Quark number susceptibilities from resummed perturbative QCD

Sylvain Mogliacci

Bielefeld University, sylvain@physik.uni-bielefeld.de

Frontiers in Perturbative Quantum Field Theory Bielefeld, September 12th, 2012

In collaboration with Jens O. Andersen (Trondheim), Nan Su and Aleksi Vuorinen (Bielefeld).

- Motivations
- Recalls

Sylvain Mogliacci

- Motivations
- Recalls
- 2 Hard-Thermal-Loop perturbation theory
 - Basic formalism
 - About the leading order result
 - Branch cuts technique
 - High-T truncation vs weak coupling expansion

- Motivations
- Recalls
- 2 Hard-Thermal-Loop perturbation theory
 - Basic formalism
 - About the leading order result
 - Branch cuts technique
 - High-T truncation vs weak coupling expansion
- 3 Dimensional Reduction
 - Basic formalism
 - About the 4-loop result
 - New resummation scheme
 - Effect of the strange quark mass

- Motivations
- Recalls
- 2 Hard-Thermal-Loop perturbation theory
 - Basic formalism
 - About the leading order result
 - Branch cuts technique
 - High-T truncation vs weak coupling expansion
- 3 Dimensional Reduction
 - Basic formalism
 - About the 4-loop result
 - New resummation scheme
 - Effect of the strange quark mass
- 4 Comparison with Lattice
 - $N_f = 2$ perturbation theory vs Lattice data
 - $N_f = 2 + 1$ perturbation theory vs Lattice data

- Motivations
- Recalls
- 2 Hard-Thermal-Loop perturbation theory
 - Basic formalism
 - About the leading order result
 - Branch cuts technique
 - High-T truncation vs weak coupling expansion
- 3 Dimensional Reduction
 - Basic formalism
 - About the 4-loop result
 - New resummation scheme
 - Effect of the strange quark mass
- 4 Comparison with Lattice
 - $N_f = 2$ perturbation theory vs Lattice data
 - $N_f = 2 + 1$ perturbation theory vs Lattice data
- 5 Conclusion and Outlook

Sylvain Mogliacci

- Motivations
- Recalls

2 Hard-Thermal-Loop perturbation theory

- Basic formalism
- About the leading order result
- Branch cuts technique
- High-T truncation vs weak coupling expansion
- 3 Dimensional Reduction
 - Basic formalism
 - About the 4-loop result
 - New resummation scheme
 - Effect of the strange quark mass
- 4 Comparison with Lattice
 - $N_f = 2$ perturbation theory vs Lattice data
 - $N_f = 2 + 1$ perturbation theory vs Lattice data
- 5 Conclusion and Outlook

Sylvain Mogliacci

Introduction	Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
00 0 00				
Motivations				

MOTIVATIONS

Sylvain Mogliacci

QNS from resummed perturbative QCD

Bielefeld University

Introduction ○●○○○	Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
Motivations				

• Why finite T and μ QCD via analytical techniques?

Sylvain Mogliacci

Introduction ○●○○○	Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
Motivations				

• Why finite T and μ QCD via analytical techniques?

 Alternative to the Lattice field theory methods (here in the deconfined phase) usually suffering sign problems,

Introduction ○●○○○	Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
Motivations				
	Why finite ${\cal T}$ and μ . Q	CD via analyti	cal techniques?	

- 1 Alternative to the Lattice field theory methods (here in the deconfined phase) usually suffering sign problems,
- 2 The need of thermodynamic quantities (EoS,...), as an imput to hydrodynamic simulations for the experiments,

Introduction	Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
Motivations				

- Why finite $\mathcal T$ and μ QCD via analytical techniques?
 - Alternative to the Lattice field theory methods (here in the deconfined phase) usually suffering sign problems,
 - 2 The need of thermodynamic quantities (EoS,...), as an imput to hydrodynamic simulations for the experiments,
 - 3 Neutron star physics,

Introduction 0●000	Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
Motivations				

- Why finite T and μ QCD via analytical techniques?
 - Alternative to the Lattice field theory methods (here in the deconfined phase) usually suffering sign problems,
 - 2 The need of thermodynamic quantities (EoS,...), as an imput to hydrodynamic simulations for the experiments,
 - 3 Neutron star physics,
 - 4 Early universe models...

Introduction 00000	Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
Motivations				

- Why finite T and μ QCD via analytical techniques?
 - Alternative to the Lattice field theory methods (here in the deconfined phase) usually suffering sign problems,
 - 2 The need of thermodynamic quantities (EoS,...), as an imput to hydrodynamic simulations for the experiments,
 - 3 Neutron star physics,
 - 4 Early universe models...
- What are the challenges (at least some of)?

