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Outline

�

Will briefly review the Gribov problem and the Gribov-Zwanziger localized Lagrangian

for the Landau gauge

�

Its infrared properties will be discussed and the inconsistency with lattice analyses of the

gluon propagator

�

An extension to the Gribov-Zwanziger Lagrangian can accommodate lattice data by

introducing condensates

�

Theoretical explanation of this decoupling solution from a Lagrangian point of view is

not complete

�

Examine the Gribov-Zwanziger Lagrangian from a more general point of view and

suggest alternative tests for lattice analyses

�

One test derives from the structure of
�

-point vertices at the symmetric subtraction point

examined at one loop and its power corrections
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Background

�

Yang-Mills action

�

is invariant under gauge transformations

� ��� � � � ��� � � 	�
 � � � � 	 � � �
where

� � 

�

�

� ��� � ���� � � ��
with

� ���� � 
 � � �� 
 
 � � ��� ��� � � ��� � � � � ��

�

So

� ��� and

� � ��� define equivalent configurations but inequivalent configurations are

required for a consistent quantum theory

�

Apply Faddeev-Popov procedure and restrict gauge field to satisfy a gauge condition

�

Will focus on Landau gauge


 � � ��� � �

�

Thus path integral is

 � ! �" #
 � � �$� %& ' ( # 

 � )� %+* , -

where


 � ) � is the Faddeev-Popov operator
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Gribov problem and QCD

�

In non-abelian gauge theory there is a problem fixing the gauge globally [Gribov]

 � ! �" #
 � � �$� %& ' ( # 

 � )� %+* , -

�

For a given

� ��� satisfying the gauge condition


 � � ��� � �

there are (Gribov) copies

� � ���

obeying the same condition


 � � � ��� � �

�

Existence of Gribov copies which is equivalent to the Faddeev-Popov operator having

zero eigenvalues


 � ) � � � � �

�

In the Landau gauge the Faddeev-Popov operator

� � � # � % � 
 #
 � ) � % � �

is hermitian

and hence has real eigenvalues

�

To avoid the copy problem the region of integration of the path integral must be restricted

to a domain,

�

, called the Gribov horizon which contains the origin,

� ��� � �

�

Boundary,


 �

, is defined by where the first zeroes of

� � �

are
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Consequences

�

Gribov argued that this restriction to the first Gribov region or horizon had a marked

effect on the infrared behaviour of QCD (Yang-Mills)

�

A natural mass parameter, �, emerges in the analysis reflecting the cutoff feature of the

path integral

�

It is central to the infrared or non-perturbative behaviour of the theory

�

Gluon propagator form factor is

)�� #�� � % �

#� � % �

� #� � % � � �� � ��

where

	 � ��� #�� % � �� # 
 � %
 � 

" � � )�� #� � %

� �

� �� #� %

which has gluon suppression since

) � # � % � �

Perturbative structure of the Gribov-Zwanziger Lagrangian – p.5/28



� � is not independent and satisfies the loop gap equation which at one loop is

� �
# � 
 � %

�

� � �

#� � % �

�� � �

� # � � % � � �� � � �
implying the MS result, with � �� �� # �� � � % ,

� � ��
��

	 

�

	

��


 �� � �
� �

��

� � � # � � %

or �� � �
� � � '� �

��
�



	

� �� �
�

�

The theory has no meaning if � is treated as independent and does not satisfy this

condition

�

Using gap equation ghost propagator form factor is enhanced
)� #�� � % �

�
� � as � � � �
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Zwanziger construction

�

Suggests gluon propagator can be reproduced from an effective non-local Lagrangian

� � � 

�

�
� ���� � � �� �

�� � �
�

� ���

�

 � 
 �

� � � ��
� � �

�

In 1989 Zwanziger managed to localize the (cut-off) Gribov path integral and the horizon

operator was determined to be

� � � � � � � � � �$�

 �


 � )�
� � �
� � �

and not, for example,

� �$�

 �


 � )�
� � �
� � �

�

A naive localization of the latter leads to a non-renormalizable Lagrangian

�

Horizon conditions defines gap equation satisfied by Gribov mass �

�

While

� �

incorporates the horizon condition it is clearly not useful for practical

calculations due to non-locality
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Local Gribov-Zwanziger Lagrangian

