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Relaxes assumptions behind ACDM G=1
1 potential W
Changes background evolution

Introduces DE perturbations

(we talk only about perturbation theory)
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time- and scale-dependent

Gravitational coupling 2 potentials
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to test for Dark Energy...

to test for deviations of

Y(k,a) = — =1, nka=—-——==1

Normal approach:
- assume a parameterization for free functions

- evolve it in a modified code while fitting
the data in a model- (paramaterization-)
dependent way
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a step back

Minimal of assumptions:

FLRW universe ds? = —(1 +2W)dt* 4 a*(t)(1 + 20)da”

Linear bias Ogal = b(K, )0,

Matter follow geodesics
and is pressureless

Equivalence principle holds: 0 a1 = Or,
no velocity bias
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What can we observe?

Linear perturbations

Weak lensing Redshift-space

distortions
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a step back

What can we observe?

Redshift-space : 0, (k.-
distortions Ogat (s 2, 1) = Ogar(k, 2) — 1" =5

+ Equivalence 0gar = O,
Principle
Continuity , 0
— — A
- Equation Orm 5m 3

Observation of 5;11
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" ratios

Anisotropic-stress is
observable!

Growth rate and Effective G, not!




L et's see what this can do for us...




Horndeski
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Horndeski
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the most general DE theory described by a single degree
of freedom




Horndeski

equation of motion + constraints=
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Horndeski

equation of motion + constraints=
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only / unknwon parameters

By measuring potentials at different scales and
redshift slices we can fully constrain this relation
without assuming
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