Introduction	Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
Motivations				

- Why finite T and μ QCD via analytical techniques?
 - 1 Alternative to the Lattice field theory methods (here in the deconfined phase) usually suffering sign problems,
 - 2 The need of thermodynamic quantities (EoS,...), as an imput to hydrodynamic simulations for the experiments,
 - 3 Neutron star physics,
 - 4 Early universe models...
- What are the challenges (at least some of)?
 - **1** Access to a nearly above T_c range of temperatures,

Introduction	Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
Motivations				

- Why finite T and μ QCD via analytical techniques?
 - Alternative to the Lattice field theory methods (here in the deconfined phase) usually suffering sign problems,
 - 2 The need of thermodynamic quantities (EoS,...), as an imput to hydrodynamic simulations for the experiments,
 - 3 Neutron star physics,
 - 4 Early universe models...
- What are the challenges (at least some of)?
 - **1** Access to a nearly above T_c range of temperatures,
 - 2 Improve the apparent convergence of the perturbative series,

	Hard-Thermal-Loop perturbation theory			Conclusion and Outlook
00000	000000000000	000000000	0000	
Motivations				

- Why finite T and μ QCD via analytical techniques?
 - Alternative to the Lattice field theory methods (here in the deconfined phase) usually suffering sign problems,
 - 2 The need of thermodynamic quantities (EoS,...), as an imput to hydrodynamic simulations for the experiments,
 - 3 Neutron star physics,
 - 4 Early universe models...
- What are the challenges (at least some of)?
 - **1** Access to a nearly above T_c range of temperatures,
 - 2 Improve the apparent convergence of the perturbative series,
 - 3 Set up a self consistent and systematic framework,

	Hard-Thermal-Loop perturbation theory			Conclusion and Outlook
00000	000000000000	000000000	0000	
Motivations				

- Why finite T and μ QCD via analytical techniques?
 - 1 Alternative to the Lattice field theory methods (here in the deconfined phase) usually suffering sign problems,
 - 2 The need of thermodynamic quantities (EoS,...), as an imput to hydrodynamic simulations for the experiments,
 - Neutron star physics,
 - 4 Early universe models...
- What are the challenges (at least some of)?
 - **1** Access to a nearly above T_c range of temperatures,
 - 2 Improve the apparent convergence of the perturbative series,
 - 3 Set up a self consistent and systematic framework,
 - 4 Generalization to finite chemical potential,

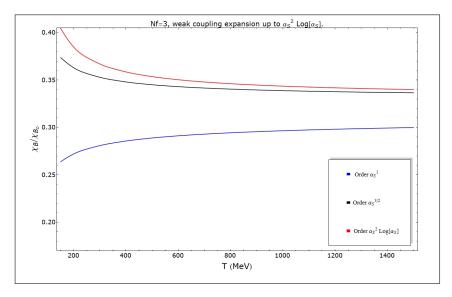
00000 000000000 000000 00000	
Motivations	

- Why finite T and μ QCD via analytical techniques?
 - 1 Alternative to the Lattice field theory methods (here in the deconfined phase) usually suffering sign problems,
 - 2 The need of thermodynamic quantities (EoS,...), as an imput to hydrodynamic simulations for the experiments,
 - Neutron star physics,
 - 4 Early universe models...
- What are the challenges (at least some of)?
 - **1** Access to a nearly above T_c range of temperatures,
 - 2 Improve the apparent convergence of the perturbative series,
 - 3 Set up a self consistent and systematic framework,
 - 4 Generalization to finite chemical potential,
- What do we intend to do here?

Introduction	Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
0000				
Motivations				

- Why finite T and μ QCD via analytical techniques?
 - Alternative to the Lattice field theory methods (here in the deconfined phase) usually suffering sign problems,
 - 2 The need of thermodynamic quantities (EoS,...), as an imput to hydrodynamic simulations for the experiments,
 - Neutron star physics,
 - 4 Early universe models...
- What are the challenges (at least some of)?
 - **1** Access to a nearly above T_c range of temperatures,
 - 2 Improve the apparent convergence of the perturbative series,
 - 3 Set up a self consistent and systematic framework,
 - **4** Generalization to finite chemical potential,
- What do we intend to do here?
 - Studying to which extent one can understand recent high precision lattice data, using weakly coupled quasiparticle picture.

