Flavoured Leptogenesis from Nonequilibrium QFT

Matti Herranena

in collaboration with

M. Benekea B. Garbrechta C. Fidlera P. Schwallerb

Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen Universitya

Institut für Theoretische Physik, Universität Zürichb

Bielefeld, 5.5.2011
Outline

- Introduction
- Closed Time Path (CTP) Formalism of Noneq. QFT
- CTP Approach to Flavoured Leptogenesis
- Numerical Results
- Conclusions and outlook
Why baryogenesis?

To explain the excess of matter over antimatter in the universe:

\[\frac{n_B}{n_\gamma} = \left(6.1^{+0.3}_{-0.2}\right) \times 10^{-10} \]

Why is there something rather than nothing?
Leptogenesis [Fukugita, Yanagida (1986)]

- The Standard Model is extended by adding heavy right-handed Majorana neutrinos $N_i, i = 1, 2, \ldots$ (eg. see-saw models)

$$\mathcal{L} \ni -h_{ab}^* \phi \bar{\psi}_b P_R \psi_R a - Y_{ia}^* \bar{\psi}_{la}(\epsilon \phi)\dagger \psi_{Ni} - \frac{1}{2} \bar{\psi}_{Ni} M_i \psi_{Ni} + h.c.$$

- Lepton asymmetry is generated through out-of-equilibrium L- and CP-violating Yukawa decays: $N_1 \rightarrow \ell \phi$
Nonequilibrium QFT Approach to Leptogenesis

1related / complementary aspects in:
Buchmüller, Fredenhagen (2000); De Simone, Riotto (2007);
Garny, Hohenegger, Kartavtsev, Lindner (2009 & 2010);
Anisimov, Buchmüller, Drewes, Mendizabal (2010);
Anisimov, Besak, Bödeker (2010)
Closed Time Path* (CTP) Formalism
* a.k.a. Schwinger-Keldysh Formalism [Schwinger (1961); Keldysh (1964); Calzetta, Hu (1988)]

- Usually in QFT matrix elements are computed within the in-out framework:

\[
\langle \text{out}|\hat{S}|\text{in} \rangle \quad \leftarrow \quad \text{time-ordered correlators:} \quad \langle T[\psi(x)\bar{\psi}(y)] \rangle
\]

- In leptogenesis we want to calculate expectation values in a finite density medium, e.g.

\[
j^0(x) = \langle \bar{\psi}(x)\gamma^0\psi(x) \rangle \equiv \text{tr} \left[\hat{\rho} \bar{\psi}(x)\gamma^0\psi(x) \right]
\]

- \(\hat{\rho}\) is an (unknown) quantum density operator
In-In generating functional on a Closed Time Path:

Path-ordered correlators:

\[iS_C(x, y) = \langle T_C[\psi(x)\bar{\psi}(y)] \rangle \]

Four propagators with respect to real time variable:

\[iS^{++}(u, v) = iS^T(u, v) = \langle T(\psi(u)\bar{\psi}(v)) \rangle \]
\[iS^{+-}(u, v) = iS^<(u, v) = -\langle \bar{\psi}(v)\psi(u) \rangle \]
\[iS^{-+}(u, v) = iS^>(u, v) = \langle \psi(u)\bar{\psi}(v) \rangle \]
\[iS^{--}(u, v) = iS^{\bar{T}}(u, v) = \langle \bar{T}(\psi(u)\bar{\psi}(v)) \rangle \]
Kadanoff-Baym Equations

- **Generic Schwinger-Dyson equations for (CTP) propagators:**

\[
\begin{align*}
G &= G_0 + \Sigma \\
\end{align*}
\]

- **Kadanoff-Baym equations** are the \(<, >\) components:

\[
(i\partial - m)S^{<,>} - \Sigma^H \circ S^{<,>} - \Sigma^{<,>} \circ S^H = \frac{1}{2} (\Sigma^{>} \circ S^{<} - \Sigma^{<} \circ S^{>})
\]

- \((A \circ B)(u, v) \equiv \int d^4w A(u, w)B(w, v)\) denotes convolution

- Renormalization, thermal corrections (thermal masses etc.)

