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Will briefly review the Gribov problem and the Gribov-Zwanziger localized Lagrangian
for the Landau gauge

Its infrared properties will be discussed and the inconsistency with lattice analyses of the
gluon propagator

An extension to the Gribov-Zwanziger Lagrangian can accommodate lattice data by
introducing condensates

Theoretical explanation of this decoupling solution from a Lagrangian point of view is
not complete

Examine the Gribov-Zwanziger Lagrangian from a more general point of view and
suggest alternative tests for lattice analyses

One test derives from the structure of 3-point vertices at the symmetric subtraction point
examined at one loop and its power corrections
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Yang-Mills action S is invariant under gauge transformations

~

A% — A% = U9, U + UTALU

where
1

S = — = /d% G2 GaHY
4 K

with G%, = 9, A% — 8, A% + gfabeAD AL
So A7, and AZ define equivalent configurations but inequivalent configurations are
required for a consistent quantum theory
Apply Faddeev-Popov procedure and restrict gauge field to satisfy a gauge condition
Will focus on Landau gauge 0* A7, = 0
Thus path integral is

Z = /DA 5(0* A%)det (—0”Dy) e >

where 0* D, is the Faddeev-Popov operator
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In non-abelian gauge theory there is a problem fixing the gauge globally [Gribov]
7z — /DA 5(9" A%) det (—0 D,) =5

For a given A7 satisfying the gauge condition 9 A7, = 0 there are (Gribov) copies AZ
obeying the same condition BHAZ =0
Existence of Gribov copies which is equivalent to the Faddeev-Popov operator having

zero eigenvalues
oF*D,AY =0

In the Landau gauge the Faddeev-Popov operator M@°(A) = — (8, D*)2? is hermitian
and hence has real eigenvalues

To avoid the copy problem the region of integration of the path integral must be restricted
to a domain, €2, called the Gribov horizon which contains the origin, A7, =0

Boundary, 99, is defined by where the first zeroes of AM2? are
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Gribov argued that this restriction to the first Gribov region or horizon had a marked
effect on the infrared behaviour of QCD (‘Yang-Mills)

A natural mass parameter, -, emerges in the analysis reflecting the cutoff feature of the
path integral

It is central to the infrared or non-perturbative behaviour of the theory

Gluon propagator form factor is

2 (p2)2
Palv’) = 122 L et
where
ab 2
(A% (p)Ab(=p)) = — O i A p ()

which has gluon suppression since D 4(0) =0
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~ is not independent and satisfies the loop gap equation which at one loop is

— 1) d%k Ag2
(2m)? [(k?)? + Cav?]

implying the MS result, with a = g2 /(1672),

8 %
or
Cav? [5 8 ]
= ex - —
A P13 7 3Ca
The theory has no meaning if -y is treated as independent and does not satisfy this
condition

Using gap equation ghost propagator form factor is enhanced

Dc(p2) ~ as p2 — 0

1
p2
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Suggests gluon propagator can be reproduced from an effective non-local Lagrangian

1 4 1
L7 = — ZGQ% GorY 4 CA7 AC

AYE 4+ L
4 M 2 H v, i

In 1989 Zwanziger managed to localize the (cut-off) Gribov path integral and the horizon
operator was determined to be

cd
facbedpAZ (8,/11) ) Ab 7

1 ab b
AZ 8VD A g

A naive localization of the latter leads to a non-renormalizable Lagrangian

and not, for example,

Horizon conditions defines gap equation satisfied by Gribov mass ~

While L7 incorporates the horizon condition it is clearly not useful for practical
calculations due to non-locality
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Zwanziger constructed a completely local Lagrangian

In essence the non-local projection of the gauge field, (0D) 1 A,,, was defined to be a
localizing ghost field

1 1
LGZ _ LQC’D + §pab/,aav (Dypﬂ)ab + Epab rov (Dug,u,)ab

i a 1 a 1% a
— Egab“3'/ (Dupp) bt 55 ey (Duéu) b

1
_(Dabp,av (Dywﬂ)ab o \/igfabcauwze (Dyc)bpecu
) 4
_ Y _rabcyyae beecpn _ ;. 2rabc papugbc dNa~y
\/§gf a w“ (DVC) € 7y f A fu 292

