Gravitational lensing and geometric optics in general relativity

Abraham Harte

Centre for Relativity and Astrophysics Dublin City University

Aspects of Gravity Workshop
Autumn 2020

What is geometric optics?

A way to understand fields at high-frequencies: electromagnetic, gravitational, acoustic, ...

What is geometric optics?

A way to understand fields at high-frequencies: electromagnetic, gravitational, acoustic, ...

- PDEs are hard.
- ODEs aren't.
- Geometric optics turns PDEs into ODEs, at high frequencies.

Applications of geometric optics in GR

- Gravitational lensing: light deflection, shape distortion, intensity modulation, time delays, redshifts/blueshifts, ...
- Gravitational wave detection: Circulating light in interferometers, timing of radio signals from pulsars.

Typical application

Look at future-directed null geodesics from a source to an observer.

Measure: Angles, intensities, frequency shifts, etc.

Another application: interferometry

Null geodesics now circulate between three timelike worldlines.

Phase difference at p_{o} determines the time delay $\delta \tau_{o}$.
(1) Fields propagate along null geodesics [rays],
(2) (Intensity) (cross-sectional area) $=$ constant,
(3) Polarization states are parallel transported.
(1) Fields propagate along null geodesics [rays],
(2) (Intensity) (cross-sectional area) $=$ constant,
(3) Polarization states are parallel transported.

How does this come out of the Maxwell's or Einstein's equations?

The high-frequency method

(1) As $\omega \rightarrow \infty$, suppose that the vector potential is

$$
A_{a}(x ; \omega)=\underbrace{\operatorname{Re}\left(e ^ { i \omega \varphi (x) } \left[\mathcal{A}_{a}^{0}(x)\right.\right.}_{\text {geometric optics }}+\omega^{-1} \mathcal{A}_{a}^{1}(x)+\mathcal{O}\left(\omega^{-2}\right)])
$$

The high-frequency method

(1) As $\omega \rightarrow \infty$, suppose that the vector potential is

$$
A_{a}(x ; \omega)=\underbrace{\operatorname{Re}\left(e ^ { i \omega \varphi (x) } \left[\mathcal{A}_{a}^{0}(x)\right.\right.}_{\text {geometric optics }}+\omega^{-1} \mathcal{A}_{a}^{1}(x)+\mathcal{O}\left(\omega^{-2}\right)])
$$

(2) Substitute A_{a} into the (gauge-fixed) Maxwell equations

$$
\nabla^{b} \nabla_{b} A_{a}=0, \quad \nabla^{a} A_{a}=0
$$

The high-frequency method

(1) As $\omega \rightarrow \infty$, suppose that the vector potential is

$$
A_{a}(x ; \omega)=\underbrace{\operatorname{Re}\left(e ^ { i \omega \varphi (x) } \left[\mathcal{A}_{a}^{0}(x)\right.\right.}_{\text {geometric optics }}+\omega^{-1} \mathcal{A}_{a}^{1}(x)+\mathcal{O}\left(\omega^{-2}\right)])
$$

(2) Substitute A_{a} into the (gauge-fixed) Maxwell equations

$$
\nabla^{b} \nabla_{b} A_{a}=0, \quad \nabla^{a} A_{a}=0
$$

(3) Equate powers of ω to constrain

$$
\left(\varphi, \mathcal{A}_{a}^{0}, \ldots\right) \leftrightarrow A_{a} .
$$

Example: Radiation from a compact source

With $A_{a}=\operatorname{Re}\left(e^{i \omega \varphi} \mathcal{A}_{a}^{0}+\ldots\right)$ and a point source on worldline $\gamma(\tau)$,

Eikonal $\varphi=\tau_{\text {ret }}$,
Wavevector $k_{a}=-\nabla_{a} \varphi$,
Amplitude $\mathcal{A}_{a}^{0}=\frac{1}{r} g_{a}{ }^{a^{\prime}} f_{a^{\prime}}\left(\theta, \phi, \tau_{\text {ret }}\right)$.

1st law of geometric optics

Substituting $A_{a}=\operatorname{Re}\left(e^{i \omega \varphi} \mathcal{A}_{a}^{0}+\ldots\right)$ into Maxwell's equations,

The wavevector $k_{a}=-\nabla_{a} \varphi$ is null
Rays are tangent to k^{a}. They are null geodesics.

