Observables and Unobservables in Dark Energy Cosmologies

Kosmologietag

Bielefeld, 25 April 2013

[ArXiv:1210.0439], (PRD 87, 023501 (2013)) [in preparation]

In collaboration with

L. Amendola, M. Kunz, I. Sawicki, I. Saltas

Mariele Motta

G_N= 1
1 potential
$$\Psi$$

$$_{ extsf{N}}$$
= 1
1 potential Ψ

Changes background evolution

Changes background evolution Introduces DE perturbations

Changes background evolution Introduces DE perturbations

(we talk only about perturbation theory)

$$G_{\!\scriptscriptstyle N}$$
= 1
1 potential Ψ

Changes background evolution Introduces DE perturbations

(we talk only about perturbation theory)

Dark Energy configuration:

$$Y(k,a) \equiv -\frac{2k^2\Psi}{3\Omega_{\rm m}\delta_{\rm m}} = 1$$

$$\eta(k,a) \equiv -\frac{\Phi}{\Psi} = 1$$

Effective Newton's Constant

Slip parameter

G_N= 1
1 potential
$$\Psi$$

Changes background evolution Introduces DE perturbations

(we talk only about perturbation theory)

Dark Energy configuration:

$$Y(k,a) \equiv -\frac{2k^2\Psi}{3\Omega_{\rm m}\delta_{\rm m}} = 1$$

$$\eta(k,a) \equiv -\frac{\Phi}{\Psi} = 1$$

Slip parameter

time- and scale-dependent Gravitational coupling

2 potentials

to test for deviations of

$$Y(k,a) \equiv -\frac{2k^2\Psi}{3\Omega_{\rm m}\delta_{\rm m}} = 1, \quad \eta(k,a) \equiv -\frac{\Phi}{\Psi} = 1$$

to test for deviations of

$$Y(k,a) \equiv -\frac{2k^2\Psi}{3\Omega_{\rm m}\delta_{\rm m}} = 1, \quad \eta(k,a) \equiv -\frac{\Phi}{\Psi} = 1$$

Normal approach:

to test for deviations of

$$Y(k,a) \equiv -\frac{2k^2\Psi}{3\Omega_{\rm m}\delta_{\rm m}} = 1, \quad \eta(k,a) \equiv -\frac{\Phi}{\Psi} = 1$$

Normal approach:

assume a parameterization for free functions

to test for deviations of

$$Y(k,a) \equiv -\frac{2k^2\Psi}{3\Omega_{\rm m}\delta_{\rm m}} = 1, \quad \eta(k,a) \equiv -\frac{\Phi}{\Psi} = 1$$

Normal approach:

- assume a parameterization for free functions
- evolve it in a modified code while fitting the data in a model- (paramaterization-) dependent way

What is observable without assuming a DE model?

Minimal of assumptions:

FLRW universe

$$ds^{2} = -(1 + 2\Psi)dt^{2} + a^{2}(t)(1 + 2\Phi)d\mathbf{x}^{2}$$

Linear bias

$$\delta_{\rm gal} = b(k, a)\delta_m$$

Matter follow geodesics and is pressureless

Equivalence principle holds: no velocity bias

$$\theta_{gal} \simeq \theta_m$$

What can we observe?

Linear perturbations

Weak lensing

Redshift-space distortions

$$\kappa = \frac{1}{2} \int_0^{\chi_s} k^2 (\Psi - \Phi) W(\chi, \chi_s) d\chi \qquad \delta_{\text{gal}}^z(k, z, \mu) = \delta_{\text{gal}}(k, z) - \mu^2 \frac{\theta_{\text{gal}}(k, z)}{a^2 H}$$

$$\delta_{\text{gal}}^z(k, z, \mu) = \delta_{\text{gal}}(k, z) - \mu^2 \frac{\theta_{\text{gal}}(k, z)}{a^2 H}$$

What can we observe?

Linear perturbations

Weak lensing

Redshift-space distortions

$$\kappa = \frac{1}{2} \int_0^{\chi_s} k^2 (\Psi - \Phi) W(\chi, \chi_s) d\chi$$

$$\delta_{\text{gal}}^{z}(k, z, \mu) = \delta_{\text{gal}}(k, z) - \mu^{2} \frac{\theta_{\text{gal}}(k, z)}{a^{2}H}$$

Galaxies follow geodesics

$$\left(a^2\theta_{\rm gal}\right)' = a^2Hk^2\Psi$$

What can we observe?