Problem of convergence of the series



Introduction	Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
Recalls				

RECALLS

Sylvain Mogliacci

QNS from resummed perturbative QCD

Bielefeld University

Introduction ○○○○●	Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
Recalls				

- Imaginary time formalism,
- Dimensional regularization in the momentum space: $T \sum_{P_0} \int_{(2\pi)^{3-2\epsilon} \mathbf{p}}^{\mathrm{d}^{3-2\epsilon} \mathbf{p}}$,
- Lagrangian density of QCD:

$$\begin{split} \mathcal{L}_{\text{QCD}} &= -\frac{1}{2} \text{Tr} \left(\mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} \right) + i \bar{\psi} \gamma^{\mu} \mathcal{D}_{\mu} \psi \\ &+ \mathcal{L}_{\text{gf}} + \mathcal{L}_{\text{ghost}} + \Delta \mathcal{L}_{\text{QCD}}, \end{split}$$

 Relation between the thermodynamic potential Ω and the diagonal quark number susceptibility χ:

$$\chi(T) \doteq - \frac{\partial^2 \Omega(T,\mu)}{\partial \mu^2}\Big|_{\mu=0}$$

- Motivations
- Recalls

2 Hard-Thermal-Loop perturbation theory

- Basic formalism
- About the leading order result
- Branch cuts technique
- High-T truncation vs weak coupling expansion
- 3 Dimensional Reduction
 - Basic formalism
 - About the 4-loop result
 - New resummation scheme
 - Effect of the strange quark mass
- 4 Comparison with Lattice
 - $N_f = 2$ perturbation theory vs Lattice data
 - $N_f = 2 + 1$ perturbation theory vs Lattice data
- 5 Conclusion and Outlook

Sylvain Mogliacci

	Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook	
	00000000000				
Basic formalism					

BASIC FORMALISM

Sylvain Mogliacci

Basic formalism

Reorganizing the perturbative series of thermal QCD:

$$\mathcal{L} = \left(\mathcal{L}_{\mathrm{QCD}} + \mathcal{L}_{\mathrm{HTL}}\right)\Big|_{g \to \sqrt{\delta}g} + \Delta \mathcal{L}_{\mathrm{HTL}},$$

• With the HTL improvement term:

$$\begin{split} \mathcal{L}_{\mathrm{HTL}} &= -\frac{1}{2}(1-\delta)m_D^2\mathrm{Tr}\left(F_{\mu\alpha}\left\langle\frac{y^{\alpha}y^{\beta}}{(y\cdot D)^2}\right\rangle_y F^{\mu}_{\ \beta}\right) \\ &+(1-\delta)\,im_q^2\bar\psi\gamma^{\mu}\left\langle\frac{y_{\mu}}{y\cdot D}\right\rangle_y\psi, \end{split}$$

- δ : formal expansion parameter, # of HTL dressed loops; $\Delta \mathcal{L}_{HTL}$: HTL counterterm(s), y^{μ} : lightlike 4-vector; m_D/m_q : Debye/quark thermal mass parameters,
- Adding L_{HTL} shifts the expansion to an ideal gas of thermal quasiparticles.

4

About the leading order result

ABOUT THE LEADING ORDER RESULT

Sylvain Mogliacci

QNS from resummed perturbative QCD

Bielefeld University

About the leading order result

Prescription for the mass parameters:
1-loop m_D and m_a at finite T and μ, i.e.

$$\begin{split} m_D^2 &\equiv \alpha_S \pi \left(\frac{4N_c}{3} T^2 + 2N_f \frac{\mu^2}{\pi^2} \right), \\ m_q^2 &\equiv \alpha_S \pi \frac{N_c^2 - 1}{4N_c} \left(T^2 + \frac{\mu^2}{\pi^2} \right), \end{split}$$

• Tricky sum-integrals! Integrands with powers of T_P :

$$\begin{aligned} \left(\mathcal{T}_{P}\right)^{m} &\doteq \left(\frac{\Gamma\left(\frac{3}{2}-\epsilon\right)}{\Gamma\left(\frac{3}{2}\right)\Gamma\left(1-\epsilon\right)}\right)^{m} \left(P_{0}^{2}\right)^{m} \\ &\int_{0}^{1} \mathrm{d}c_{1} \dots \int_{0}^{1} \mathrm{d}c_{m} \left\{\frac{\left(1-c_{1}^{2}\right)^{-\epsilon}}{\left(P_{0}^{2}+\mathbf{p}^{2}c_{1}^{2}\right)} \dots \frac{\left(1-c_{m}^{2}\right)^{-\epsilon}}{\left(P_{0}^{2}+\mathbf{p}^{2}c_{m}^{2}\right)}\right\} \\ &\equiv \left({}_{2}F_{1}\left(\frac{1}{2},1,\frac{3}{2}-\epsilon;-\frac{\mathbf{p}^{2}}{P_{0}^{2}}\right)\right)^{m}, \end{aligned}$$