�

Zwanziger constructed a completely local Lagrangian

�

In essence the non-local projection of the gauge field,

#
 ) % , � � � , was defined to be a

localizing ghost field

� �� � � �� � �
�

� � � � � 
 � # )� � � % � � �
�

� � � � � 
 � # )� � � % � �



�

�
� � � � 
 � # )� � � % � � �

�
�

� � � � 
 � # )� � � % � �


 	�
 � � � 
 � # )� 
 � % � � 

�

�� � � � ��� 
 � 	
 �
� # )� � % � �
 � �



�

�� � � � ��� 
 � 	
 �
� # )� � % � �
 � � 
 � � � � � ��� � � � � �� � 

�� � � �

� � �

�

Fields 
 � �� and

	
 � �� are anti-commuting

� �

-point mixing term leads to complicated propagator structure

�

Lagrangian is local and renormalizable, [Schaden, Maggiore; Sorella et al], so that it can

be used to perform calculations
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Propagators

�

Propagators include Gribov’s suppressed gluon

	 � �$� #� % � �� # 
 � % 
 � 


" � � � �

� #� � % � � �� � ��
� �� #�� %

	 � �$� #�� % � ���� # 
 � % 
 �

� � � ��� � �

� #� � % � � �� � ��
� �� #� %

	 � �$� #�� % � ���� # 
 � % 
 � �

	 � � �� #� % � � �
� # 
 � % 
 � 


" � � " � �

� � � �� �

� � �
 � � �
 � �

� � � #�� � % � � �� � ��
� �� #�� %

	 � � �� #�� % �� �
� # 
 � % 
 � �

	 � � �� #�� % �� �
� # 
 � % 
 � 	 
 � �� #� % 	
 � �
� # 
 � %
 � 


" � � " � �

� � � ��

where

� �� #� % � � �� 
 ��� ���
� �

�

In quantum computations implementing the gap equation produces suppressed gluon and

an enhanced Faddeev-Popov ghost
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Zero momentum limit

�

More recently Zwanziger has proved that the bosonic localizing enhances too

�

This has been verified explicitly at one loop in three and four dimensions

�

Compute one loop corrections to

�

-point functions, expand in powers of � �
, set gap

equation and invert to get propagator behaviour for low momenta, � �� �� # �� � � % ,

�

As � � � �

one loop four dimensional bosonic localizing ghost propagators behave as

	 � � �� #� % � � �
� # 
 � % 
 �

� � �

� � �� #� � % � �
�" � �" ��� 
 " � � " � � �

� ��

�

	 � �

� � � � �
� #�� � % � �

� � �
 � � �
 � �� #�� %

	 � � �� #� % �� �
� # 
 � % 
 � 


	 � �

� � �� #� � % � �
" � � " � �
� ��

�

Suppression is absent for the adjoint projection of transverse part consistent with

Zwanziger
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Adjoint projection

�

More specifically taking the adjoint projection of the

� � �� field produces the propagator

� � �� � � �� 	 � ��� #� % � ��� # 
 � %
 � 


�� � �

� #�� � % � � �� � ��
" � � � �� #�� % 


��
� �

" � � � �� #� %

�

Transverse part is in effect the same as the gluon

�

In the � � � �

limit, after implementing the gap equation,

� � �� � � �� 	 � ��� #� % � ��� # 
 � % 
 � 
 " � �
� � � � � �� �

� � 	 � �� � �
� � �

� �
�

� �� #� %


 " � �
� 	 �� � �

� � �� #� � % � �

�

�
� � � � �

�

� �� #� %

�

Transverse part freezes to a finite part but longitudinal part enhances

�

Three dimensions is similar
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Lattice results

�

Original lattice study of the infrared propagators was by Cucchieri, Mendes and Maas

�

Lattice does not find a suppressed gluon or enhanced Faddeev-Popov ghost

�

Gluon propagator freezes to a finite non-zero value and ghost propagator has slight

deviation from free behaviour

�

From Bogolubsky et al, arXiv:0901.0736
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�

Effective coupling vanishes in the infrared limit

�

This is referred to as the decoupling solution which is also observed in DSE studies

[Alkofer et al]

