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Slow contraction Is a super-smoother.

-> to appear *very”® soon:

Cook, Glushchenko, ljjas, Pretorius, Steinhardt (2020): Super-smoothing through slow contraction

Cook, Davies, ljjas, Pretorius, Steinhardt (2020): The robustness of slow contraction to cosmic initial conditions

Slow contraction leads to super-Hubble modes.
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Generation of primordial perturbations ©
e.g., ljjas et al.: PRD 89 (2014)123520
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DENSITY PERTURBATIONS:

- stable background solution;

_ (near) scale invariance NO PRIMARY TENSOR PERTURBATIONS!

- local non-gaussianity: fy, = 0O



Non-perturbative analysis

Garfinkle, ljjas, Pretorius, Steinhardt: to appear soon
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Non-perturbative analysis

Garfinkle, ljjas, Pretorius, Steinhardt: to appear soon
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You better break that symmetry ..

Garfinkle, ljjas, Pretorius, Steinhardt: to appear soon
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What does it take to bounce?’

da/dt > 0

da/dt < O

VIOLATE NULL CONVERGENCE CONDITION:

Ragnan f)é 0



singularity resolution through "braiding’
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= known since the /0s as Lorentz-invariant GR modification:

= rediscovered in early 2000s based on EFT considerations;

= radiatively stable below strong coupling scale A5 << My;;

= admits FRW bounce solution

But is it a good’ dynamical theory?




Test #1: “stability’ to curvature fluctuations of the linear theory @

Follow evolution of gauge-invariant Mukhanov-Sasaki variable

UEC—H(Tf)%5 é}—k(c%kz—g)v:()
where C%‘ X @(t)_1% (a(t)%> — 1

ljjas, Steinhardt (2017a)

BRAIDING PARAMETER: y [= H(t) in the Einstein limit]

measures interaction strength between geometry and scalar field matter

shifts problem from stably violating the null convergence condition and bounce to stably
connecting to Einstein gravity BOTH before AND after the bounce

ljjas, Steinhardt (2017b)



Test #2: check for coordinate artifacts

"instability’ vs. coordinate singularity

gauge NEWTONIAN
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ODE for gauge [ U + F(t, k)\I! 4+ <m(2)(t,k) + c

variable
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WELL-BEHAVED at y - crossing jjas (2018)



Test #3: ‘"Mode stability’ (a.k.a. local well-posedness) ¢

Study PDE structure of the "braided’ system

verify that arbitrarily small wavelength mode fluctuations do NOT

orow to large amplitudes on arbitrarily small timescales

the generalized harmonic formulation: ,CIj’U“ m— J’U“(,’L‘a)

linearized Horndeski gravity in the generalized harmonic formulation:
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jjas, Pretorius, Steinhardt (2019)



Test #3: '"Mode stability’ cont’'d

)

"frozen coefficient approximation

move to first-order system: 8tu — ZP(ka)u with U = (‘k‘v, —Z.?.})T - RZQ
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Conditions for weak hyperbolicity: all eigenvalues of P° must be real
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Conditions for strong hyperbolicity: there must be a complete set of eigenvectors
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Take-home message:

There exist Horndeskl theories that are linearly well-
posed around relevant cosmological backgrounds

Necessary conditions for non-perturbative numerical

analysis Is met.

STAY TUN

D!




