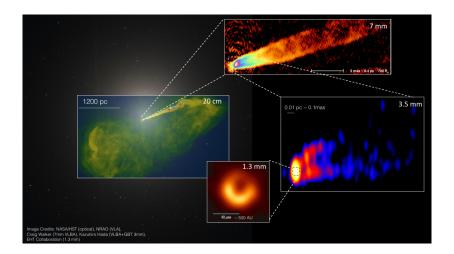
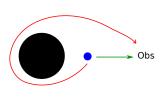
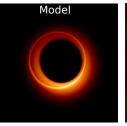

Using light to probe the vicinity of supermassive black holes

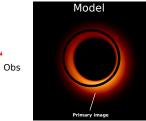

Frédéric Vincent¹

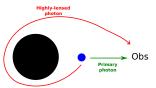

¹CNRS/Observatoire de Paris/LESIA

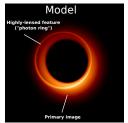


- The goal of this talk

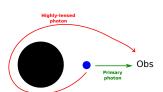
M87: low-luminosity galactic nucleus with kpc jet

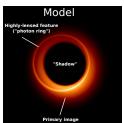


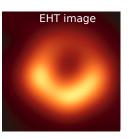




Primary photon



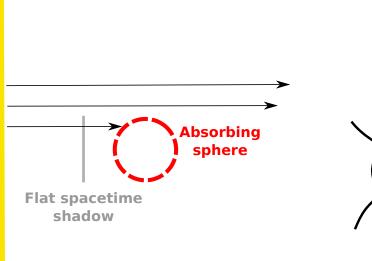


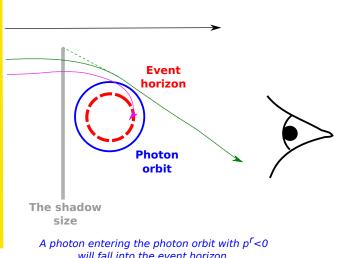


Testing BH paradigm from EHT-like image

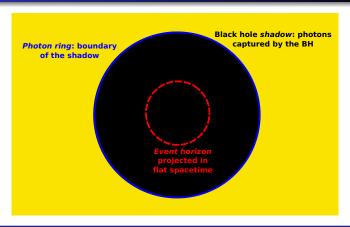
- Definitions of "photon ring" and "shadow"
- Can we use these notions to test BH paradigm?

- The goal of this talk
- Strongly-lensed image features
- Observing the secondary ring
- Imaging BHs and alternatives


Shadow/photon ring: simple introduction


Event horizon projected in flat spacetime

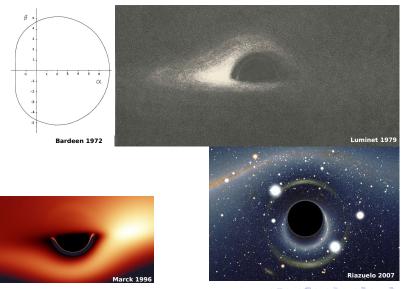
Flat spacetime shadow


Black hole shadow

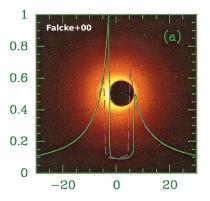
A photon entering the photon orbit with p' < 0
will fall into the event horizon.
So the boundary of the shadow coincides with
the image of the photon orbit, called the **photon ring**.

High-order image Testing BH? BH alternatives

Shadow/photon ring: theory definition


Shadow and photon ring

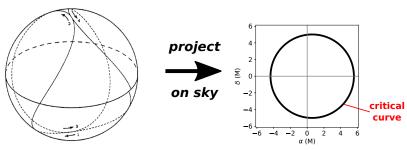
- Pure-gravitation, no-dirty-astrophysics definitions
- Great probes of gravity!... Really? To what extent?



Frédéric Vincent

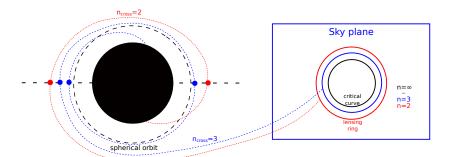
Black hole shadow in real life

Black hole shadow in real life

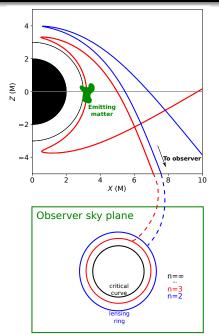

Observing the shadow: EHT

A more precise definition

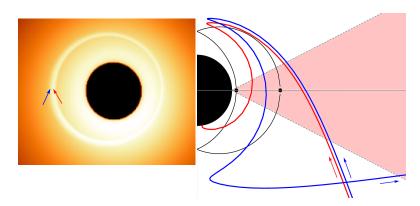
- What is the highly-lensed ring in the theory image?
- Gralla+19: lensing ring ($n_{cross} = 2$), photon ring ($n_{cross} > 2$)
- This is still pure-gravitation definition


Spherical orbit (Teo 2003)

Sky projection (Johnson+20)

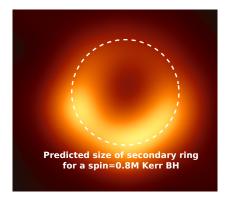

Spherical photon orbits

- Winding of photons → spherical photon orbits
- Critical curve = image on sky of spherical photon orbits
 i.e. of n_{cross} = ∞ photons
- Recap: $n_{\rm cross}=1$ primary image; $n_{\rm cross}=2$ lensing ring; $n_{\rm cross}=3+$ photon ring; $n_{\rm cross}=\infty$ critical curve... what else?

