1], P\_{2,2}^{\*\*}[k\_1 \cdot \ell\_2], P\_{2,2}^{\*\*}[k\_4 \cdot \ell\_1], P\_{2,2}^{\*\*}[k\_1 \cdot \ell\_2 k\_4 \cdot \ell\_1]
- massless pentabox (six IBP-gen. vectors of dim. 4, three of dim. 6, fixed numerically): three integrals



 $P_{3,2}^{**}[1], P_{3,2}^{**}[k_1 \cdot \ell_2], P_{3,2}^{**}[k_5 \cdot \ell_1]$ 

# d-dimensional and 4-dim basis, exploring Gram determinants. I. Pentagons

At one loop, in *d* dimensions, they are independent basis elements.

Expanding in  $d = 4 - 2\epsilon$ , only the  $O(\epsilon)$  terms are independent, so that the integral can be eliminated from the basis.

$$G\binom{\ell_1,1,2,3,4}{\ell_1,1,2,3,4} = \mathcal{O}(\epsilon)$$

then also

$$I_5[G(\ell, 1, 2, 3, 4)]\mathcal{O}(\epsilon)$$

[Integral itself is UV finite by power counting and vanishes in all regions that give rise to soft and collinear singularities, where also Gram determinant vanishes]

$$\begin{split} G &\begin{pmatrix} \ell_{1}, 1, 2, 3, 4 \\ \ell_{1}, 1, 2, 3, 4 \end{pmatrix} = \\ \underbrace{d_{0}}_{pentagon} + \underbrace{d_{1}\ell^{2} + d_{2}(\ell - K_{1})^{2} + d_{3}(\ell - K_{12})^{2} + d_{4}(\ell - K_{123})^{2} + d_{5}(\ell - K_{1234})^{2}}_{boxes} \\ -\ell^{2} G \begin{pmatrix} 1, 2, 3, 4 \\ \ell, 2, 3, 4 \end{pmatrix} + (\ell - K_{1})^{2} G \begin{pmatrix} 1, 2, 3, 4 \\ \ell, K_{12}, 3, 4 \end{pmatrix} - (\ell - K_{12})^{2} G \begin{pmatrix} 1, 2, 3, 4 \\ \ell, 1, K_{23}, 4 \end{pmatrix} \\ + (\ell - K_{123})^{2} G \begin{pmatrix} 1, 2, 3, 4 \\ \ell, 1, 2, K_{34} \end{pmatrix} - (\ell - K_{1234})^{2} G \begin{pmatrix} 1, 2, 3, 4 \\ \ell, 1, 2, 3 \end{pmatrix}, \end{split}$$

rest (two last rows) is proportional to odd powers of  $\boldsymbol{\ell}$  and vanishes in d-dimensions

Insert this into the numerator of a five-point integral to obtain a relation relating it to five box integrals, up to terms of  $\mathcal{O}(\epsilon)$ 

# Vanishing Gram determinants at two loops, example

For  $P_{2,2}^{**}$  integrals we haven't found any useful, additional relations.

Pentagonbox:  $3 \rightarrow 1$  MIs.

Two additional relations from considering the following two integrals:

$$P_{3,2}^{**}\left[G\binom{\ell_1,1,2,3,5}{\ell_2,1,2,3,5}\right] \text{ and } P_{3,2}^{**}\left[k_5 \cdot \ell_1 G\binom{\ell_1,1,2,3,5}{\ell_2,1,2,3,5}\right]$$

# Vanishing Gram determinants at two loops, example

For  $P_{2,2}^{**}$  integrals we haven't found any useful, additional relations.

Pentagonbox:  $3 \rightarrow 1$  MIs.

Two additional relations from considering the following two integrals:

$$P_{3,2}^{**}\left[G\binom{\ell_1,1,2,3,5}{\ell_2,1,2,3,5}\right] \text{ and } P_{3,2}^{**}\left[k_5 \cdot \ell_1 G\binom{\ell_1,1,2,3,5}{\ell_2,1,2,3,5}\right]$$

These kind of Gram determinants all vanish when either loop momentum approaches a potential (on-shell) collinear or soft configuration, thereby removing the corresponding divergences from the integral, and rendering it finite. In addition, the Gram determinants vanish when both loop momenta are four-dimensional, so that the integrals are of  $\mathcal{O}(\epsilon)$ .

#### Procedure

We first solve all *d*-dimensional IBP equations, and use the solutions of those equations (in analytical or numerical form) to reduce the integrals obtained from inserting Gram determinants into the numerator; this will provide additional identities to  $\mathcal{O}(\epsilon^0)$  between the independent master integrals.