Sylvain Mogliacci

About the leading order result

which look like:

$$\oint_{\{P\}} \left[\frac{\left(P_0\right)^u \left(\mathcal{T}_P\right)^m}{\left(\mathbf{p}^2\right)^w \left(P^2\right)^n} \right]$$

- Possible to find analytical expressions in term of hypergeometric functions, for the first powers of T_P (for example in the case of m = 1 and m = 2),
- Those are needed to compute the High-T truncation, but what about the full result?
- Alternative methods: The branch cuts.

Branch cuts technique

BRANCH CUTS TECHNIQUE

Sylvain Mogliacci

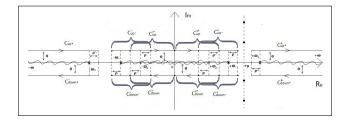
Bielefeld University

Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
00000000000			

Branch cuts technique

- As a first step: from a discrete summation to a contour integral,
- 'Constraints' given by the branch points, according to the integrand,
- Choice of the branch cuts,

6



7

Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
00000 0000 0000			

Branch cuts technique

- Then, renormalization by addition and subtraction of some relevant integrals; those contain the UV divergences without introducing any IR ones,
- Must be computable analytically, in order to extract the divergence(s),

Branch cuts technique

$$\begin{split} \frac{\Omega_{\rm HTL}^{L0}}{-d_A \frac{\pi^2 T^4}{45}} &\equiv \left\{ \frac{90}{\pi^4} \frac{d_F}{d_A} \Big[{\rm Li}_4 \Big(-e^{-\beta\mu} \Big) + {\rm Li}_4 \Big(-e^{+\beta\mu} \Big) \Big] - \frac{1}{2} \right\} \\ &+ \left\{ \frac{-15}{4} \right\} \overline{m}_D^2 + \left\{ \frac{45}{4} \log \left(\frac{\overline{\Lambda}}{m_D} \right) \right\} \overline{m}_D^4 \\ &+ \left\{ \frac{-45}{2\pi^4 T^3} \Big[2 \ \widetilde{T}_{B_T} + \widetilde{T}_{B_L} \Big] \right\} \\ &+ \frac{d_F}{d_A} \frac{45}{\pi^4 T^3} \Big[\widetilde{T}_{F_{\widetilde{\omega}_+}}^+ + \widetilde{T}_{F_{\widetilde{\omega}_+}}^- + \widetilde{T}_{F_{\widetilde{\omega}_-}}^- \Big] \\ &+ \frac{45}{2\pi^5 T^4} \Big[\widetilde{\mathcal{K}}_{B_{\rm TL}} \Big] - \frac{d_F}{d_A} \frac{45}{\pi^5 T^4} \Big[\widetilde{\mathcal{K}}_F^+ + \widetilde{\mathcal{K}}_F^- \Big] \Big\} \\ &+ \left\{ cte_1 \right\} \overline{m}_D^4 + \left\{ - \frac{d_F}{d_A} \Big(cte_2 \Big) \right\} \overline{m}_q^4, \end{split}$$

9

Sylvain Mogliacci

Introduction Hard-Thermal-Loop perturbation theory Dim

mensional Reduction Comparison with Lattice Conclusion and Outlook

High-T truncation vs weak coupling expansion

HIGH-T TRUNCATION VS WEAK COUPLING EXPANSION

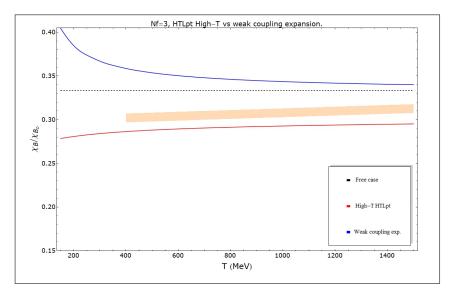
Sylvain Mogliacci

Bielefeld University

- Scalar sum-integrals expanded in power of m_D/T and m_q/T ; then truncated at, and including the order $m_{D/q}^4$,
- lacksquare The mass parameters are then treated as $\sim {\cal O}(lpha_{f S}^{1/2})$,
- Therefore, this truncation is suitable to compare our result with the known weak coupling expansion up to $\alpha_5^2 \log (\alpha_5)$,
- Note that the full result includes higher order contributions, to all order beyond this truncation.