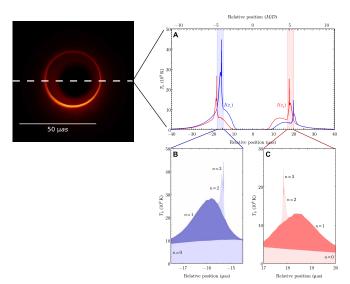

Image spectroscopy

- Highly-lensed feature of BH image = infinite set of pure-gravity-dictated subrings on sky
- Theoretical locus on sky, not directly observable
- The *flux distribution* within this locus is not pure gravity

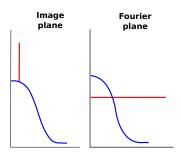
Image spectroscopy


- Observable = subset where there is emission
- Secondary ring: the part of these subrings where there is detectable flux (model-dependent)
- Well-posed question: what is the secondary ring of that BH surrounded by that particular accretion model?

Model-dependent definition

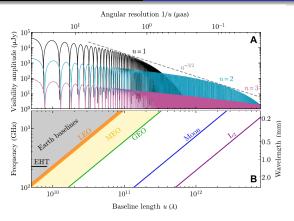

 Shadow = geodesics asymptotically approaching horizon and not visiting the flow

- Observing the secondary ring



Today's observations

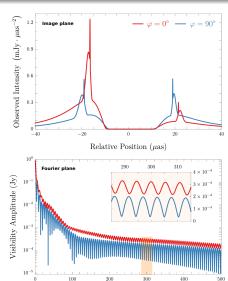
- EHT image consistent with Kerr secondary ring
- But also consistent with a lot of other things...



Johnson+20, Sci. Adv., 6, 12

Detecting sharp features

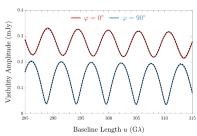
- Image = Gaussian primari + sharp feature
- FT = Gaussian + flat
- So sharp feature should dominate at high freq

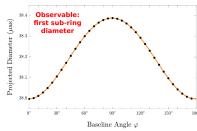


Johnson+20, Sci. Adv., 6, 12

Tomorrow's observations

- Different rings dominate at different baselines
- Observable question: Are there thin rings?
- This is still not a test of GR



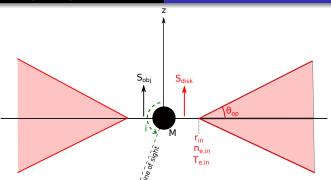


Gralla+20, arXiV:2008.03879

Baseline Length u (G λ)

$$|V| = \frac{1}{\sqrt{u}} \sqrt{\left(\alpha_{\varphi}^L\right)^2 + \left(\alpha_{\varphi}^R\right)^2 + 2\alpha_{\varphi}^L\alpha_{\varphi}^R\sin(2\pi U_u)}.$$
 ring parameters linked to intensity profile

Gralla+20, arXiV:2008.03879


Fitting sub-ring diameters

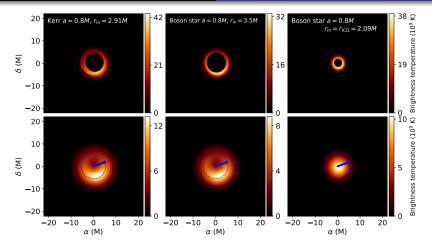
- Still a consistency check
- Is it a test of GR?
- Very likely that other theories would lead to similar profiles

19/25

- Imaging BHs and alternatives

Accretion flow model

• Geometry: $r_{\rm in}$, $\theta_{\rm op}$


• Physics: $n_{e,in}$, $T_{e,in}$, $\sigma \propto B^2/n_e$

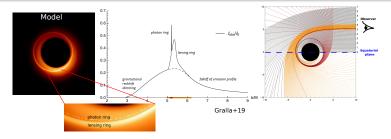
Emission: synchrotron radiation

 Velocity: Keplerian above ISCO Below: radial or azimuthal flow

Does M87* have an event horizon?

- Rotating boson star
 - Assembly of spin-0 boson (e.g. Higgs)
 - Behaves as a single quantum body
 - Does not collapse because of Heisenberg principle
- No hard surface, no event horizon, no singularity
- No photon spherical orbits to avoid stability issues

Does M87* have an event horizon?

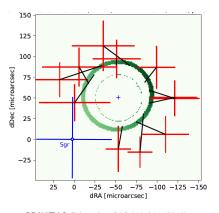

- Difference only due to MHD on current images
- Future: tell the secondary ring?

Detecting sharp features (inspired by Johnson+20)

- Investigate the high-freq difference
- ... in progress

Conclusion: highly-lensed features

- Published terminology for highly-lensed features: lensing ring ($n_{\rm cross}=2$), photon ring $n_{\rm cross}>2$, photon subrings, critical curve $n_{\rm cross}=\infty$. Pure gravitation.
- We introduce:
 secondary ring = all subrings
 AND depends on emission model (not pure gravitation)
- Theoretical locus on sky \neq observable



25/25

Conclusion: compact object nature

 α (M)

- There is no "clean", "pure-gravitation" probe
- You must trust plasma physics to test the nature of a compact object
- Fascinating (but not fully clear yet) perspective: distinguish sharp features (space VLBI)

GRAVITY Collaboration, A&A 618, L10 (2018)

Conclusion: GRAVITY

- Orbital motion near horizon of Sgr A*
- Another fascinating probe of near-horizon physics