•  $\mathcal{O}(\epsilon)$  Gram dets give no new equations for double boxes  $P_{2,2}^{**}$ 



•  $\mathcal{O}(\epsilon)$  Gram dets give no new equations for double boxes  $P_{2,2}^{**}$ 



• Reduce three integrals for the pentabox  $P_{3,2}^{**}$  to one



•  $\mathcal{O}(\epsilon)$  Gram dets give no new equations for double boxes  $P_{2,2}^{**}$ 



• Reduce three integrals for the pentabox  $P_{3,2}^{**}$  to one



• Reduce all double pentagons  $P_{3,3}^{**}$  to simpler integrals



# Application: maximal generalized unitarity approach<sup>1</sup>

Kosower, Larsen, PRD2012, Caron-Huot, Larsen, JHEP2012, Johansson, Kosower, Larsen, 1208.1754

Basis is needed to ensure unique solutions to the coefficients of the MIs.

<sup>&</sup>lt;sup>1</sup>different approaches based on OPP generalization by Ossola, Mastrolia, see also Simon Badger's talk

# Where to go?

 At the moment frontiers at two loops include amplitudes reduction methods and it is an active area of research, represented by several groups

# Where to go?

- At the moment frontiers at two loops include amplitudes reduction methods and it is an active area of research, represented by several groups
- There are many places for improvements and new ideas

# Where to go?

- At the moment frontiers at two loops include amplitudes reduction methods and it is an active area of research, represented by several groups
- There are many places for improvements and new ideas
- One example: chiral integrals in any gauge theory (to build a basis with as many IR finite MIs as possible)

$$A^{(2)} = \sum_{i} c_{i}(\epsilon) \operatorname{Int}_{i} + Rational$$

Chiral double boxes as basis at two loops (Caron-Huot, Larsen, 1205.0801)

 Knowledge of an integral basis plays an important role in modern unitarity calculations

- Knowledge of an integral basis plays an important role in modern unitarity calculations
- Two kinds of bases

- Knowledge of an integral basis plays an important role in modern unitarity calculations
- Two kinds of bases
- To be done: non-planar topologies; massive propagators

- Knowledge of an integral basis plays an important role in modern unitarity calculations
- Two kinds of bases
- To be done: non-planar topologies; massive propagators
- To be done: maximally generalized unitarity cuts with ( $\epsilon$ ) (and higher terms), master contours: 1208.1754

- Knowledge of an integral basis plays an important role in modern unitarity calculations
- Two kinds of bases
- To be done: non-planar topologies; massive propagators
- To be done: maximally generalized unitarity cuts with ( $\epsilon$ ) (and higher terms), master contours: 1208.1754
- Beyond two loops? (Zhang, Badger)

#### **Backup slides**

Kosower, Larsen, PRD2012, Caron-Huot, Larsen, JHEP2012, Johansson, Kosower, Larsen, 1208.1754

$$\mathbb{R}^{1,3} \to \mathbb{C}^4$$
,

$$\begin{split} &\int \frac{d^4\ell}{(2\pi)^4} \, \mathrm{N}_F \delta(\ell^2) \delta((\ell-k_1)^2) \delta((\ell-k_1-k_2)^2) \delta((\ell+k_4)^2) \equiv \\ &\oint_{T_O} \frac{d^4\ell}{(2\pi)^4} \, \frac{\mathrm{N}_F(\ell,\cdots)}{\ell^2(\ell-k_1)^2(\ell-k_1-k_2)^2(\ell+k_4)^2} \,, \end{split}$$

 $T_Q$ : four-torus encircling the solutions to the on-shell eqns.

### E.g. at two loops



$$\int \frac{d^4 \ell_1}{(2\pi)^4} \frac{d^4 \ell_2}{(2\pi)^4} \,\delta\big(\ell_1^2\big) \delta\big((\ell_1 - k_1)^2\big) \delta\big((\ell_1 - K_{12})^2\big) \delta\big((\ell_1 + \ell_2)^2\big) \\ \times \delta\big(\ell_2^2\big) \delta\big((\ell_2 - k_4)^2\big) \delta\big((\ell_2 - K_{34})^2\big) \,,$$

On-shell constraints:

$$\begin{split} \ell_1^2 &= 0\,(\ell_1-k_1)^2 = 0\,, (\ell_1-K_{12})^2 = 0\,\ell_2^2 = 0\,, (\ell_2-k_4)^2 = 0\,, \\ (\ell_2-K_{34})^2 &= 0\,, (\ell_1+\ell_2)^2 = 0\,. \end{split}$$

 On-shell constraints allow by choosing the integration contours to encircle poles unique to each MI in the basis decomposition, their coeff. can be extracted, so amplitude can be determined

- On-shell constraints allow by choosing the integration contours to encircle poles unique to each MI in the basis decomposition, their coeff. can be extracted, so amplitude can be determined
- Comparing # constraints (cuts) with dimensionality of the integral: 1 degree of freedom remains (not so at 1-loop), there is a Jacobian arising from solving the δ-functions which helps to identify poles at specific locations

- On-shell constraints allow by choosing the integration contours to encircle poles unique to each MI in the basis decomposition, their coeff. can be extracted, so amplitude can be determined
- Comparing # constraints (cuts) with dimensionality of the integral: 1 degree of freedom remains (not so at 1-loop), there is a Jacobian arising from solving the δ-functions which helps to identify poles at specific locations
- Applied in the recent paper 1208.1754: uniqueness of contours on Riemann spheres

