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Alternative gravitational theories are expected to solve
@ Problem of quantization of gravitational field;
e Hierarchy;
@ Singularities;
e Cosmological constant (dark energy);
@ Dark matter.
Black holes can be used for testing strong gravity regime:
@ Observations of gravitational waves by LIGO/VIRGO;

@ Shadow in synchrotron plasma radiation to be observed
by Event Horizon Telescope;

e Radio pulsars (coupling with the quadruple momentum).
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Phenomena around a black hole

Observation
Comparison with experimental data

Solution of equations to describe the process

A separate consideration of each alternatively theory
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Observation
Comparison with experimental data
Solution of equations to describe the process

Parameterized metric

Estimations of coefficients determining deviations from Kerr
spacetime

Parameterized metric

Values of coefficients determining deviations from Kerr
spacetime

Alternative theory

Metric of a black hole in each theory




Here we consider a great number of examples of BH metrics
and show that a spherically symmetric asymptotically flat BH
can be very well approximated by the following line element

ds®> = —N?(r)dt® + B>(r)N~%(r)dr® + r’dQ*, (1)
N*(r) = L—ro(e+1)/r+rg(e+a)/r* —rga/r",
B*r) = (L+rb/r?)?,  dQ? = do* +sin?0dg?.

The approximation (1) can be extended to the small rotation
regime as ds? = ds? — (4Masin?0/r)dtd, which implies that
corrections owing to the modification of gravity must be much
larger than those due to rotation, i.e. a/M < ay, by, but also
that the second order corrections given by a, and b, are
negligible. Thus, in the hierarchy of corrections, the above

~ dtd¢-term is between the first- and second-order corrections
in the radial direction.
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|. Parametrization: spherical symmetry

Rezzolla, Zhidenko PRD 90, 084009 (2014):

B 2
ds? = —N(r)2dt® + BU) 4oy r*(d6? + sin® 0d¢?),

N(r)?
N? = xA(x), A(x)>0, B(x)>0, x=1- r—:.
Schwarzschild black hole: A(x) = B(x) = 1.
We introduce the parameters: €, ag, ay, az, ..., by, by, bo, . ..

Alx) = 1—e(l—x)+(a—e)(1 —x)2+ Ax)(1 — x)?,
B(x) = 1+ hy(1—x)+ B(x)(1-x)?

~ a b1

Ax) = e -

1+, 147 b3X

Roman Konoplya General parametrization of black-hole spacetimes



|. Two sets of parameters determining deviations

from Einsteinian geometry

@ ¢, ag, by are fixed asymptotically, at x = 1.
Comparison with the post-Newtonian expansion:

2M 2M?
N2(r) = 1—T+(ﬂ—7)7+(9(r_3),
B? 2

M _
N = 1+'}/T+O(r 2),

CoMor (-t (-4
€= ——, dg = , bo——.
hy 2 2
o Parameters a1, a5,as... and by, by, bz . .. are found via
comparison with the expansion of metric near the horizon
(x = 0). Convergence of the continuous fraction allows

one to approximate the metric of a black hole as well as
one wants.
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|. Spherical black holes

a) The Einstein-Weyl (EW) theory is
L =R—aCy,,CHr (2)

b) The Einstein-scalar-Gauss-Bonnet (EsGB) theory is
described by the Lagrangian

L= R+ f(0)R2s —~ 5VudV"0 3)

c) The Einstein-scalar-Maxwell (EsM) theory is given by
the Lagrangian

L= R—2g"0,60"¢ — F($)F F" (4)
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|. Spherical black holes

| theory, £ | numerical | analytical |
EsGB, f(¢) ~ e? 1 5
EsGB, f(¢) = +log ¢ 1 6
EsGB, f(¢) = 4¢2 2 6
EsGB, f(¢) = 4¢3 2 6
EsGB, f(¢) = Lo 2 6
EsM, f(¢) = e % 3 7
EsM, f(¢) = cosh(v/—2a) 3 7
EsM, f(¢) =1 — a¢? 3 7
EsM, f(¢) = 17 3 7
EW 8 4

Table: Analytical approximations obtained for numerical
spherically symmetric BH solutions
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|. Spherical black holes
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|. Spherical black holes

£(n, 0.75h0) A ah

10p -
0.006
0.005

0004F

0003F

ds? = —h(r)dt? + dr*f1(r) 4+ r?(d6? + sin® d¢?).
Comparison of the numerical solution and analytical
approximation for the EW BH, (rp =1, « = 0.5). We
observe that for all the above theories the truncation
of the continued fraction at the second order is
sufficient to reproduce observable effects with the
accuracy ~ 0.1%. This means that only five
parameters ¢, a;, a,, by, b, provide accurate
approximation for the BH spacetime.
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[I. Axisymmetric black holes