Fields w4’ and &4’ are anti-commuting
2-point mixing term leads to complicated propagator structure

Lagrangian is local and renormalizable, [Schaden, Maggiore; Sorella et al], so that it can
be used to perform calculations

Perturbative structure of the Gribov-Zwanziger Lagrangian — p.8/28



Propagators include Gribov’s suppressed gluon

5ab 2

WAL D) = = o Pu(®)

u . ,ifabc,y2
(ALDE ) = g e P
(Ag(p)p2°(—p)) = O

u . B 5ac5bd fabefcde,yél
<§ub(p)€yd(_p)> — o p—277,u’/ + p2[(p2)2 + CA")A] PHV(p)
& pii(-p) = 0

b cd ab —cd 5a06bd
(e (—p)) = A(w, (P&, (—p) = — o

where Py (p) = nuy — 43"

In guantum computations implementing the gap equation produces suppressed gluon and
an enhanced Faddeev-Popov ghost
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More recently Zwanziger has proved that the bosonic localizing enhances too
This has been verified explicitly at one loop in three and four dimensions

Compute one loop corrections to 2-point functions, expand in powers of p2, set gap
equation and invert to get propagator behaviour for low momenta, a = g2 /(167?),

As p? — 0 one loop four dimensional bosonic localizing ghost propagators behave as

472

ab cd ad ¢bc ac sbd
— ~ 0246°¢ — %6 v
<£,u (p)£1/ ( p)> ﬂ_m(pQ)Qa [ ]77#
872 be pcd
i fa efc ep u(p)
7CY* (p?)2%a "
872
ab cd ac sbd
- Y - 5 5 v
<p,u, (p)pl/ ( p)> ﬂm(p2)2a 77u

Suppression is absent for the adjoint projection of transverse part consistent with
Zwanziger
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More specifically taking the adjoint projection of the & gb field produces the propagator

C ap? C
FPITHEIDES (D) = — ot G0 P (1) = 20" Ly ()

Transverse part is in effect the same as the gluon

In the p2 — 0 limit, after implementing the gap equation,

[ 697C2a 2
apq £brs /¢pq rs( ~ . 5ab A p_ P,
[ 8C 472 4 }
. 5ab | L U
| v/ C A (p?)2a * m2p2a pr (P)

Transverse part freezes to a finite part but longitudinal part enhances

Three dimensions is similar
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Original lattice study of the infrared propagators was by Cucchieri, Mendes and Maas
Lattice does not find a suppressed gluon or enhanced Faddeev-Popov ghost

Gluon propagator freezes to a finite non-zero value and ghost propagator has slight
deviation from free behaviour

From Bogolubsky et al, arXiv:0901.0736

7—'7 ‘ T \HHW T ‘HHW T ‘HZW T ‘HHW T HHH‘, 4 T T TTHH‘ T T TTHH‘ T T TTHH‘ T T TTHH‘ L TTTHW
12 B =57 64* (14 conf.) F—=—f I 8=57 64* (14 conf.) +—=—|
C 72" (20 conf.) —o— ] O oy 80* (11 cont.) -0
L 80* (25 conf.) F--o—- A 3 B, 80" (5conf) o |
10 -4 e 88" (68 conf.) e ] %,
= [ % 96" (67 conf.) - ] %
| F ; ] B3
- 8 -
© — — k<
L T2k LS .
~ 6r = e
] 4l %
‘I
k7
2 [ Ty
0 ;L l 11 \H\Hl L1 \H\Hl L1 \H\Hl L1 B 1 1 1 lllle 1 1 111““ 1 1 111“” 1 1 111“” 1 1 1111“1
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Effective coupling vanishes in the infrared limit

This is referred to as the decoupling solution which is also observed in DSE studies
[Alkofer et al]

