Propagator 0000	T-Duality Black Hole 00	Self-Dual Radius 00	Experimental Constraints	R

From Regular Black Holes to Experimental Constraints

Michael Florian Wondrak^{1,2} wondrak@itp.uni-frankfurt.de

¹ Helmholtz Research Academy Hesse for FAIR
² Institut f
ür Theoretische Physik, Goethe-Universit
ät Frankfurt

Aspects of Gravity

RTG Models of Gravity, Bielefeld, October 07, 2020

P. Nicolini, E. Spallucci, M.F. Wondrak, Phys. Lett. B797 (2019) 134888, arXiv:1902.11242 [gr-qc].
 M.F. Wondrak, M. Bleicher, Symmetry 11 (2019) 1478, arXiv:1910.08203 [gr-qc].

Propagator	T-Duality Black Hole	Self-Dual Radius	Experimental Constraints	<u> </u>
0000	00	00	000000	
Setting				

- General relativity
 - In agreement with precision experiments.
 - Conceptual breakdown at short scales: Cosmological and black hole singularities.
- String theory
 - Natural UV cutoff by smallest sensible distance, T-duality self-dual radius: $R^* = \sqrt{\alpha'}$
 - In case of one compactified extra dimension:

$$R \to {R^{\star}}^2/R, \qquad n \leftrightarrow w$$

- n: Kaluza-Klein mode number, w: winding mode number
- \rightarrow Restrict moduli space to $R \ge R^{\star}$.

Propagator	T-Duality Black Hole	Self-Dual Radius	Experimental Constraints	<u> </u>
0000	00	00	000000	
Outline				

- 1 Propagator from Path Integral Duality and T-Duality
- 2 Energy Distribution
- **3** T-Duality Black Hole
- **4** Black Hole Thermodynamics
- **5** Conceptual Constraints on the Self-Dual Radius
- 6 Experimental Constraints from the Hydrogen Atom

Propagator	T-Duality Black Hole	Self-Dual Radius	Experimental Constraints	6
0000				3

Path Integral Duality

- World line formalism: Superposition of propagating field excitations.
- Idea: Spacetime fluctuations affect the propagation. The shorter is the proper time, the more it is hindered.
- Schwinger representation of the Feynman propagator:

$$G_{\mathsf{F}}(x,y) = \int_0^\infty \mathrm{d}s \, \underbrace{\exp\left(-m\left[s + \frac{L^2/s}{s}\right]\right)}_{w(s)} \, \mathcal{K}(x,y;s)$$

 \Rightarrow effective zero-point length: $(x - y)^2 \rightarrow (x - y)^2 + {\ell_0}^2 \qquad \ell_0 = 2L.$

Padmanabhan, Phys. Rev. Lett. 78 (1997) 1854; Padmanabhan, Phys. Rev. D57 (1998) 6206

Bosonic String Theory

Propagation of the string center-of-mass in a non-trivial vacuum.

- Closed bosonic string on a (3+1)+1 dimensional spacetime.
- Schwinger representation of the propagator. Integrate over the compact dimension.
- Require invariance under T-duality.
- ⇒ Effective 4-dim description with the same modified weight factor w(s). Identify $\ell_0 = 2\pi R^*$.

Propagator	T-Duality Black Hole	Self-Dual Radius		ſ.
0000			000000	3

Bosonic String Theory

Propagator in momentum space:

$$\begin{split} G(k) &= -\frac{\ell_0 \ K_1 \ \left(\ell_0 \ \sqrt{k^2 + m^2}\right)}{\sqrt{k^2 + m^2}} \\ & \to \begin{cases} -\frac{1}{k^2 + m^2}, & \text{for } k^2 + m^2 \ll \ell_0^{-2} \\ -\frac{\sqrt{\ell_0}}{\left(k^2 + m^2\right)^{3/4}} \exp\left(-\ell_0 \ \sqrt{k^2 + m^2}\right), & \text{for } k^2 + m^2 \gg \ell_0^{-2} \end{cases} \end{split}$$

 $K_{\nu}(x)$: Modified Bessel functions of 2nd kind.