10

High-T truncation vs weak coupling expansion



Introduction

- Motivations
- Recalls

2 Hard-Thermal-Loop perturbation theory

- Basic formalism
- About the leading order result
- Branch cuts technique
- High-T truncation vs weak coupling expansion

3 Dimensional Reduction

- Basic formalism
- About the 4-loop result
- New resummation scheme
- Effect of the strange quark mass
- 4 Comparison with Lattice
 - $N_f = 2$ perturbation theory vs Lattice data
 - $N_f = 2 + 1$ perturbation theory vs Lattice data
- 5 Conclusion and Outlook

Sylvain Mogliacci

	Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook	
	00000000000	• • ••••			
Basic formalism					

BASIC FORMALISM

Sylvain Mogliacci

QNS from resummed perturbative QCD

Bielefeld University

Introduction Hard-Thermal-Loop perturbation theory Dimensional Reduction 00000 Comparison with Lattice Conclusion and Outlook 0000

Basic formalism

Separation of the pressure into different contributions, according to their typical momentum scales:

 $p_{\rm QCD} \equiv p_{\rm hard} + p_{\rm soft},$

- p_{hard} : From the hard modes ($\propto 2\pi T$), computable via strict perturbative expansion in the 4D theory,
- p_{soft}: From the soft modes (∝ gT), computable via the effective 3D Yang-Mills plus adjoint Higgs theory (EQCD),
- Lagrangian density of EQCD:

$$\mathcal{L}_{EQCD} = \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \operatorname{Tr} [D_i, A_0]^2 + m_{\mathsf{E}}^2 \operatorname{Tr} A_0^2 + \frac{ig^3}{3\pi^2} \sum_f \mu_f \operatorname{Tr} A_0^3 + \delta \mathcal{L}_{\mathsf{E}}.$$

Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
	00 00 00000		

About the 4-loop result

ABOUT THE 4-LOOP RESULT

Sylvain Mogliacci

Bielefeld University

Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
	00000000		

About the 4-loop result

- Already known 4-loop result,
- New resummation scheme, applied to finite μ case,
- Effect of the strange quark mass.

Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
	0000000		

New resummation scheme

NEW RESUMMATION SCHEME

Sylvain Mogliacci

QNS from resummed perturbative QCD

Bielefeld University

Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
	00000000		

New resummation scheme

- Amount to let all of the DR parameters unexpanded,
- Resums to all order a certain class of diagrams,
- Substantially reduce the renormalization scale dependance.

Effect of the strange quark mass

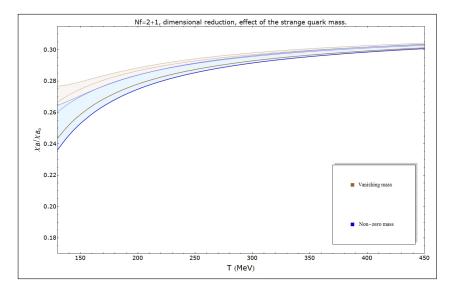
EFFECT OF THE STRANGE QUARK MASS

Sylvain Mogliacci

Introduction 00000	Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
Effect of the	strange quark mass			

- rescaling of massive and massless results for the pressure, by appropriate ratio of Stefan-Boltzmann law,
- As the quark contribution to the pressure converge faster than the series as a whole, a rescaling by an appropriate ratio of first order correction to the Stefan-Boltzmann law would not quite modify the story (~ 5%),
- Hence, good phenomenological way to guess the effect of the presence of a non-vanishing mass for the strange quark.

Effect of the strange quark mass in DR



Introduction

- Motivations
- Recalls

2 Hard-Thermal-Loop perturbation theory

- Basic formalism
- About the leading order result
- Branch cuts technique
- High-T truncation vs weak coupling expansion
- 3 Dimensional Reduction
 - Basic formalism
 - About the 4-loop result
 - New resummation scheme
 - Effect of the strange quark mass

4 Comparison with Lattice

- $N_f = 2$ perturbation theory vs Lattice data
- $N_f = 2 + 1$ perturbation theory vs Lattice data
- 5 Conclusion and Outlook

Sylvain Mogliacci

- Renormalization scale chosen to be an optimal scale; 1-loop corrections to the electric screening mass vanish; In practise, $\Lambda_{N_f=2} \approx 1.29 \times 2\pi T$ and $\Lambda_{N_f=3} \approx 1.44 \times 2\pi T$,
- $\Lambda_{\overline{MS}} = 180 200$ MeV for DR, and $\Lambda_{\overline{MS}} \approx 140 160$ MeV for HTLpt, respectively for $N_f = 2$ and $N_f = 3$.