Suggests gluon is massive and probably contradicts global BRST invariance [Fischer et
al]
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Decoupling solution can be modelled with massive localizing ghosts

Include BRST invariant dimension two operator built from localizing ghosts in
Lagrangian giving the general mass term

2
O = M2Qé~a05bd + ,u%/vfacefbde + g_Rfabefcde
A
2
—|—u‘29d?4b0d i 'u_’P5ab5cd un M%_5ad5bcj| Oabcd
Ny
where
1
Oabcd — 5 [pabpcd 4+ ’ifaprd . ’I:pab€Cd 4+ gabgcd} . (I)abCUCd

and d42<? is totally symmetric rank four adjoint tensor
Mass parameters Mf tag the colour tensors

Structure of the propagators has been investigated
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Consider M% = 0 for 7 £ R then propagators are

. 5ab[p2_|_ 2]
U OALPIR = = o e P )
" . B ,,:fabc,y2
(AL(D)E°(—P)r = DR +CM4]PW(p)
(AL (-Pr = (€ ®)P(—p))rR = 0
u . B 5ac5bd fabefcde ['u2 p2 + CA’Y4]
<€ub(p)gyd(_p)>7z - — p—znlﬂ/ + CAp2[( 2)2 +R/1'ggp2 + CA’74]PHV(p)

abe rcde
feer NR L,

" C ap? [ ‘|‘,U73] ()
PP (PR = (W(P)as(—p))r
6ac5bd fabe deeN'?Q

= Nuv + Nuv
p? Cap?[p? + u%]

By contrast Q channel propagators have no massless poles in p2
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If D.(p?) is ghost propagator form factor then at one loop

5 3 CA74]
D, 2 = — |1 =-C4sq|=- — -1
®") { A[S 8 { A
—1
3 2 H‘2
+ PR In [—; + O (p*)| a + O(a?)

8\/'“3% — 4C’A'y4 [

: o2 1[92 4 _ 4

Gap equation, with 3 = 5 [NR + \/,LLR 4C o7y J IS
Cav?

5 3

No enhancement, unless pu%, =0
So ghost propagator mimics lattice measurements, similar to © channel

Lack of ghost enhancement can be traced to frozen gluon propagator
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In Q channel there are no massless poles in p? in propagators
So form factors will all freeze to finite non-zero values

For R channel have to compute one loop corrections and implement the gap equation
similar to pure Gribov-Zwanziger case
Zero momentum limit of localizing propagators is similar to Faddeev-Popov ghosts

1

_ 9 _
ab cd ac sbd ad cbe abe pcde
- ~ —_ |sacgbd _ gadgbe _ £ y

1 [ 2 ]
ab cd ac cbd ad ¢be abe pcde
—_ ~J _— 5 5 —_— 5 5 - v
(P (PP (—P))R 200p%a | CAf f _ My

where

1 2
Qo = g\//ﬁg —4Cpv*1In [—2

1 2
+ In [“—;}

4\/;#2 — 4C 4~4
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This produces the same behaviour as the Faddeev-Popov ghost propagator in the same
p? — 0 limit

Same colour tensor emerges as for pure Gribov-Zwanziger case

Adjoint projection of & Zb propagator freezes to zero or a finite non-zero value

Q channel produces frozen gluon propagator with frozen Bose localizing ghost
propagator

By contrast R channel produces frozen gluon propagator but with Bose localizing ghost
propagator similar to lattice behaviour of Faddeev-Popov ghost propagator

Refer to former as gluon-like and the latter as ghost-like
Need lattice data on these propagators in the zero momentum limit to resolve

Problem in trying to resolve propagator properties is that gauge fixing and trying to go to
zero momentum on the lattice is technically very difficult

Need to develop alternatives in order to give insight into which scenario is correct

Perturbative structure of the Gribov-Zwanziger Lagrangian — p.17/28



Early lattice work by Boucaud et al measured the running of the coupling constant

Computed an effective coupling constant defined from the propagator form factors and
vertex functions