- Finite width effects

- Collision term
Approximations

Wigner representation:

\[S(k, x) = \int d^4 r \, e^{i k \cdot r} \, S(x + \frac{r}{2}, x - \frac{r}{2}) , \]

and gradient expansion to the lowest order in

- \(x \)-derivatives: \(\partial_x S(k, x) \), \(\partial_x \Sigma(k, x) \), etc.
- coupling constants in \(\Sigma(k, x) \)

\[\rightarrow \text{Constraint and Kinetic Equations:} \]

\[2 (k^0 - k \cdot \gamma^0) i \gamma^0 S^{<,>}_{\ell} - \left\{ \Sigma^H_{\ell} \gamma^0, i \gamma^0 S^{<,>}_{\ell} \right\} - \left\{ i \Sigma^<,> \gamma^0, \gamma^0 S^H_{\ell} \right\} = -\frac{1}{2} \left(i C_\ell - i C^\dagger \right) \]

\[i \partial_\eta i \gamma^0 S^{<,>}_{\ell} - \left[\Sigma^H_{\ell} \gamma^0, i \gamma^0 S^{<,>}_{\ell} \right] - \left[i \Sigma^<,> \gamma^0, \gamma^0 S^H_{\ell} \right] = -\frac{1}{2} \left(i C_\ell + i C^\dagger \right) \]

- \(\eta \) is conformal time variable: \(d\eta = dt/a(t) \)
The zeroth order solutions to **Contraint Equation**:

- **Flavour covariant free propagators for \(\ell \):**

 \[
i S_{\ell ab}^{<}(k, \eta) = -2\pi \delta(k^2)k \left[\vartheta(k_0)f^{+}_{\ell ab}(k, \eta) - \vartheta(-k_0)(1_{ab} - f^{-}_{\ell ab}(-k, \eta)) \right]
 \]

 \[
i S_{\ell ab}^{>}(k, \eta) = -2\pi \delta(k^2)k \left[-\vartheta(k_0)(1_{ab} - f^{+}_{\ell ab}(k, \eta)) + \vartheta(-k_0)f^{-}_{\ell ab}(-k, \eta) \right]
 \]

- \(f^{\pm}_{\ell ab}(k, \eta) \) are time-dependent distribution functions

- \(a, b \) are flavour indices

- Similar (unflavoured) free propagators for \(N_1 \) and \(\phi \)
Contributions to Lepton Collision term

- Y-Yukawa interactions:

- MSM h-Yukawa and gauge interactions:
Kinetic Equation for Lepton Number Densities

Substituting free propagators into Kinetic Equation

First order equation for $n_{\ell ab}^\pm(\eta) = \int \frac{d^3k}{(2\pi)^3} f_{\ell ab}^\pm(k, \eta)$:

$$\frac{\partial \delta n_{\ell ab}^\pm}{\partial \eta} = \sum_c [\Xi_{ac}^\text{eff} \delta n_{\ell cb}^\pm - \delta n_{\ell ac}^\pm \Xi_{cb}^\text{eff}] \mp i \Delta \omega_{\ell ab}^\text{eff} \delta n_{\ell ab}^\pm$$

$$- \sum_c [W_{ac} \delta n_{\ell cb}^\pm + \delta n_{\ell ca}^\pm* W_{bc}^*] \pm S_{ab} - \Gamma_{\ell bl} (\delta n_{\ell ab}^+ + \delta n_{\ell ab}^-) - \Gamma_{\ell lab}^\text{fl}$$

- Gradients of the mixing matrices: $\Xi^\text{eff} \sim U^\dagger \partial \eta U$

- Flavor oscillations by the thermal masses: $\Delta \omega_{\ell}^\text{eff} \sim h^2 T \ , \ Y^2 T$

- Collision terms: Washout, CP-violating source, Flavour-blind damping, Flavour-sensitive damping
Fast Flavour-blind Gauge Interactions