 $\begin{array}{rrrr} {\sf Small \ momenta} & \to & {\sf standard \ propagator.} \\ {\sf Large \ momenta} & \to & {\sf exponential \ suppression.} \end{array}$

Fontanini, Spallucci, Padmanabhan, Phys. Lett. B633 (2006) 627

Propagator	T-Duality Black Hole	Self-Dual Radius	
0000	00	00	000000

Static Potential and Energy Density

Exchange of virtual massless particles between masses M and M_2 . Energy functional W[J]:

$$W[J] = -\ln Z[J] = \lim_{T \to \infty} M M_2 T \int \frac{d^3k}{(2\pi)^3} G(k)|_{k^0 = 0} e^{i\vec{k} \cdot \vec{r}}$$

Interaction potential:

$$V(r) = -rac{1}{M_2} rac{W[J]}{T} = -rac{M}{\sqrt{r^2 + \ell_0^2}}$$

Re-interpretation in terms of standard theory: Quantum modified matter.

$$\rho(r) = \frac{3\ell_0^2 M}{4\pi \left(r^2 + \ell_0^2\right)^{5/2}}$$

Propagator 0000	T-Duality Black Hole ●○	Selt-Dual Radius	Experimental Constraints 000000	<u> </u>
Metric				

Solution to Einstein equations:

- Anisotropic fluid of energy density ρ .
- Static & spherically symmetric spacetime:

$$ds^{2} = g_{00} dt^{2} + g_{rr} dr^{2} + r^{2} d\Omega^{2}$$
$$\Rightarrow -g_{00}(r) = g_{rr}^{-1}(r) = 1 - \frac{2Mr^{2}}{\left(r^{2} + \ell_{0}^{2}\right)^{3/2}}$$

Properties:

- Black holes $(r_+ \geq \sqrt{2} \, \ell_0)$ and horizonless matter accumulations.
- Regular solution! Repulsive de Sitter core: $\Lambda_{eff} = 6M/\ell_0^3$.
- ℓ_0 enters non-perturbatively.
- Bardeen black hole upon replacement of UV cutoff: zero-point length → magnetic monopole charge.

Bardeen, GR5, Tbilisi, USSR, Sept. 9-13, 1968; Ayon-Beato, Garcia, Phys. Lett. B493 (2000) 149

 Propagator
 T-Duality Black Hole
 Self-Dual Radius
 Experimental Constraints

 0000
 ○●
 ○○
 ○○○○○
 /

Black Hole Thermodynamics

Thermodynamical properties:

$$T = \frac{1}{4\pi r_{+}} \left(1 - \frac{3\ell_{0}^{2}}{r_{+}^{2} + \ell_{0}^{2}} \right)$$
$$C = -\frac{2\pi \left(r_{+}^{2} - 2\ell_{0}^{2} \right) \left(r_{+}^{2} + \ell_{0}^{2} \right)^{5/2}}{r_{+}^{5} - 7\ell_{0}^{2} r_{+}^{3} - 2\ell_{0}^{4} r_{+}}$$

- Critical horizon radius $r^{\rm crit} = \sqrt{\frac{7+\sqrt{57}}{2}} \ell_0 \approx 2.7 \ell_0$
- Small black holes, r^{extr} ≤ r₊ ≤ r^{crit}, are thermodynamically stable.
- Black hole evaporation process will stop eventually with a cold remnant instead of a final explosion.

See also Nicolini, Smailagic, Spallucci, Phys. Lett. **B632** (2006) 547; Pawlowski, Stock, Phys. Rev. **D98** (2018) 106008

Determining the Self-Dual Radius ℓ_0

Theory

Experiment

Propagator	T-Duality Black Hole	Self-Dual Radius	
0000	00	00	000000

Theory: UV Self-Completeness

UV self-completeness paradigm: Horizon radius of the smallest black hole equals its Compton wavelength.