Linear perturbations

Weak lensing

Redshift-space distortions

$$\kappa = \frac{1}{2} \int_0^{\chi_s} k^2 (\Psi - \Phi) W(\chi, \chi_s) d\chi \qquad \delta_{\text{gal}}^z(k, z, \mu) = \delta_{\text{gal}}(k, z) - \mu^2 \frac{\theta_{\text{gal}}(k, z)}{a^2 H}$$

$$\delta_{\text{gal}}^{z}(k, z, \mu) = \delta_{\text{gal}}(k, z) - \mu^{2} \frac{\theta_{\text{gal}}(k, z)}{a^{2}H}$$

Galaxies follow geodesics

$$\left(a^2\theta_{\rm gal}\right)' = a^2 H k^2 \Psi$$

What can we observe?

Linear perturbations

Weak lensing

Redshift-space distortions

$$\kappa = \frac{1}{2} \int_0^{\chi_s} k^2 (\Psi - \Phi) W(\chi, \chi_s) d\chi$$

$$\delta_{\text{gal}}^{z}(k, z, \mu) = \delta_{\text{gal}}(k, z) - \mu^{2} \frac{\theta_{\text{gal}}(k, z)}{a^{2} h}$$

Galaxies follow geodesics

Map out the metric!

$$\left(a^2\theta_{\rm gal}\right)' = a^2 H k^2 \Psi$$

What can we observe?

Redshift-space distortions

$$\delta_{\rm gal}^z(k,z,\mu) = \delta_{\rm gal}(k,z) - \frac{2\theta_{\rm gal}(k,z)}{a^2H}$$

What can we observe?

Redshift-space distortions

$$\delta_{\rm gal}^z(k,z,\mu) = \delta_{\rm gal}(k,z) - \mu^2 \frac{\theta_{\rm gal}(k,z)}{a^2 H}$$

+ Equivalence Principle

$$\theta_{gal} \simeq \theta_m$$

What can we observe?

Redshift-space distortions

$$\delta_{\rm gal}^z(k,z,\mu) = \delta_{\rm gal}(k,z) - \frac{2\theta_{\rm gal}(k,z)}{a^2H}$$

+ Equivalence Principle

$$\theta_{gal} \simeq \theta_m$$

+ Continuity
Equation

$$\theta_m = -\delta_m' - 3\Phi'$$

What can we observe?

Redshift-space distortions

$$\delta_{\rm gal}^z(k,z,\mu) = \delta_{\rm gal}(k,z) - \mu^2 \frac{\theta_{\rm gal}(k,z)}{a^2 H}$$

+ Equivalence Principle

$$\theta_{gal} \simeq \theta_m$$

+ Continuity Equation

$$\theta_m = -\delta_m' - 35'$$

What can we observe?

Redshift-space distortions

$$\delta_{\rm gal}^z(k,z,\mu) = \delta_{\rm gal}(k,z) - \frac{2\theta_{\rm gal}(k,z)}{a^2H}$$

+ Equivalence Principle

$$\theta_{gal} \simeq \theta_m$$

+ Continuity
Equation

$$\theta_m = -\delta_m' - 3 \, \Sigma'$$

Observation of

$$\Psi$$
 Φ δ_m'

ratios

Dark Energy Configuration:

$$Y(k,a) \equiv -\frac{2k^2\Psi}{3\Omega_{\rm m}\delta_{\rm m}} \quad \eta(k,a) \equiv -\frac{\Phi}{\Psi}$$

$$\eta(k,a) \equiv -\frac{\Phi}{\Psi}$$

$$f \equiv \frac{\delta'_m}{\delta_m}$$

 Ψ Φ δ_m'

ratios

Dark Energy Configuration:

$$Y(k,a) \equiv -\frac{2k^2\Psi}{3\Omega \rho_{\rm m}}$$

$$\eta(k,a) \equiv -\frac{\Phi}{\Psi}$$

$$f \equiv \frac{\delta'_m}{n}$$

 Ψ Φ δ'_m

ratios

Dark Energy Configuration:

$$Y(k,a) \equiv -\frac{2k^2\Psi}{3\Omega \mathcal{D}_{\rm m}}$$

$$\eta(k,a) \equiv -\frac{\Phi}{\Psi}$$

$$f\equiv rac{\delta_m'}{2n}$$

Anisotropic-stress is observable!