- **Blue cut** ⟷ tree-level pair creation and annihilation and $1 \leftrightarrow 2$ scatterings
- Kinematically forbidden for on-shell excitations $\rightarrow \Gamma^{bl} \sim g_2^4 T$

- Force **kinetic equilibrium** with generalized chemical potentials $\mu_{ab}^\pm(\eta)$:

$$f_{\ell ab}^\pm(k, \eta) = \left(\frac{1}{e^{\beta|k|} - e^{\beta\mu_{ab}^\pm} + 1} \right)_{ab}$$

- Flavour and momentum dependence **factorizes** to first order in μ_{ab}^\pm:

$$\delta n_{\ell ab}^\pm = \mu_{ab}^\pm \frac{T^2}{12} \quad \Longrightarrow \quad \delta f_{\ell ab}^\pm(k, \eta) = \delta n_{\ell ab}^\pm \frac{12 \beta^3 e^{\beta|k|}}{(e^\beta|k| + 1)^2}$$

\rightarrow Simple interaction terms in the kinetic equation
Suppression of Flavour Oscillations

- Toy equations for flavour oscillations

\[
\frac{\partial \delta n_{\ell ab}^\pm}{\partial \eta} = \mp i \Delta \omega_{\ell ab} \delta n_{\ell ab}^\pm - \Gamma^{bl}(\delta n_{\ell ab}^+ + \delta n_{\ell ab}^-)
\]

- Parametrically \(\Gamma^{bl} \gg \Delta \omega_{\ell}^{\text{eff}} \)
Suppression of Flavour Oscillations

- Toy equations for flavour oscillations

\[
\frac{\partial \delta n_{\ell ab}^\pm}{\partial \eta} = \mp i \Delta \omega_{\ell ab}^\text{eff} \delta n_{\ell ab}^\pm - \Gamma_{bl}^\text{bl} (\delta n_{\ell ab}^+ + \delta n_{\ell ab}^-)
\]

- Parametrically \(\Gamma_{bl}^\text{bl} \gg \Delta \omega_{\ell}^\text{eff} \)

→ Two over-damped solutions with short and long time scales:

- Short mode with \(\tau_{\text{short}} = 1/(2\Gamma_{bl}^\text{bl}) \) forces an effective constraint:

\[
\delta n_{ab}^- = -\delta n_{ab}^+
\]

- Flavour oscillations of \(\delta n_{ab}^+ \) are over-damped with a long decay time:

\[
\tau_{\text{damp}} \sim 2\Gamma_{bl}^\text{bl}/(\Delta \omega_{\ell ab}^\text{eff})^2
\]
Final Kinetic Equations

- Lepton asymmetries \(q \equiv \delta n^+ - \delta n^- \) (L- and R-handed):

\[
\frac{\partial q_{\ell ab}}{\partial \eta} = \sum_c \left[\Xi_{ac} q_{\ell cb} - q_{\ell ac} \Xi_{cb} - W_{ac} q_{\ell cb} - q_{\ell ac} W_{cb} \right] - \Gamma_{\ell ab}^f + 2S_{ab}
\]

\[
\frac{\partial q_{Rab}}{\partial \eta} = -\Gamma_{Rab}^f
\]

- Majorana neutrino \(N_1 \):

\[
\frac{\partial f_{N1}(k_{\text{com}})}{\partial \eta} = -2|Y_1|^2 \frac{k_{\text{com}} \mu}{2k_{\text{com}} 0} \Sigma_N^\mu(k_{\text{com}}) \left[f_{N1}(k_{\text{com}}) - f_{N1}^{\text{eq}}(k_{\text{com}}) \right]
\]

- Higgs field \(\phi \) remains in thermal equilibrium
Lepton Asymmetries: \[Y_{\ell ab} = \frac{n_{\ell ab}^+ - n_{\ell ab}^-}{s} \], Fully Flavoured case

\[h_\tau = 0.030 \]

