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Setting

• General relativity
• In agreement with precision experiments.
• Conceptual breakdown at short scales:

Cosmological and black hole singularities.

• String theory
• Natural UV cutoff by smallest sensible distance,

T-duality self-dual radius: R? =
√
α′

• In case of one compactified extra dimension:

R → R?2/R, n↔ w

n: Kaluza-Klein mode number, w : winding mode number

→ Restrict moduli space to R ≥ R?.
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Outline
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Path Integral Duality

• World line formalism: Superposition of propagating field excitations.

• Idea: Spacetime fluctuations affect the propagation. The shorter is the
proper time, the more it is hindered.

• Schwinger representation of the Feynman propagator:

GF(x , y) =

∫ ∞
0

ds exp
(
−m

[
s + L2/s

])︸ ︷︷ ︸
w(s)

K(x , y ; s)

⇒ effective zero-point length: (x − y)2 → (x − y)2 + `0
2 `0 = 2L.
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Padmanabhan, Phys. Rev. Lett. 78 (1997) 1854; Padmanabhan, Phys. Rev. D57 (1998) 6206
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Bosonic String Theory

Propagation of the string center-of-mass in a non-trivial vacuum.

• Closed bosonic string on a (3+1)+1 dimensional
spacetime.

• Schwinger representation of the propagator.
Integrate over the compact dimension.

• Require invariance under T-duality.

⇒ Effective 4-dim description with the same modified weight
factor w(s). Identify `0 = 2π R?.

Fontanini, Spallucci, Padmanabhan, Phys. Lett. B633 (2006) 627
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Bosonic String Theory

Propagator in momentum space:

G(k) = −
`0 K1

(
`0

√
k2 + m2

)
√
k2 + m2

→


− 1

k2 + m2
, for k2 + m2 � `0

−2

−
√
`0

(k2 + m2)3/4
exp

(
−`0

√
k2 + m2

)
, for k2 + m2 � `0

−2

Kν(x): Modified Bessel functions of 2nd kind.

Small momenta → standard propagator.
Large momenta → exponential suppression.

Fontanini, Spallucci, Padmanabhan, Phys. Lett. B633 (2006) 627
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Static Potential and Energy Density

Exchange of virtual massless particles between masses M and M2.
Energy functional W [J]:

W [J] = − lnZ [J] = lim
T→∞

M M2 T

∫
d3k

(2π)3
G(k)|k0=0 ei~k·~r

Interaction potential:

V (r) = −
1

M2

W [J]

T
= −

M√
r2 + `0

2

Re-interpretation in terms of
standard theory: Quantum
modified matter.

ρ(r) =
3`0

2M

4π
(
r2 + `0

2
)5/2
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Metric

Solution to Einstein equations:

• Anisotropic fluid of energy density ρ.

• Static & spherically symmetric
spacetime:

ds2 = g00 dt2 + grr dr 2 + r 2 dΩ2

⇒ −g00(r) = g−1
rr (r) = 1− 2Mr 2(

r 2 + `0
2
)3/2

r+r- rextr

M = 2 l0 : B
H

M ≈ 1.3 l0 :
extrema

l BH
M = l0 : no

BH
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Properties:

• Black holes (r+ ≥
√

2 `0) and horizonless matter accumulations.

• Regular solution! Repulsive de Sitter core: Λeff = 6M/`0
3.

• `0 enters non-perturbatively.

• Bardeen black hole upon replacement of UV cutoff:
zero-point length → magnetic monopole charge.

Bardeen, GR5, Tbilisi, USSR, Sept. 9–13, 1968; Ayon-Beato, Garcia, Phys. Lett. B493 (2000) 149
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Black Hole Thermodynamics

Thermodynamical properties:

T =
1

4π r+

(
1− 3`0

2

r 2
+ + `0

2

)

C = −
2π
(
r 2

+ − 2`0
2
) (

r 2
+ + `0

2
)5/2

r 5
+ − 7`0

2 r 3
+ − 2`0

4 r+

Implications:

• Critical horizon radius

r crit =
√

7+
√

57
2

`0 ≈ 2.7 `0

• Small black holes, r extr ≤ r+ ≤ r crit ,
are thermodynamically stable.

