Do we need to move beyond Cold Dark Matter? Andrea V. Macciò NYUAD, MPIA

October 6th, 2020

Where?

Where again?

NYUAD

NYUAD

Do we need to move beyond Cold Dark Matter? Andrea V. Macciò NYUAD, MPIA

October 6th, 2020

Cold Dark Matter model

- Negligible thermal velocities at decoupling (Cold)
- Interacts only via gravitation with ordinary matter (Dark)
- Negligible cross section for scattering (Collisionless)

Structure formation

CDM issues (?)

All issues come from a single "fact"

DM haloes are self similar There is no specific scale in Gravity

Same applies to substructers

Regardless of its mass each halo has about 300 subhaloes (satellites) with mass between 10⁻² and 10⁻⁴ its own mass.

Galaxies are NOT self-similar

Dutton+2017

Galaxies and Clusters are NOT self-similar

50 satellites around $\ensuremath{\mathsf{MW}}$

More than 700 galaxies around Abel 1689

How to break the self-similarity

Self-interactive dark matter

Fuzzy dark matter (de Broglie length)

Interactions in the dark sector

You-Name-It dark matter

The NIHAO project

Numerical Investigation (of) Hundred

Astrophysical Objects

جامعـة نيويورك أبوظـي NYU ABU DHABI

PI: A.V. Macciò (NYUAD)

Co-PI: A.A. Dutton, X. Kang

NIHAO members: M. Blank (NYUAD), T. Buck (MPIA), K.Dixon (NYUAD), A. Obreja(USM), J.Chang (PMO), L. Wang (UWA), J. Frings (MPIA), A. Di Cintio (AIP), C. Brook (IAC)

The NIHAO project

Largest database of high-res galaxies (172) From tiny MW satellites to massive ellipticals

One million elements per galaxy Able to resolve the galaxies internal regions

Code Gasoline2.0

- Cooling and star formation
- heavy elements production and enrichment
- SN feedback,
- Massive stars feedback
- BH creation and accretion
- AGN feedback,
- Local Photoionization feedback

The NIHAO project

DM density

Gas Temperature

Stellar density

simulations © Tobias Buck & NIHAO

We cannot simulate galaxy formation from first principles

~100 pc

One of our particles 10⁴ M_⊙ 100 pc Molecular cloud

Validate simulations against observations

Simulating realistic galaxies

Simulating realistic galaxies

XIV: Santos-Santos+2018 Galaxy rotation curves XV: Buck+2018 Satellites properties XVI: Obreja+2018 Kinematically selected discs XVII: Dutton+2018 Dwarf galaxy kinematics XVIII: Tollet+2018 Gas cycle in galaxies XIX: Blank+2018 Black Holes and galaxy formation XX: Dutton+2018 Dark Matter response and SF XXI: Di Cintio+2019 Low Surface Brightness galaxies Edge of galaxy formation series I: Macciò+2017 Satellites evolution before accretion II: Frings+2017 Satellite-Host interaction III: Macciò+2019 Satellites and Warm Dark Matter

Simulated and real galaxies

NIHAO XV – Buck+17

Breaking the self-similarity

Santos-Santos+2017 NIHAO XIV

Breaking the self-similarity

No Universal Density Profile

$$\lim_{r \to 0} \rho(r) = r^{\alpha}$$
$$\alpha \sim -1$$

For CDM haloes in pure gravity simulations

No Universal Density Profile

Satellites are also not self-similar

Not all DM satellites harbor a galaxy

Satellites are also not self-similar

Self similarity is broken

M_{*}/M_{DM} **10**-5 $R_*/R_{DM} < 0.01$

Stellar density

Frings+2017, Macciò+2017, 2019

(partial) Conclusion

There is no observational evidence forcing us to move away from a simple CDM model

CDM + galaxy formation is able to reproduce all current observations

Is CDM then the answer?

No...from the point of view of galaxy formation

- As of today there is no indication that we need a WHIMP-like particle
- Any DM particle not "too warm" will do as well
- Current limits $m_{DM} > 10 \text{ keV}$ (for a thermal candidate

CDM is not wrong but this does not mean that it is right

Thank you for your attention

MOND is fully reproduced by galaxy formation simulations

Wadsley+2018 Dutton+2019 – NIHAO XVIII