- **dark blue:** \(Y_{\ell 11} \)
- **light blue:** \(Y_{\ell 22} \)
- **brown dotted:** \(\text{Re}[Y_{\ell 12}] \)
- **red dashed:** \(\text{Im}[Y_{\ell 12}] \)

\[M_1 = 10^{12} \text{ GeV}, \quad M_2 = 10^{14} \text{ GeV} \]

\[Y_{\text{Yuk}} = \begin{pmatrix} 1.4 \times 10^{-2} & 1 \times 10^{-2} \\ i \times 10^{-1} & 10^{-1} \end{pmatrix} \]

\(Y_{\ell 12} = Y_{\ell 21}^* \) strongly suppressed before freeze-out at \(z = \frac{M_1}{T} \approx 10 \)

\[\rightarrow \text{Flavour off-diagonals } Y_{\ell 12,21} \text{ can be neglected} \]
Lepton Asymmetries: \(Y_{lab} = \frac{n_{lab}^+ - n_{lab}^-}{s} \), Unflavoured case

![Graph showing lepton asymmetries](image)

- **dark blue**: \(Y_{\ell 11} \)
- **light blue**: \(Y_{\ell 22} \)
- **brown dotted**: \(\text{Re}[Y_{\ell 12}] \)
- **red dashed**: \(\text{Im}[Y_{\ell 12}] \)

\[M_1 = 10^{12} \text{ GeV}, \; M_2 = 10^{14} \text{ GeV} \]

\[Y_{\text{Yuk}} = \begin{pmatrix} 1.4 \times 10^{-2} & 1 \times 10^{-2} \\ i \times 10^{-1} & 10^{-1} \end{pmatrix} \]

- \(Y_{\ell 12} = Y_{\ell 21}^* \) decay away long after freeze-out at \(z \approx 10 \)

\(\rightarrow \) Flavour damping by \(\Gamma_{\ell}^{\text{fl}} \) can be neglected
Lepton Asymmetries: $Y_{\ell_{ab}} = \frac{n_{\ell_{ab}}^+ - n_{\ell_{ab}}^-}{s}$, Intermediate regime

<table>
<thead>
<tr>
<th>h_τ</th>
<th>0.007</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>Y</td>
</tr>
<tr>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
<td>5.0</td>
</tr>
<tr>
<td>10.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

- dark blue: $Y_{\ell_{11}}$
- light blue: $Y_{\ell_{22}}$
- brown dotted: $\text{Re}[Y_{\ell_{12}}]$
- red dashed: $\text{Im}[Y_{\ell_{12}}]$

$M_1 = 10^{12} \text{ GeV}, M_2 = 10^{14} \text{ GeV}$

$Y_{\text{Yuk}} = \begin{pmatrix} 1.4 \times 10^{-2} \\ i \times 10^{-1} \\ 1 \times 10^{-2} \end{pmatrix}$

- Full kinetic equations need to be solved!
Total Lepton Asymmetry as a function of Γ^fl_ℓ

- Scale $M_{1,2}$ and the couplings Y_{Yuk} such that Γ^fl_ℓ is varying while the washout and source terms remain constant.

![Graph showing the relationship between $\text{scal} + M_1$ and the total lepton asymmetry.](image)

- **Fully flavoured**
- **Full kinetic equations**
- **Unflavoured**
Conclusions

- First principle description of leptogenesis within the CTP framework
 - RIS subtraction procedure not required
- Simple kinetic equations for lepton number densities, including
 - Quantum statistical corrections in loops and external states
 - Sizable for weak washout
- Flavour effects
 - Flavour oscillations are overdamped by fast gauge interactions
 - Full flavoured equations are needed between fully flavoured and unflavoured regimes
Outlook

- Systematic inclusion of thermal effects
 - Finite widths
 - Thermal masses
- Spectator processes
- Resonant leptogenesis
 - Flavour coherence effects between Neutrinos N_i
Washout contribution

\[\frac{1}{2} \text{tr} \int \frac{d^3k}{(2\pi)^3} \int_0^\infty \frac{dk_0}{2\pi} C_{\ell ab}^Y = - \sum_c W_{ac} \delta n_{cb}^+ \]

with

\[W_{ac} = \frac{1}{2} Y_{1a}^* Y_{1c} \int \frac{d^3k}{(2\pi)^3 2|k|} \frac{d^3k'}{(2\pi)^3 2\sqrt{k'^2 + (a(\eta)M_1)^2}} \frac{d^3k''}{(2\pi)^3 2|k''|} (2\pi)^4 \delta^4(k' - k - k'') \]

\[\times 2k \cdot k' \left(f_{N1}(k') + f_\phi(k'') \right) \frac{12\beta^3 e^{\beta|k|}}{(e^{\beta|k|} + 1)^2} \]