• Black hole evaporation process will
stop eventually with a cold remnant
instead of a final explosion.
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See also Nicolini, Smailagic, Spallucci, Phys. Lett. B632 (2006) 547;
Pawlowski, Stock, Phys. Rev. D98 (2018) 106008
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Determining the Self-Dual Radius `0

Theory Experiment
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Theory: UV Self-Completeness

UV self-completeness paradigm: Horizon radius of the smallest black hole
equals its Compton wavelength.
Particle–black hole transition at the extremal configuration:

r extr !
= λ̄C

(
Mextr) =

4

3
√

3

`2
P

`0

with the reduced Compton wavelength λ̄C = ~/M c.

r extr =
25/4

33/4
`P ≈ 1.0 `P

Mextr =
33/4

25/4
mP ≈ 1.0mP

Unique value for `0:

`0 =
23/4

33/4
`P ≈ 0.8 `P
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Hydrogen Atom as a Precision System

• Hydrogen atom as a precision testbed.

• Ground state energy.
• Ly-α line (transition between the 2S1/2 and 1S1/2 levels).

• Attractive interaction between proton and electron mediated by virtual
photons.

• Modified photon dynamics → modified Coulomb interaction.

• Constraints from comparison high-precision measurements.
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Correction of the Energy Spectrum

• Rayleigh-Schrödinger perturbation
theory.

• Correcting Hamiltonian:

HTd = VTd−V0 =
α

r
− α√

r 2 + `0
2

Coulomb |V0|

T-duality |VTd|

Correction VTd -V0
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• Energy correction:

∆ETd
n,l =

〈
nlm(0)

∣∣∣ HTd

∣∣∣ nlm(0)
〉

=
22+2l (n − l − 1)! µα2

n4+2l ((n + l)!)3

×
∫ ∞

0
dy y2+2l e−2y/n

[
L2l+1
n+l (2y/n)

]2
(

1

y
−

1√
y2 + x2

)

with y ≡ αµr and x ≡ αλ0 = αµ`0.

Michael Florian Wondrak From Regular Black Holes to Experimental Constraints 13FIAS Frankfurt Institute
for Advanced Studies



Propagator T-Duality Black Hole Self-Dual Radius Experimental Constraints

Constraint from the Hydrogen Ground State Energy

T-duality

exp - theory (QED)

exp. precision
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l0 / fm

Δ
E
/|

E
|

∆ETd
1,0 = µλ2

0

[
−1− 2γ + 2 ln

1

αλ0

]
α4 +O

(
α5
)

Reference Value Upper Bound on `0 Reference Value Upper Bound on `0

Eexp − Eth 1.4× 10−16 m νexp − νth 1.5× 10−18 m
∆Eexp 1.1× 10−16 m ∆νexp 3.9× 10−19 m
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Constraint from the Hydrogen Ly-α line

T - duality

exp- theory (QED)

exp. precision
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1S−2S =

µλ2
0

32π

[
11 + 4 ln 2 + 28γ − 28 ln

1

αλ0

]
α4 +O

(
α5
)

Reference Value Upper Bound on `0 Reference Value Upper Bound on `0

Eexp − Eth 1.4× 10−16 m νexp − νth 1.5× 10−18 m
∆Eexp 1.1× 10−16 m ∆νexp 3.9× 10−19 m
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Summary and Further Applications

T-duality sets a fundamental minimal length scale.

1) Which implications arise for black holes?
— UV completeness tames the singularity and evaporation process.

2) Can we fix the scale and test for it in the lab?
— From theory: around `P.
From precision experiments: < 1.5× 10−18 m.

Further Applications:

• Connection to gravitational scattering amplitudes.
Easson, Keeler, Manton: “The classical double copy of non-singular black
holes,” 2007.16186 [gr-qc].

• Extension to higher dimensions and finite chemical potentials.
Pourhassan, Wani, Faizal: “Black Remnants from T-Duality,” Nucl.
Phys. B960 (2020) 115190.
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Questions?
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