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What is geometric optics?

A way to understand fields at high-frequencies: electromagnetic,
gravitational, acoustic, . . .

PDEs are hard.

ODEs aren’t.

Geometric optics turns PDEs into ODEs, at high frequencies.
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Applications of geometric optics in GR

Gravitational lensing: light deflection, shape distortion, intensity
modulation, time delays, redshifts/blueshifts, . . .

Gravitational wave detection: Circulating light in interferometers,
timing of radio signals from pulsars.
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Typical application

Look at future-directed null geodesics from a source to an observer.

Measure: Angles, intensities, frequency shifts, etc.
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Another application: interferometry

Null geodesics now circulate between three timelike worldlines.

⇔

Phase difference at po determines the time delay δτo .
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Laws of geometric optics
1 Fields propagate along null geodesics [rays],

2 (Intensity) (cross-sectional area) = constant,

3 Polarization states are parallel transported.

How does this come out of the Maxwell’s or Einstein’s equations?
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The high-frequency method

1 As ω →∞, suppose that the vector potential is

Aa(x ;ω) = Re
(
e iωϕ(x)

[
A0

a(x)︸ ︷︷ ︸
geometric optics

+ ω−1A1
a(x) +O(ω−2)

])
.

2 Substitute Aa into the (gauge-fixed) Maxwell equations

∇b∇bAa = 0, ∇aAa = 0.

3 Equate powers of ω to constrain

(ϕ,A0
a, . . .)↔ Aa.
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Example: Radiation from a compact source

With Aa = Re(e iωϕA0
a + . . .) and a point source on worldline γ(τ),

Eikonal ϕ = τret,

Wavevector ka = −∇aϕ,

Amplitude A0
a =

1
r
ga

a′fa′(θ, φ, τret). γ(ϕ(x))

x

ka
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1st law of geometric optics

Substituting Aa = Re(e iωϕA0
a + . . .) into Maxwell’s equations,

x

ka

The wavevector ka = −∇aϕ is null
Rays are tangent to ka. They are null geodesics.
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The rest of geometric optics

Substituting Aa = Re(e iωϕA0
a + . . .) into Maxwell’s equations,

(2k · ∇+∇ · k)A0
a = 0︸ ︷︷ ︸

evolution eqn.

, k · A0 = 0︸ ︷︷ ︸
constraint eqn.

Fab = Re
(
k[aA0

b]e
iωϕ
)

+ . . .

This implies. . .
1 the area-intensity law,
2 that phases are constant on each ray,
3 that polarization is parallel transported.
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Physically, what are the rays? I.

Amplitudes evolve via (2k · ∇+∇ · k)A0
a = 0, which is an ODE along each

ray.

⇒ Information evolves independently on neighboring rays:

1 2 3

A. Harte (DCU) Geometric optics 11 / 23



Physically, what are the rays? I.

Amplitudes evolve via (2k · ∇+∇ · k)A0
a = 0, which is an ODE along each

ray.

⇒ Information evolves independently on neighboring rays:

1

2 3

A. Harte (DCU) Geometric optics 11 / 23



Physically, what are the rays? I.

Amplitudes evolve via (2k · ∇+∇ · k)A0
a = 0, which is an ODE along each

ray.

⇒ Information evolves independently on neighboring rays:

1 2

3

A. Harte (DCU) Geometric optics 11 / 23



Physically, what are the rays? I.

Amplitudes evolve via (2k · ∇+∇ · k)A0
a = 0, which is an ODE along each

ray.

⇒ Information evolves independently on neighboring rays:

1 2 3

A. Harte (DCU) Geometric optics 11 / 23



Physically, what are the rays? II.

Stress-energy is
Tab ∼ |A0|2kakb.

⇒ Any observer sees momentum coming from the ray direction:

(momentum density)a = Tabu
b ∝ ka
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Intensity-area law

Ja = |A0|2ka is conserved: ∇ · J = 0.

ka

ka

(area)2

(area)1

0 =

∫
B

(∇ · J)dV =

∮
∂B
|A0|2k · dS ∼ ∆

[
|A0|2(area)

]
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When is geometric optics valid?

Fab = Re
[
k[aA0

b]e
iωϕ +O(ω−1)

]

[ω] = (length)−1 so ensure that ω`� 1, where ` is built from

1 Lengthscales in spacetime curvature
2 Radius of curvature of wavefront
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Example I: Plane waves

There are no finite lengthscales. . .

Every ω is large. Geometric optics is exact.
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Example II: Caustics

At a caustic, `→ 0.

[Source: Wardell, arXiv:0910.2634]

No ω is large. Geometric optics breaks down.
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Example III: Spherical waves

Only lengthscale is ` ∼ r .

Geometric optics holds when r � ω−1.
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Example IV: Accelerating source

With acceleration a, there are lengthscales r and 1/a.

Corrections are O(1/ωr) and O(a/ω). The latter does not decay !
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Beyond geometric optics

Aa = Re
(
e iωϕ

[
A0

a + ω−1A1
a +O(ω−2)

])

Plugging this into Maxwell’s equations,

Order Evolution eqn. Constraint eqn.
0 DkA0

a = 0 k · A0 = 0

1 DkA1
a = −i∇b∇bA0

a k · A1 = −i∇ · A0

...
...

...

PDEs are turned into an infinite hierarchical sequence of ODEs.
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Structure of the corrections

Order Evolution eqn. Constraint eqn.
0 DkA0

a = 0 k · A0 = 0
1 DkA1

a = −i∇b∇bA0
a k · A1 = −i∇ · A0

1 All evolution operators Dk = 2k · ∇+∇ · k are the same: Data
evolves only along the original null geodesics.

2 Derivatives of lower-order fields couple neighboring rays: They
interfere.

3 Polarization becomes complicated.
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Tails: A paradox?

From the theory of PDEs, information propagates in null and timelike
directions; there are tails.

But to all orders, in the high-frequency expansion, evolution is only along
null geodesics.
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Resolution of the tail paradox

As ω →∞, nonzero signals can fall off faster than any power of ω .

Aa = Re

[
e iωϕ

( ∞∑
n=0

ω−nAn
a +O(e−kω)

)]
.

Tail effects are non-perturbative in ω.

But are they negligible?
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Conclusions

1 Geometric optics provides a foundation for gravitational lensing and
connects it to the underlying fields.

2 Everything just involves ODEs along null geodesics.

3 Tails are non-perturbative in frequency.

4 Are there interesting situations where corrections are important?
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