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What is geometric optics?

A way to understand fields at high-frequencies: electromagnetic,
gravitational, acoustic, . ..
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What is geometric optics?

A way to understand fields at high-frequencies: electromagnetic,
gravitational, acoustic, . ..

o PDEs are hard.
o ODEs aren't.

@ Geometric optics turns PDEs into ODEs, at high frequencies.
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Applications of geometric optics in GR

e Gravitational lensing: light deflection, shape distortion, intensity
modulation, time delays, redshifts/blueshifts, ...

e Gravitational wave detection: Circulating light in interferometers,
timing of radio signals from pulsars.
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Typical application

Look at future-directed null geodesics from a source to an observer.

Source S oy Po

Observer O

p s/‘«'

Measure: Angles, intensities, frequency shifts, etc.
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Another application: interferometry

Null geodesics now circulate between three timelike worldlines.

STy

Phase difference at p, determines the time delay d7,.
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O Fields propagate along null geodesics [rays],

@ (Intensity) (cross-sectional area) = constant,

© Polarization states are parallel transported.
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O Fields propagate along null geodesics [rays],

@ (Intensity) (cross-sectional area) = constant,

© Polarization states are parallel transported.

How does this come out of the Maxwell's or Einstein's equations?
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The high-frequency method

@ As w — oo, suppose that the vector potential is

As(x;w) = Re(e™?0) [A(x) + w L AL(x) + O(w™2)]).
geomet?it: optics
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The high-frequency method

@ As w — oo, suppose that the vector potential is
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@ Substitute A, into the (gauge-fixed) Maxwell equations

VEVLA, =0, V2A, = 0.
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The high-frequency method

@ As w — oo, suppose that the vector potential is

As(x;w) = Re(e™?0) [A(x) + w L AL(x) + O(w™2)]).
geomet?it: optics

@ Substitute A, into the (gauge-fixed) Maxwell equations

VEVLA, =0, V2A, = 0.

© Equate powers of w to constrain

(0, A%,..) & A,
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Example: Radiation from a compact source

With A, = Re(e¥.A% + ...) and a point source on worldline v(7),
a

Eikonal ¢ = Tyet,

Wavevector k; = —V 3¢,

1
Amplltude Ag = ;gaa f;’(07¢7 Tret)-
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Ist law of geometric optics

Substituting A, = Re(e™“? A% + ...) into Maxwell's equations,

ka

The wavevector k; = —V ¢ is null

Rays are tangent to k?. They are null geodesics.
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The rest of geometric optics

Substituting A, = Re(e™“? A% + ...) into Maxwell's equations,

(2k -V +V - k)A =0, k- A° =0
= _ */
evolution eqn. constraint eqn.
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The rest of geometric optics
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The rest of geometric optics

Substituting A, = Re(e™“? A% + ...) into Maxwell's equations,

(2k -V +V - k)A =0, k- A° =0
= _ */
evolution eqn. constraint eqn.

Fab = Re(ka A% e™?) + ...

This implies. . .
© the area-intensity law,
@ that phases are constant on each ray,

© that polarization is parallel transported.
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Physically, what are the rays? |.

Amplitudes evolve via (2k - V + V - k).A% = 0, which is an ODE along each
ray.
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= Information evolves independently on neighboring rays:
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Physically, what are the rays? II.

Stress-energy is
Tab ~ | Ao|?kaks.

A. Harte (DCU) Geometric optics 12 /23



Physically, what are the rays? II.

Stress-energy is
Tab ~ | Ao|?kaks.

= Any observer sees momentum coming from the ray direction:

(momentum density), = U o ks,
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Intensity-area law

J? = | Ap|?k? is conserved: V- J = 0.
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Intensity-area law

J? = | Ap|?k? is conserved: V- J = 0.

_ ) - 2k .dS ~ 2(area
o_/B(v Ndv £B|AO| k- dS ~ A [|Ao|*(area)]
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When is geometric optics valid?

Fap = Re[k[aAg]ei“"p +0(w™h)]

[w] = (length)~! so ensure that wf > 1, where £ is built from
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When is geometric optics valid?

Fap = Re[k[aAg]ei“"p +0(w™h)]

[w] = (length)~! so ensure that wf > 1, where £ is built from

© Lengthscales in spacetime curvature

@ Radius of curvature of wavefront
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Example |: Plane waves

There are no finite lengthscales. . .

Every w is large. Geometric optics is exact.
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Example II: Caustics

At a caustic, ¢ — 0.

No w is large. Geometric optics breaks down.
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Example IllI: Spherical waves

Only lengthscale is £ ~ r.

Geometric optics holds when r > w1,
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Example IV: Accelerating source

With acceleration a, there are lengthscales r and 1/a.

Source S W Po

Observer O

P s['

Corrections are O(1/wr) and O(a/w). The latter does not decay!
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Beyond geometric optics

A; = Re(e™?[A) +w T AL+ O(w™?)])

Plugging this into Maxwell’s equations,

Order | Evolution eqgn. Constraint eqn.
0 | DA =0 k-A°=0
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Beyond geometric optics

A; = Re(e™?[A) +w T AL+ O(w™?)])

Plugging this into Maxwell’s equations,

Order | Evolution eqgn. Constraint eqn.
0 DAY =0 k-A°=0
1 | DAL= —ivPV, A% k- A= iV A°

PDEs are turned into an infinite hierarchical sequence of ODEs.
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Structure of the corrections

Order || Evolution eqgn. Constraint eqn.
0 DAY =0 k- AV =0
1 DAL = —iVPV, A% k- A =iV A°

@ All evolution operators Dy = 2k - V + V - k are the same: Data
evolves only along the original null geodesics.
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Structure of the corrections

Order || Evolution eqgn. Constraint eqn.
0 DAY =0 k- AV =0
1 DAL = —iVPV, A% k- A =iV A°

@ All evolution operators Dy = 2k - V + V - k are the same: Data
evolves only along the original null geodesics.

@ Derivatives of lower-order fields couple neighboring rays: They
interfere.
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Structure of the corrections

Order H Evolution eqgn. Constraint eqn.
0 DAY =0 k- AV =0
1 DAL = —iVPV, A% k- A =iV A°

@ All evolution operators Dy = 2k - V + V - k are the same: Data
evolves only along the original null geodesics.

@ Derivatives of lower-order fields couple neighboring rays: They
interfere.

© Polarization becomes complicated.
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Tails: A paradox?

From the theory of PDEs, information propagates in null and timelike
directions; there are tails.

Observer O
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Tails: A paradox?

From the theory of PDEs, information propagates in null and timelike
directions; there are tails.

Observer O

But to all orders, in the high-frequency expansion, evolution is only along
null geodesics.
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Resolution of the tail paradox

As w — 00, nonzero signals can fall off faster than any power of w .

elws (i w AL+ (’)(e_k“’)>] .

n=0

A, =Re

Tail effects are non-perturbative in w.
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Resolution of the tail paradox

As w — 00, nonzero signals can fall off faster than any power of w .

elws (i w AL+ (’)(e"“ﬂ)] .

n=0

A, =Re

Tail effects are non-perturbative in w.

But are they negligible?
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Conclusions

© Geometric optics provides a foundation for gravitational lensing and
connects it to the underlying fields.

@ Everything just involves ODEs along null geodesics.
© Tails are non-perturbative in frequency.

© Are there interesting situations where corrections are important?
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