The rest of geometric optics

Substituting $A_{a}=\operatorname{Re}\left(e^{i \omega \varphi} \mathcal{A}_{a}^{0}+\ldots\right)$ into Maxwell's equations,

$$
\underbrace{(2 k \cdot \nabla+\nabla \cdot k) \mathcal{A}_{a}^{0}=0}_{\text {evolution eqn. }}, \quad \underbrace{k \cdot \mathcal{A}^{0}=0}_{\text {constraint eqn. }}
$$

The rest of geometric optics

Substituting $A_{a}=\operatorname{Re}\left(e^{i \omega \varphi} \mathcal{A}_{a}^{0}+\ldots\right)$ into Maxwell's equations,

$$
\underbrace{(2 k \cdot \nabla+\nabla \cdot k) \mathcal{A}_{a}^{0}=0}_{\text {evolution eqn. }}, \quad \underbrace{k \cdot \mathcal{A}^{0}=0}_{\text {constraint eqn. }}
$$

$$
F_{a b}=\operatorname{Re}\left(k_{[a} \mathcal{A}_{b]}^{0} e^{i \omega \varphi}\right)+\ldots
$$

The rest of geometric optics

Substituting $A_{a}=\operatorname{Re}\left(e^{i \omega \varphi} \mathcal{A}_{a}^{0}+\ldots\right)$ into Maxwell's equations,

$$
F_{a b}=\operatorname{Re}\left(k_{[a} \mathcal{A}_{b]}^{0} e^{i \omega \varphi}\right)+\ldots
$$

This implies...
(1) the area-intensity law,
(2) that phases are constant on each ray,
(3) that polarization is parallel transported.

Physically, what are the rays? I.

Amplitudes evolve via $(2 k \cdot \nabla+\nabla \cdot k) \mathcal{A}_{a}^{0}=0$, which is an ODE along each ray.

Physically, what are the rays? I.

Amplitudes evolve via $(2 k \cdot \nabla+\nabla \cdot k) \mathcal{A}_{a}^{0}=0$, which is an ODE along each ray.
\Rightarrow Information evolves independently on neighboring rays:

Physically, what are the rays? I.

Amplitudes evolve via $(2 k \cdot \nabla+\nabla \cdot k) \mathcal{A}_{a}^{0}=0$, which is an ODE along each ray.
\Rightarrow Information evolves independently on neighboring rays:

Physically, what are the rays? I.

Amplitudes evolve via $(2 k \cdot \nabla+\nabla \cdot k) \mathcal{A}_{a}^{0}=0$, which is an ODE along each ray.
\Rightarrow Information evolves independently on neighboring rays:

Physically, what are the rays? II.

Stress-energy is

$$
T_{a b} \sim\left|\mathcal{A}_{0}\right|^{2} k_{a} k_{b}
$$

Physically, what are the rays? II.

Stress-energy is

$$
T_{a b} \sim\left|\mathcal{A}_{0}\right|^{2} k_{a} k_{b}
$$

\Rightarrow Any observer sees momentum coming from the ray direction:

$$
(\text { momentum density })_{a}=T_{a b} u^{b} \propto k_{a}
$$

Intensity-area law

$J^{a}=\left|\mathcal{A}_{0}\right|^{2} k^{a}$ is conserved: $\nabla \cdot J=0$.

Intensity-area law

$J^{a}=\left|\mathcal{A}_{0}\right|^{2} k^{a}$ is conserved: $\nabla \cdot J=0$.

When is geometric optics valid?

$$
F_{a b}=\operatorname{Re}\left[k_{[a} \mathcal{A}_{b]}^{0} e^{i \omega \varphi}+\mathcal{O}\left(\omega^{-1}\right)\right]
$$

$[\omega]=(\text { length })^{-1}$ so ensure that $\omega \ell \gg 1$, where ℓ is built from

When is geometric optics valid?

$$
F_{a b}=\operatorname{Re}\left[k_{[a} \mathcal{A}_{b]}^{0} e^{i \omega \varphi}+\mathcal{O}\left(\omega^{-1}\right)\right]
$$

$[\omega]=(\text { length })^{-1}$ so ensure that $\omega \ell \gg 1$, where ℓ is built from
(1) Lengthscales in spacetime curvature
(2) Radius of curvature of wavefront

Example I: Plane waves

There are no finite lengthscales...

Every ω is large. Geometric optics is exact.

Example II: Caustics

At a caustic, $\ell \rightarrow 0$.

[Source: Wardell, arXiv:0910.2634]

No ω is large. Geometric optics breaks down.

Example III: Spherical waves

Only lengthscale is $\ell \sim r$.

Geometric optics holds when $r \gg \omega^{-1}$.

Example IV: Accelerating source

With acceleration a, there are lengthscales r and $1 / a$.

Corrections are $\mathcal{O}(1 / \omega r)$ and $\mathcal{O}(a / \omega)$. The latter does not decay!