Konoplya, Rezzolla, Zhidenko PRD 94, 084025 (2016):

N3(r,0) — W2 in”
g2 — _NA(r9) (r0)Sin"0 2 oy (. 0)r sin® Odtdo

K2(r,0)
B3(r,0)

N3(r,0)

+K2(r, (9)r2 sin? 9d¢2 +X(r,0) < dr® + r2d92) )

a’cos’ 0
r2

where X(r,0) =1+

Coordinate choice:

2(, T\ _ 2 ™ _ a
K(“Q) rW(r’2>_1+r2'

a=J/M.
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[I. Polar expansion

Expansion around the equatorial plane:

N3(r,0) = xAo(x —i—ZA )(cos #)’
B(r,0) = 1—|—ZB )(cos 6)’

W(r.0) — Z cos@ |

i=0

0 & 0)
Kr0) = 1420 +Z (cos

e . . . .
where x =1 — —0, ro is the radius of the horizon in the
r

equatorial plane.
Roman Konoplya General parametrization of black-hole spacetimes



[I. Radial expansion

bio(1 — x) + N,-~X)(1 —x)?,
wig(1 — x)? + NW,(x)(l —x)?,
kio(1 — x)? 4+ Ki(x)(1 — x)*,
1-— 60(1 — X) + (800 — €9 + koo)(]. — X)2
+ Ao (x)(1 = x)?,
K,'(X) + E,'(]. — X)2 + a,'o(]. — X)3 +
+ Ai(x)(1 = x)*.

di1 s bll
—alzx s B,'(X) T bax
1 + I3X 1 + I2I3x

Wi » kl].
—lex , K,'(X) —2X
1 —'I_ W,3x 1 + 1+I I3X
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[I. Coefficients determining deviations from Kerr

spacetime

@ Asymptotic parameters:

2M — n a° 2Ma
® o= —" ", koo=—27 Woo = —5

® agy € byg defined by the post-Newtonian parameters,
e ay related to the quadrupole momentum,
® ¢;, ajo, bio, wio, kio.

@ Deformations determined by the behavior near the

horizon:

® koy =0, (coordinate choice)
® adi1,di2,4i3,. - (gtt)

® Wi, Win, Wj3, . .. (8t4)

® bj1, bip, biz, . .. (&)

® ki1, kiz, kis, . .. (840)
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[l. Example: Black holes in the

Einstein-Gauss-Bonnet-dilaton theory

EDGB metric (polar zoom): a=0.5, {=0.1

| /L
z 77\ 7/’/
-
/
=
/
=
4. 05 0.5
x[M
EDGB metric (polar zoom): a=0.5, {=0.15
E / >__*
/
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In this case the problem of computation of x,, is reduced to
the solution of the quadric equation, hence the shadow radius
(Rs) can be found in a closed but cumbersome form. It
depends almost linearly on a; and decreases as a; grows,
2 2.2
o (1 —x0)*xg(2x0 — 3) 5
il 1— 5
R? 5x2 — 10xp + 2 (1= %0) %0 (5)
1 —6x0)%(1 — x0)3(5x2 — 10x0 + 2
( 0) (3 0)2( 0 0 )a%JrO(ai,)’
12(5x;3 — 10xg +5x — 1)

where xg is the compact coordinate for the photon circular
orbit, satisfying the cubic equation,

1 —2¢ —3(1 — 4e)xp — 156x¢ + 5exg = 0, and monotonously
increases with e¢. For small ¢ we find

xo = (1/3)+(14/81)e+(154/729)e>+(3122/19683)e® + O(€*).
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Similarly, for the Lyapunov exponent (\) we obtain

3(5x5 — 10x¢ + 5x — 1) (6)
(5Xg - ].OXO + 2)2(1 + bl(l — X0)2)2
(1 +x0)°(120x5 — 255x3 + 145x¢ — 47xy + 7) b5
2(5x3 — 1052 + 5xp — 1) (1 + by(1 — x0)2)® "
(]. + X0)3(5Xg — 15Xg — 3X0 + 3)