�

Suggests gluon is massive and probably contradicts global BRST invariance [Fischer et

al]
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BRST invariant operator

�

Decoupling solution can be modelled with massive localizing ghosts

�

Include BRST invariant dimension two operator built from localizing ghosts in

Lagrangian giving the general mass term

� �

�
� ��� " � � " � � � � ��� � � � 
 � � �
 � � ���
��

� � �
 � � �


� � ��� � � ��� �

� � � ���
� �

" � �" � � � � �
	 " � �" ��
�

� � �� �

where

� � ��� � �
�

�

� � � � �� � � � � � � �� � 
 � � � � � � � � � � � � � � �


 	�
 � � 
 � �

and

� � ��� �

� is totally symmetric rank four adjoint tensor

�

Mass parameters � ��� tag the colour tensors

�

Structure of the propagators has been investigated
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�

channel

�

Consider � ��� � �

for

� � � �

then propagators are

	 � �$� #�� % � �� # 
 � %
 � � 


" � � �� � � � ��� �

� #� � % � � � ��� � � � �� � ��
� �� #� %

	 � �$� #� % � ��� # 
 � %
 � �

� � � ��� � �

� #� � % � � � ��� � � � �� � ��
� �� #� %

	 � �$� #� % � ���� # 
 � %
 � � 	 � � �� #�� % �� �
� # 
 � %
 � � �

	 � � �� #� % � � �
� # 
 � %
 � � 


" � � " � �

� � � �� �

� � �
 � � �
 � � ��� � � � �� � ��

�� � � � #�� � % � � � ��� � � � �� � � �
� �� #� %

�

� � �
 � � �
 � ���

�� � � �� � � � ��� �
� �� #� %

	 � � �� #� % �� �
� # 
 � %
 � � 	 
 � �� #� % 	�
 � �
� # 
 � %
 �

� 

" � � " � �

� � � �� �

� � �
 � � �
 � ���

�� � � �� � � � ��� �
� ��

�

By contrast

�

channel propagators have no massless poles in � �
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Faddeev-Popov ghost propagator corrections

�

If

)� #� � %

is ghost propagator form factor then at one loop

)�� #� � % � 

�
� 
 ��

��
	 


�

	

��

� �� � �
� �

�

�

� � ���

	 � �� 
 � �� � �

��

� � ���
� � ,

�

� � �� ��
�

��
� � � � # � � %

�
��
�

, �

�

Gap equation, with � �	� � �
�

�

� ��� 
 � �� 
 � �� � �
�

, is

� � ��

�
�	



�
	 


�

	

��

� �� � �
� �

�




� � ���

	 � �� 
 � �� � �

��

� � ���
� � ,

�
�

�	
� � � � # � � %

�

No enhancement, unless � ��� � �

�

So ghost propagator mimics lattice measurements, similar to

�

channel

�

Lack of ghost enhancement can be traced to frozen gluon propagator
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Localizing ghost propagator corrections

�

In

�

channel there are no massless poles in � �

in propagators

�

So form factors will all freeze to finite non-zero values

�

For

�

channel have to compute one loop corrections and implement the gap equation

similar to pure Gribov-Zwanziger case

�

Zero momentum limit of localizing propagators is similar to Faddeev-Popov ghosts

	 � � �� #� % � � �
� # 
 � % 
 � �

�

� ��� � � �
�
" � � " � � 
 " � �" ��� 


�
��

� � �
 � � �
 � � ��

	 � � �� #�� % �� �
� # 
 � % 
 � �

�

� ��� � � �
�
" � � " � � 
 " � �" ��� 


�
��

� � �
 � � �
 � � ��

where

�� �

� �
	 � �� 
 � �� � � 
 �

� � ���
� � ,

�



�

	

��

� �� � �

#� � % �
�



� �

� �
� � ���

�� � �

�

�

� � �� 
 � �� � �

��

� � ���
� � ,

�
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Contrast

�

This produces the same behaviour as the Faddeev-Popov ghost propagator in the same

� � � �

limit

�

Same colour tensor emerges as for pure Gribov-Zwanziger case

�

Adjoint projection of

� � �� propagator freezes to zero or a finite non-zero value

� �

channel produces frozen gluon propagator with frozen Bose localizing ghost

propagator

�

By contrast

�

channel produces frozen gluon propagator but with Bose localizing ghost

propagator similar to lattice behaviour of Faddeev-Popov ghost propagator

�

Refer to former as gluon-like and the latter as ghost-like

�

Need lattice data on these propagators in the zero momentum limit to resolve

�

Problem in trying to resolve propagator properties is that gauge fixing and trying to go to

zero momentum on the lattice is technically very difficult

�

Need to develop alternatives in order to give insight into which scenario is correct
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Power corrections