For intermediate range of momenta they observed deviation from expected perturbative
behaviour

Discrepancy could be explained by power corrections derived from a dimension two
operator rather than dimension four

It was assumed that the operator was %AZAG ®

Vertices measured at symmetric point which is a non-exceptional momentum
configuration

Can mimic such effects with Gribov-Zwanziger Lagrangian

Examine power corrections to the vertex functions at both the asymmetric and symmetric
subtraction points

Effectively a next-to-high-energy expansion

Perturbative structure of the Gribov-Zwanziger Lagrangian — p.18/28



Define vertex functions at symmetric subtraction point by

= £ %999 (p,q)|

(AL(p) AL (@) AS(—p — @)

2,2 —-_ ,,2
p2:q2:—lj, p _q - l’l’

with

e, , = Z P e 0:0) S (9, @)

p2=¢q

For non-Gribov Lagrangian there are 8 one loop diagrams

Used Laporta algorithm encoded in GINAC based REDUZE algorithm to handle
reduction to master integrals

Numerical evaluation of arbitrary gauge exact result to two loops in Landau gauge in MS
IS
zglg)g(p, g) = —1 —[1.1212444 —0.0417366Nf] a
+ [29.7530676 — 11.5677203] N | a? + O(a®)

Other amplitudes similar and finite parts used to define MOM schemes and extend
Celmaster and Gonsalves to two loops
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Landau gauge coupling constant mapping is

2MOMggg

, i
= apgs + Hﬁgw’(g) — 4672 +1188| Cy4

2 __
MS
162

7 A

1
+ 12872 — 1924/ (=) — 432| T N
3 i

1 1 1
+ [[19044(«,0’(5))2 — 2539277/ () — 69387849 ()
117 1 m m
— 1006024 () — 7264339255 () + 14528678452 ()

T T 4
+ 12107232053 () — 9685785653 () + 276736

+ 462585672 — 1137243 + 8301852((3)

In?(3 In(3
+ 40126833 — 504468 — (8)m 1 6053616 n(3)m
V3 V3
5418367 | 2
V3l 4
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1 1 1

+ 14131207 (5) — 105984(3 ()" — 29600649 () + 3359232032(%)
w 7 w 4

— 6718464052 () — 5598720053 ) + 44789760s5 () — 47104

+ 197337672 + 2239488% — 8957952¢(3) — 26695008

In?(3)7 In(3)7m 73

— 2799360 — 250560
V3 V3 V3

1 1
+ [124416¢”’(§) — 1492992¢’(§) — 3317767* + 99532872

+ 233280

CATFNf

— 44789765 + 6718464¢(3) — 7138368] CrTr Ny
1 1 1
+ [147456(¢’(§))2 — 196608w2¢’(§) + 23224321,0’(5) + 655367

as__

— 154828872 + 2923776] T2 Nﬂ MS 0( 4_)
T | TNy 119904~ Y \OMs

> i1s a combination of harmonic polylogarithms
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Overall there are 14 different possible basis tensors for decomposition of Green’s
function built from p,,, g, and .

Explicit computation produces three combinations

’Piglg)i“/a (p,q) = NuvPo — Nuv9e — 2NpoPr — Nopdy + MvoPu + 2Mvequ
,P(g2g)iwa (p7 q) — [2pMpr0 + PuQuvPo — Puqrqo
1
+2qupPvPo — 2quPrqo — QquVqO'] ﬁ
P, (p0) = [pupvdo — + - L
(3)uvo b, q — pPvdo quPvPo quPv 4o QudvpPo 'u2

Pf’lg)i _..(p, q) corresponds to the original Feynman rule for the vertex when
r=—p—g
Channel 1 amplitude can be used to define an effective running coupling constant for the
vertex
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Repeat one loop symmetric point vertex calculation using the Gribov-Zwanziger
Lagrangian

There are 30 one loop graphs for triple gluon vertex

At symmetric point the external momenta do not need to be small which avoids zero
momenta issues

Can expand Feynman integrals in powers of 2 /2 using method of Smirnov et al
This is a two stage process