Particle-black hole transition at the extremal configuration:

$$r^{\text{extr}} \stackrel{!}{=} \lambda_{C}(M^{\text{extr}}) = \frac{4}{3\sqrt{3}} \frac{\ell_{P}^{2}}{\ell_{0}}$$

with the reduced Compton wavelength $\lambda_{\rm C}=\hbar/M\,{\rm c}.$

Hydrogen Atom as a Precision System

- Hydrogen atom as a precision testbed.
 - Ground state energy.
 - Ly- α line (transition between the 2S_{1/2} and 1S_{1/2} levels).
- Attractive interaction between proton and electron mediated by virtual photons.
- Modified photon dynamics \rightarrow modified Coulomb interaction.
- Constraints from comparison high-precision measurements.

Correction of the Energy Spectrum

- Rayleigh-Schrödinger perturbation theory.
- Correcting Hamiltonian:

$$H_{\mathrm{Td}} = V_{\mathrm{Td}} - V_0 = \frac{\alpha}{r} - \frac{\alpha}{\sqrt{r^2 + \ell_0^2}}$$

$$\begin{split} \Delta E_{n,l}^{\mathrm{Td}} &= \left\langle n l m^{(0)} \middle| H_{\mathrm{Td}} \middle| n l m^{(0)} \right\rangle \\ &= \frac{2^{2+2l} \left(n - l - 1 \right)! \, \mu \alpha^2}{n^{4+2l} ((n+l)!)^3} \\ &\times \int_0^\infty \mathrm{d} y \; y^{2+2l} \, \mathrm{e}^{-2y/n} \left[L_{n+l}^{2l+1} \left(2y/n \right) \right]^2 \left(\frac{1}{y} - \frac{1}{\sqrt{y^2 + x^2}} \right) \end{split}$$

with $y \equiv \alpha \mu r$ and $x \equiv \alpha \lambda_0 = \alpha \mu \ell_0$.

Propagator	T-Duality Black Hole	Self-Dual Radius	Experimental Constraints
0000	00	00	00000

Constraint from the Hydrogen Ground State Energy

Reference Value	Upper Bound on ℓ_0	Reference Value	Upper Bound on ℓ_0
$E_{ m exp} - E_{ m th} \ \Delta E_{ m exp}$	$\begin{array}{c} 1.4 \times 10^{-16} \text{ m} \\ 1.1 \times 10^{-16} \text{ m} \end{array}$	$\begin{array}{l} \nu_{\rm exp} - \nu_{\rm th} \\ \Delta \nu_{\rm exp} \end{array}$	1.5×10^{-18} m 3.9×10^{-19} m

Propagator	T-Duality Black Hole	Self-Dual Radius	Experimental Constraints
0000	00	00	000000

Constraint from the Hydrogen Ly- α line

Reference Value	Upper Bound on ℓ_0	Reference Value	Upper Bound on ℓ_0
$rac{E_{ m exp}-E_{ m th}}{\Delta E_{ m exp}}$	$\begin{array}{c} 1.4 \times 10^{-16} \text{ m} \\ 1.1 \times 10^{-16} \text{ m} \end{array}$	$\begin{array}{l} \nu_{\rm exp} - \nu_{\rm th} \\ \Delta \nu_{\rm exp} \end{array}$	$\begin{array}{c} 1.5\times 10^{-18}~\text{m} \\ 3.9\times 10^{-19}~\text{m} \end{array}$

Propagator	T-Duality Black Hole	Self-Dual Radius		
			000000	155

Summary and Further Applications

T-duality sets a fundamental minimal length scale.

- Which implications arise for black holes?
 UV completeness tames the singularity and evaporation process.
- 2) Can we fix the scale and test for it in the lab?

— From theory: around ℓ_{P} .

From precision experiments: $< 1.5 \times 10^{-18}$ m.

Further Applications:

- Connection to gravitational scattering amplitudes. Easson, Keeler, Manton: "The classical double copy of non-singular black holes," 2007.16186 [gr-qc].
- Extension to higher dimensions and finite chemical potentials. Pourhassan, Wani, Faizal: "Black Remnants from T-Duality," Nucl. Phys. B960 (2020) 115190.

Propagator	T-Duality Black Hole	Self-Dual Radius		
			000000	

Questions?