�

Early lattice work by Boucaud et al measured the running of the coupling constant

�

Computed an effective coupling constant defined from the propagator form factors and

vertex functions

�

For intermediate range of momenta they observed deviation from expected perturbative

behaviour

�

Discrepancy could be explained by power corrections derived from a dimension two

operator rather than dimension four

�

It was assumed that the operator was

�
� � ��� � � �

�

Vertices measured at symmetric point which is a non-exceptional momentum

configuration

�

Can mimic such effects with Gribov-Zwanziger Lagrangian

�

Examine power corrections to the vertex functions at both the asymmetric and symmetric

subtraction points

�

Effectively a next-to-high-energy expansion
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Triple gluon vertex

�

Define vertex functions at symmetric subtraction point by

� � �$� #� % � �� #�� % ���� # 
 � 
 � % � ����� � � � � � � , � �

� � � ��� 	 
 
 
�� � #�� � � % ��� � � � � � � , � �

with

	 
 
 
�� � #�� � � % �����
� � � � � � , � �

�
�


 � �
� 
 
 
� 
� �� �
#�� � � % 	 
 
 
� 
� #�� � � %

�

For non-Gribov Lagrangian there are

	

one loop diagrams

�

Used Laporta algorithm encoded in GINAC based REDUZE algorithm to handle

reduction to master integrals

�

Numerical evaluation of arbitrary gauge exact result to two loops in Landau gauge in MS

is

	 
 
 
� � � #� � � % � 
 � 
 � �� � � � � � � � 
 �
�

� � � � �� � � � � �

� �� �
�

�� � �� �� 
 � �
�

� � � �� � �� � � � � � � � # � � %

�

Other amplitudes similar and finite parts used to define MOM schemes and extend

Celmaster and Gonsalves to two loops
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MOMggg scheme mapping

�

Landau gauge coupling constant mapping is

�

MOMggg

� �

MS

�
� �

� � � � # �
�

% 
 �� � � � � �	 	
�

��

�
�
� � 	 � � 
 � �� � � # �

�
% 
 � ��

�

��� � �
� � �

MS�� �

�
� �
� � � � � # � � # �

�
% % � 
 � � � �� � � � � # �

�
% 
 � � �	 �	 � � � # �

�
%


 � � �� �� � � � � # �
�

% 
 �� � � � � �� � � #
�

�
% � � �� � 	 � �	 � � � #

�
�

%

� � � � � �� �� � � �

# �
�

% 
 �� 	 � �	 � � � �

# �
�

% � � �� � �� � �

� �� � � 	 � � � � 
 � � � �� � 	 � 	 � � �	 � � � # � %

� � � � � � 	 � � 
 � � � �� 	

�� � # � % �

� �

� � �� �� ��

�� # � % �

� �

�� � �	 �� � �
� �

�

� ��
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�
�
� � � � � � � � � � # �

�
% 
 � �� �	 � # � � # �

�
% % � 
 � �� � �� � � � # �

�
% � � �� �� �� � � � #

�
�

%


 � � �	 �� � � � � #
�

�
% 
 � � �	 �� � � � �

# �
�

% � � � �	 � �� � � �

# �
�

% 
 � � � � � � �

� � � � � � �� � � � � � � � �	 	 	 
 	 �� � �� � � # � % 
 � � � �� � �	

� � � �� 	 �

�� � # � % �

� �


 � � � � �� �

�� # � % �

� �


 � � �� � � � �
� �

�

�� �� � �

�
�
� � � � �� � � � � # �

�
% 
 � � �� � �� � � # �

�
% 
 � � � � �� � � � � �� �� 	 � �


 � � �	 � �� 	 � � � �	 �� � � # � % 
 � � �	 �� 	 � � � �� � �

�
�
� � � �� � # � � # �

�
% % � 
 � �� � �	 � � � � # �

�
% � � �� � � �� � � # �

�
% � � � � �� � �


 �� �	 � 	 	 � � � � �� � � �� � � �� � ��
�

� �

MS� � � � � � � � �

� �

MS

�

� 	

is a combination of harmonic polylogarithms
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Basis tensors

�

Overall there are

� �

different possible basis tensors for decomposition of Green’s

function built from � � , � � and � ��

�

Explicit computation produces three combinations

� 
 
 
� � � �� � #�� � � % � � �� � � 
 � �� � � 
 � � � � � � 
 �� � � � � �� � � � � � �� � � �
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 � � � � � � � � � � � � � 
 � � � � � � � �

� �

� � 
 
 
� � � �� � #� � � %

corresponds to the original Feynman rule for the vertex when

� � 
 � 
 �

�

Channel

�

amplitude can be used to define an effective running coupling constant for the

vertex
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Power corrections in Gribov-Zwanziger

�

Repeat one loop symmetric point vertex calculation using the Gribov-Zwanziger

Lagrangian

�

There are

� �

one loop graphs for triple gluon vertex

�

At symmetric point the external momenta do not need to be small which avoids zero

momenta issues

�

Can expand Feynman integrals in powers of � � � � � using method of Smirnov et al

�

This is a two stage process

�

First stage is to reduce all one loop Feynman graphs to a set of masters which are either

�

-point or

�

-point

�

Use the Laporta algorithm for seven different possibilities of masses in diagrams at the

symmetric point when there are two mass scales

�

Schematically these are

# � � � � � %
,
# � � � � � � %

,

# � � � � � � � %

,

# � � � � � � � %

,# � � � � � � � � % , # � � � � � � � � % and

# � � � � � � � �
%

where none of the � � are equal

�

Have used the REDUZE implementation based on GINAC

�

Write integration routines in FORM with diagrams generated by QGRAF
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Power corrections in Gribov-Zwanziger

�

Second stage is to substitute the expansion for the master diagrams as explicit expressions

for one loop

�

-point not known explicitly

�

Extend method of Davydychev, Smirnov and Tausk developed explicitly for
�

-point

diagrams to

�

-point case

�

If the Feynman integral is

�

then

��� � 	
�

��� � � � ���	� 
 �
� � 

 � �
�

where

�

is the original graph, � are subgraphs and
� �	� 
 �
� � 

 � is the Taylor expansion in

masses and momenta � � which are external to the subgraph �

�

The operation � takes the Taylor expansion and inserts it in the numerator of the

integrand of the reduced graph

� � � �

�

The construction of the set of graphs � is the same as for the

�

-point case but here there

are two external momenta

�

There are four terms in
� �

�

First is the expansion of the original diagram in masses

�

The other three are the three possible permutations of the two external momenta around

the diagram
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Results

�

Results for triple gluon vertex
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� � � #�� � � � � % �
� �

��

� � � �
� � �

� �

�

�

Power corrections for channel

�

are dimension four; others are dimension two

�

At asymmetric subtraction point all channels are dimension two

�

For ghost-gluon and quark-gluon corrections in all channels at symmetric and

asymmetric points are dimension two

�

Need to consider pure gluon mass case for comparison
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Gluon mass

�

Repeat analysis with either Yang-Mills with a massive gluon propagator

	 � �$� #� % � �� # 
 � % 
 � 

" � �

�� � � � ��� �
� �� #�� %

or use Gribov-Zwanziger with a mass term

�
� � ��� � ��� � � �
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� �
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� � � #� � � � � %

�
�� ��
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� � �

�

�
�

�

� �

 �
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� � �
� �


��

� � ���
� �

� � �� � ���
� �

�

�

Corrections are all dimension two
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Test

�

For separate

�

and

�

solutions all Lorentz channels in each vertex have dimension two

corrections except for channel

�

of the triple gluon vertex

�

Can formulate a test of whether the power corrections derive from the Gribov mass or a

gluon mass term

�

Compute the behaviour of all channels of the triple gluon vertex at the symmetric point

�

If deviation from expected behaviour is commensurate in all three channels then it

suggests a gluon mass

�

If deviation from expected behaviour is weaker in channel

�

compared with

�

and

�

then

suggests Gribov mass is present

�

To determine whether the behaviour is pure Gribov-Zwanziger,

�

or

�

would require

comparison with numerical values in expansion as well as other vertices to establish

consistency

�

For the latter two there are various combinations of the mass parameters such as

� �� 
 � �� � �
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Conclusions

�

Explanation of lattice data using the Gribov-Zwanziger approach has not been fully

resolved

�

Presented tests which bypass the focus on the gluon and ghost propagator form factors in

the infrared limit

�

Triple gluon vertex power corrections at one loop suggest a test of the effective running

coupling constant

�

Absence of dimension two corrections at one loop needs to be tested at two loops at the

symmetric subtraction point

�

Ultimately to resolve these issues then more lattice data is needed
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