First stage is to reduce all one loop Feynman graphs to a set of masters which are either
2-point or 3-point

Use the Laporta algorithm for seven different possibilities of masses in diagrams at the
symmetric point when there are two mass scales

Schematically these are (0, 0, 0), (m1,0,0), (m1, m1,0), (m1,ma,0),
(m1,m1,m1), (m1,m1,ma)and (mi, ma, ms) where none of the m; are equal

Have used the REDUZE implementation based on GINAC

Write integration routines in FORM with diagrams generated by QGRAF

Perturbative structure of the Gribov-Zwanziger Lagrangian — p.23/28



Second stage is to substitute the expansion for the master diagrams as explicit expressions
for one loop 3-point not known explicitly

Extend method of Davydychev, Smirnov and Tausk developed explicitly for 2-point
diagrams to 3-point case

If the Feynman integral is J then
Jr ~ By dr/y © Timyi{ksy

where I is the original graph, - are subgraphs and 7¢,,.1,¢%,} 1S the Taylor expansion in
masses and momenta q; which are external to the subgraph

The operation o takes the Taylor expansion and inserts it in the numerator of the
integrand of the reduced graph Jr /.

The construction of the set of graphs -y is the same as for the 2-point case but here there
are two external momenta

There are four terms in Jr
First is the expansion of the original diagram in masses

The other three are the three possible permutations of the two external momenta around
the diagram
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Results for triple gluon vertex

S e = B (P40
18 70 T (1)1, [Cart]] Car
+ Y — —1In a
6 36 24 3 2 s s
37 03/2’)/2
SH®er) = T e+ 55
3/2 2
3w C "
S mar) = TEee0+ 5 5

Power corrections for channel 1 are dimension four; others are dimension two
At asymmetric subtraction point all channels are dimension two

For ghost-gluon and quark-gluon corrections in all channels at symmetric and
asymmetric points are dimension two

Need to consider pure gluon mass case for comparison
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Repeat analysis with either Yang-Mills with a massive gluon propagator

5ab
(A% ()AL (—p)) = — Py (p)
: p? + p3%] "
. - - 1
or use Gribov-Zwanziger with a mass term 5/.L2XAZACL H
2 _
E?iq)g (p7 q, /J’X) _ Z?f)g (pa q, 0)
7 1472 1, (1\] Cap’
+[z+ 77 3Y (5)] T
2 _
Z?ég)g (p7 q, /'LX) — 2?29)9 (pa q, 0)
42 2 1 2, 1| Cap?
L O TIE
96 27 9 3 16 7 7
2 _
Z?é,g)g (p7 q, /-LX) _ Z?g)g (pa q, 0)

596 4nw2 2 1 211 2 C A 12
+ S + =9 (—) it P APx ,
96 9 3 3 24 u? u?

Corrections are all dimension two
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For separate @ and R solutions all Lorentz channels in each vertex have dimension two
corrections except for channel 1 of the triple gluon vertex

Can formulate a test of whether the power corrections derive from the Gribov mass or a
gluon mass term

Compute the behaviour of all channels of the triple gluon vertex at the symmetric point

If deviation from expected behaviour is commensurate in all three channels then it
suggests a gluon mass

If deviation from expected behaviour is weaker in channel 1 compared with 2 and 3 then
suggests Gribov mass is present

To determine whether the behaviour is pure Gribov-Zwanziger, Q or R would require
comparison with numerical values in expansion as well as other vertices to establish
consistency

For the latter two there are various combinations of the mass parameters such as
\/ pp —4C a4
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Explanation of lattice data using the Gribov-Zwanziger approach has not been fully
resolved

Presented tests which bypass the focus on the gluon and ghost propagator form factors in
the infrared limit

Triple gluon vertex power corrections at one loop suggest a test of the effective running
coupling constant

Absence of dimension two corrections at one loop needs to be tested at two loops at the
symmetric subtraction point

Ultimately to resolve these issues then more lattice data is needed
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