 Ψ Φ δ_m'

ratios

Dark Energy Configuration:

$$Y(k,a) \equiv -\frac{2k^2\Psi}{3\Omega \mathcal{D}_{\rm m}}$$

$$\eta(k,a) \equiv -\frac{\Phi}{\Psi}$$

$$f \equiv \frac{\delta'_m}{n}$$

Anisotropic-stress is observable!

Growth rate and Effective G, not!

Let's see what this can do for us...

$$\mathcal{L}_{2} = K(\phi, X),$$

$$\mathcal{L}_{3} = -G_{3}(\phi, X) \square \phi,$$

$$\mathcal{L}_{4} = G_{4}(\phi, X)R + G_{4,X} \left[(\square \phi)^{2} - (\nabla_{\mu} \nabla_{\nu} \phi)^{2} \right],$$

$$\mathcal{L}_{5} = G_{5}(\phi, X)G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{G_{5,X}}{6} \left[(\square \phi)^{3} - (\square \phi) (\nabla_{\mu} \nabla_{\nu} \phi)^{2} + 2 (\nabla_{\mu} \nabla_{\nu} \phi)^{3} \right].$$

$$\mathcal{L}_{2} = K(\phi, X),$$

$$\mathcal{L}_{3} = -G_{3}(\phi, X) \square \phi,$$

$$\mathcal{L}_{4} = G_{4}(\phi, X)R + G_{4,X} \left[(\square \phi)^{2} - (\nabla_{\mu} \nabla_{\nu} \phi)^{2} \right],$$

$$\mathcal{L}_{5} = G_{5}(\phi, X)G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{G_{5,X}}{6} \left[(\square \phi)^{3} - 3(\square \phi) (\nabla_{\mu} \nabla_{\nu} \phi)^{2} + 2(\nabla_{\mu} \nabla_{\nu} \phi)^{3} \right].$$

the most general DE theory described by a single degree of freedom

equation of motion + constraints=

$$\left| \eta \left(\frac{\Psi'}{\Psi} \right)' + \eta'' + \frac{\Psi'}{\Psi} \left(\eta \frac{\Psi'}{\Psi} + 2\eta' + \alpha_1 \eta - \alpha_2 \right) + \right. \\
+ \alpha_1 \eta' + \alpha_3 \eta - \alpha_5 + k^2 \left(\alpha_4 \eta - \alpha_6 \right) = \alpha_7 \frac{3(1+z)^3 \theta_{\rm m}}{2H^3 k^2 \Psi} .$$

equation of motion + constraints=

$$\left| \eta \left(\frac{\Psi'}{\Psi} \right)' + \eta'' + \frac{\Psi'}{\Psi} \left(\eta \frac{\Psi'}{\Psi} + 2\eta' + \alpha_1 \eta - \alpha_2 \right) + \right.
+ \alpha_1 \eta' + \alpha_3 \eta - \alpha_5 + k^2 \left(\alpha_4 \eta - \alpha_6 \right) = \alpha_7 \frac{3(1+z)^3 \theta_{\rm m}}{2H^3 k^2 \Psi} .$$

only 7 unknwon parameters

equation of motion + constraints=

only 7 unknwon parameters

By measuring potentials at different scales and redshift slices we can fully constrain this relation without assuming any parameterization

minimal of assumptions

- minimal of assumptions
- identify observable quantities

- minimal of assumptions
- · identify observable quantities

reconstruct the metric

- minimal of assumptions
- · identify observable quantities

reconstruct the metric

(δ_m is not observable)

- minimal of assumptions
- identify observable quantities

reconstruct the metric

(δ_m is not observable)

 it is possible to constrain the most general theory for Dark Energy without parameterizing by measurements in different redshifts and scales

- minimal of assumptions
- identify observable quantities

reconstruct the metric

(δ_m is not observable)

 it is possible to constrain the most general theory for Dark Energy without parameterizing by measurements in different redshifts and scales

thank you!