Blue cut \[\leftrightarrow\] tree-level decays and inverse decays \[N_1 \leftrightarrow \ell \phi\]
CP-violating Source S_{ab}: Wave-function Contribution

- **Orange cut** ⟷ Interference between two s-channel scatterings
- **Blue cut** ⟷ Interference between loop and tree-level decays

\[
S_{ab}^{\text{wf}} = i \sum_c \left[Y_1^* a Y_1^* c Y_2 Y_{2b} - Y_2^* a Y_2^* c Y_1 Y_{1b} \right] \\
\times \left(-\frac{M_1}{M_2} \right) \int \frac{d^3 k'}{(2\pi)^3 2 \sqrt{k'^2} + (a(\eta)M_1)^2} \frac{\Sigma_N^\mu(k') \Sigma_N^\mu(k')}{g_w} \delta f_{N1}(k')
\]

where the **thermal decay rate** is

\[
\Sigma^\mu_N(k) = g_w \int \frac{d^3 p}{(2\pi)^3 2 |p|} \frac{d^3 q}{(2\pi)^3 2 |q|} (2\pi)^4 \delta^4(k - p - q) p^\mu \left(1 - f_{\ell}^{\text{eq}}(p) + f_{\phi}^{\text{eq}}(q) \right)
\]
CP-violating Source S_{ab}: Vertex Contribution

- Orange cut \longleftrightarrow Interference between s- and t-channel scatterings
- Blue cut \longleftrightarrow Interference between loop and tree-level decays

In the strongly hierarchical case, $M_1 \ll M_2$:

$$S_{ab}^V = \frac{1}{2} S_{ab}^{wf} \quad \implies \quad S_{ab} = \frac{3}{2} S_{ab}^{wf}$$

$$\sum_{N}^{\mu}(k) \xrightarrow{M_{N} \gg T} g_{w} \frac{k^{\mu}}{16\pi}$$ recover standard approximation
Flavour-sensitive MSM Yukawa Interactions

- **Blue cut** ←→ tree-level pair creation and annihilation and $1 \leftrightarrow 2$ scatterings
- Kinematically forbidden for on-shell excitations

\[
\Gamma_{\ell \ell_{ab}}^{\text{fl}} = \Gamma_{\ell \ell_{ab}}^{\text{an}} \left([h^\dagger h]_{ac} q_{\ell cb} + q_{\ell ac}^\dagger [h^\dagger h]_{cb} - h_{ac}^\dagger q_{Rcd} h_{db} - h_{ad}^\dagger q_{Rde}^\dagger h_{cb} \right) \\
+ \Gamma_{\ell \ell_{ab}}^{\text{sc}} \left([h^\dagger h]_{ac} q_{\ell cb} + q_{\ell ac}^\dagger [h^\dagger h]_{cb} - h_{ac}^\dagger q_{Rcd} h_{db} - h_{ad}^\dagger q_{Rde}^\dagger h_{cb} \right)
\]

- Example: 2 flavours, charged lepton basis

\[
\Gamma_{\ell}^{\text{fl}} = (\Gamma_{\ell}^{\text{an}} + \Gamma_{\ell}^{\text{sc}}) h_T^2 \left[\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) q_\ell + q_\ell \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) - 2 \left(\begin{array}{cc} q_{R11} & 0 \\ 0 & 0 \end{array} \right) \right]
\]

- $\Gamma_{\ell}^{\text{an,sc}} \sim g_2^2 T$ need to be calculated including (thermal) finite width corrections for ℓ and ϕ propagators