Beyond geometric optics

$$
A_{a}=\operatorname{Re}\left(e^{i \omega \varphi}\left[\mathcal{A}_{a}^{0}+\omega^{-1} \mathcal{A}_{a}^{1}+\mathcal{O}\left(\omega^{-2}\right)\right]\right)
$$

Plugging this into Maxwell's equations,

Order	Evolution eqn.	Constraint eqn.
0	$\mathcal{D}_{k} \mathcal{A}_{a}^{0}=0$	$k \cdot \mathcal{A}^{0}=0$

Beyond geometric optics

$$
A_{a}=\operatorname{Re}\left(e^{i \omega \varphi}\left[\mathcal{A}_{a}^{0}+\omega^{-1} \mathcal{A}_{a}^{1}+\mathcal{O}\left(\omega^{-2}\right)\right]\right)
$$

Plugging this into Maxwell's equations,

Order	Evolution eqn.	Constraint eqn.
0	$\mathcal{D}_{k} \mathcal{A}_{a}^{0}=0$	$k \cdot \mathcal{A}^{0}=0$
1	$\mathcal{D}_{k} \mathcal{A}_{a}^{1}=-i \nabla^{b} \nabla_{b} \mathcal{A}_{a}^{0}$	$k \cdot \mathcal{A}^{1}=-i \nabla \cdot \mathcal{A}^{0}$
\vdots	\vdots	\vdots

PDEs are turned into an infinite hierarchical sequence of ODEs.

Structure of the corrections

Order	Evolution eqn.	Constraint eqn.
0	$\mathcal{D}_{k} \mathcal{A}_{a}^{0}=0$	$k \cdot \mathcal{A}^{0}=0$
1	$\mathcal{D}_{k} \mathcal{A}_{a}^{1}=-i \nabla^{b} \nabla_{b} \mathcal{A}_{a}^{0}$	$k \cdot \mathcal{A}^{1}=-i \nabla \cdot \mathcal{A}^{0}$

(1) All evolution operators $\mathcal{D}_{k}=2 k \cdot \nabla+\nabla \cdot k$ are the same: Data evolves only along the original null geodesics.

Structure of the corrections

Order	Evolution eqn.	Constraint eqn.
0	$\mathcal{D}_{k} \mathcal{A}_{a}^{0}=0$	$k \cdot \mathcal{A}^{0}=0$
1	$\mathcal{D}_{k} \mathcal{A}_{a}^{1}=-i \nabla^{b} \nabla_{b} \mathcal{A}_{a}^{0}$	$k \cdot \mathcal{A}^{1}=-i \nabla \cdot \mathcal{A}^{0}$

(1) All evolution operators $\mathcal{D}_{k}=2 k \cdot \nabla+\nabla \cdot k$ are the same: Data evolves only along the original null geodesics.
(2) Derivatives of lower-order fields couple neighboring rays: They interfere.

Structure of the corrections

Order	Evolution eqn.	Constraint eqn.
0	$\mathcal{D}_{k} \mathcal{A}_{a}^{0}=0$	$k \cdot \mathcal{A}^{0}=0$
1	$\mathcal{D}_{k} \mathcal{A}_{a}^{1}=-i \nabla^{b} \nabla_{b} \mathcal{A}_{a}^{0}$	$k \cdot \mathcal{A}^{1}=-i \nabla \cdot \mathcal{A}^{0}$

(1) All evolution operators $\mathcal{D}_{k}=2 k \cdot \nabla+\nabla \cdot k$ are the same: Data evolves only along the original null geodesics.
(2) Derivatives of lower-order fields couple neighboring rays: They interfere.
(3) Polarization becomes complicated.

Tails: A paradox?

From the theory of PDEs, information propagates in null and timelike directions; there are tails.

Tails: A paradox?

From the theory of PDEs, information propagates in null and timelike directions; there are tails.

But to all orders, in the high-frequency expansion, evolution is only along null geodesics.

Resolution of the tail paradox

As $\omega \rightarrow \infty$, nonzero signals can fall off faster than any power of ω.

$$
A_{a}=\operatorname{Re}\left[e^{i \omega \varphi}\left(\sum_{n=0}^{\infty} \omega^{-n} \mathcal{A}_{a}^{n}+\mathcal{O}\left(e^{-k \omega}\right)\right)\right] .
$$

Tail effects are non-perturbative in ω.

Resolution of the tail paradox

As $\omega \rightarrow \infty$, nonzero signals can fall off faster than any power of ω.

$$
A_{a}=\operatorname{Re}\left[e^{i \omega \varphi}\left(\sum_{n=0}^{\infty} \omega^{-n} \mathcal{A}_{a}^{n}+\mathcal{O}\left(e^{-k \omega}\right)\right)\right] .
$$

Tail effects are non-perturbative in ω.

But are they negligible?

Conclusions

(1) Geometric optics provides a foundation for gravitational lensing and connects it to the underlying fields.
(2) Everything just involves ODEs along null geodesics.
(3) Tails are non-perturbative in frequency.
(4) Are there interesting situations where corrections are important?