- O(a2).
26 — 10 + 50— 1)(1 1 b1 ey T Ol

N2R? =

Since both quantities depend almost linearly on ay, one can
expect that the error due to the approximation remains one
order smaller than the effect as long as the metric stays
moderate. If one needs to achieve the approximation in which
the error would be two orders less than the effect, then the

second order can be used via consideration of non-zero a, and
b,.
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black hole Rsh effect Eq Es A effect Ey E>
Atherl 1.666 35.9% 0 0 1.14826 198.3% 0 0
Ather2 2.043 21.4% 0 0 0.67377 75.1% 0 0
KS 2.149 17.3% 1.729% 0.1674% 0.58866 52.9% 5.234% 0.5282%
HE 1.929 25.7% 2.871% 0.3659% 0.82911 115.4% 7.958% 0.4749%
Hayward 3.972 52.9% 4.031% 3.3394% 0.20282 47.3% 2.213% 2.6678%
Bronnikov 3.687 41.9% 0.126% 0.0323% 0.18628 51.6% 0.158% 0.1026%
Bardeen 3.247 25.0% 0.194% 0.1486% 0.23945 37.8% 0.624% 0.5249%
EdM 3.266 25.7% 0.078% 0.0229% 0.24206 37.1% 0.974% 0.1061%
EsM 3.084 18.7% 0.582% 0.3303% 0.27603 28.3% 3.120% 2.1431%
E-Weyl 1.916 26.3% 0.664% 0.5862% 0.72329 87.9% 0.905% 0.7578%
CFM1 2.598 0 0 0 0.54433 41.4% 1.823% 0.1732%
JP1 2.027 22.0% 0 0 0.42855 11.3% 0.518% 0.0064%
EdGB 2.700 3.9% 0.345% 0.2299% 0.36206 5.9% 5.613% 1.3019%
EsGB1 2.699 3.9% 0.386% 0.2206% 0.36245 5.8% 5.494% 1.2332%
EsGB2 2.868 10.4% 1.197% 1.0279% 0.32947 14.4% 12.916% 1.3233%
CFM2 2.598 0 0 0 0.31740 17.5% 56.759% 4.330%
JP2 2.270 12.6% 28.91% 9.4261% 0.43759 13.7% 5.978% 14.963%

Radius of shadow, Lyapunov exponent for a number of BHs, the relative effect compared to the
Schwarzschild, and relative errors, Eyx and E3, due to approximations of the first and second orders,
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black hole Q;5c0 effect Ex E>

Ztherl 0.030101 77.9% 0 0

FEther2 0.046342 65.9% 0 0

Ks 0.117155 13.1% 4.474% 0.4327%

HE 0.158422 16.4%  10.443% 3.7952%

Hayward 0.092482 32.0% 0.583% 7.9520%

Bronnikov 0.120621 11.4% 0.291% 0.0657%

Bardeen 0.121428 10.8% 0.405% 0.2966%

EdM 0.138402 1.7% 0.172% 0.0412% | £ 1SCO £
EsM 0.143746 5.6% 1.694% 0.7214% |'"€quency a ora
E-Weyl 0.026784 80.3%  35.057%  35.3715%

CFM1 0.136083 0 0 0

JP1 0.138963 2.1% 0 0

EJGB 0.131058 3.0% 0.739% 0.6754%

EsGB1 0.132027 3.0% 0.900% 0.5882%

EsGB2 0.127488 6.3% 2.786% 2.3443%

CFM2 0.136083 0 0 0

JP2 0.310425  128.1%  87.588%  13.2753%

number of BHs, the relative effect compared to the Schwarzschild, and relative errors, Ey and Ez, due to
approximations of the first and second orders, respectively.
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Further reading

@ Parameterized BHs in the Einsteinian cubic gravity:
R. A. Hennigar, M. Poshteh, R. B. Mann Phys.Rev. D97
(2018) no.6, 064041

@ Parametrized BHs in quartic gravity:
H. Khodabakhshi, A. Giaimo, R. B. Mann Phys.Rev.
D102 (2020) no.4, 044038

@ General spherically symmetric parametrization for
D-dimensional black holes:
R. K., T. D. Pappas, Z. Stuchlik [arXiv:2007.14860],
Phys. Rev. D, in press (2020)
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Conclusions

The general parametrization of a black-hole spacetime in
arbitrary metric theories of gravity includes an infinite set of
parameters. It is natural to suppose that essential
astrophysically observable quantities, such as quasinormal
modes, parameters of shadow, electromagnetic radiation and
accreting matter in the vicinity of a black hole, must depend
only on a few of these parameters. Starting from the
parametrization for spherically symmetric configurations in the
form of infinite continued fraction, we suggest a compact
representation of the asymptotically flat spherically symmetric
and slowly rotating black holes in terms of only three and four
parameters respectively. This approximate representation of a
black-hole metric should allow one to describe physical
observables in the region of strong gravity.
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