Introduction Hard-Thermal-Loop perturbation theory Dimensional Reduction **Comparison with Lattice** Conclusion and Outlook

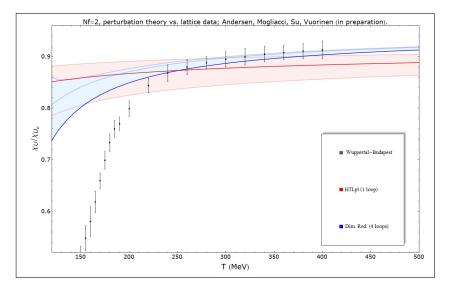
 $N_f = 2$ perturbation theory vs Lattice data

$N_f = 2$ **PERTURBATION THEORY VS** LATTICE DATA

Sylvain Mogliacci

Bielefeld University

$N_f = 2$ perturbation theory vs Lattice data



Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook
		0000	

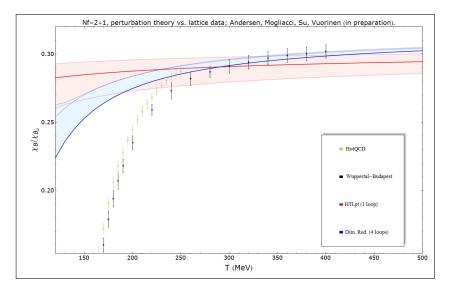
 $N_f = 2 + 1$ perturbation theory vs Lattice data

$N_f = 2 + 1$ **PERTURBATION THEORY VS** LATTICE DATA

Sylvain Mogliacci

Bielefeld University

$N_f = 2 + 1$ perturbation theory vs Lattice data



Introduction

- Motivations
- Recalls

2 Hard-Thermal-Loop perturbation theory

- Basic formalism
- About the leading order result
- Branch cuts technique
- High-T truncation vs weak coupling expansion
- 3 Dimensional Reduction
 - Basic formalism
 - About the 4-loop result
 - New resummation scheme
 - Effect of the strange quark mass
- 4 Comparison with Lattice
 - $N_f = 2$ perturbation theory vs Lattice data
 - $N_f = 2 + 1$ perturbation theory vs Lattice data
- 5 Conclusion and Outlook

Sylvain Mogliacci

- Computation of χ in QCD via two different resummation schemes,
- The results are consistent with recent lattice data down to $T \approx 250 300 \text{ MeV!},$
- HTLpt results are from the high T expansion of the free quasiparticle gas (1-loop) seem to account for a next to leading order computation; full computation underway
- References for previous investigation of the QNS: [A. Vuorinen, 2003],
- References for the DR resummation scheme: [M. Laine, Y. Schroder, 2006],
- References for the Lattice data: [S. Borsanyi et al., A. Bazavov et al., 2012],
- For recent 3-loop HTLpt work: [J. O. Andersen, L. E. Leganger, M. Strickland, and Nan Su, 2011],

Hard-Thermal-Loop perturbation theory	Dimensional Reduction	Comparison with Lattice	Conclusion and Outlook

Backup

$$\begin{split} \widetilde{\mathcal{I}}_{B_{T,L}} &\doteq \widetilde{\mathcal{I}}_{B_{T,L}}(T,\mu) \equiv \int_{0}^{\infty} \mathrm{d}k \ k^{2} \ \log\left(1-e^{-\beta\omega_{\mathrm{T},\mathrm{L}}}\right) \,, \\ \widetilde{\mathcal{I}}_{F_{\omega_{\pm}}}^{\pm} &\doteq \widetilde{\mathcal{I}}_{F_{\omega_{\pm}}}^{\pm}(T,\mu) \equiv \int_{0}^{\infty} \mathrm{d}k \ k^{2} \log\left(1+e^{-\beta[\omega_{\pm}\pm\mu]}\right) \,, \\ \widetilde{\mathcal{K}}_{B_{\mathrm{TL}}} &\doteq \widetilde{\mathcal{K}}_{B_{\mathrm{TL}}}(T,\mu) \equiv \int_{0}^{\infty} \mathrm{d}\omega \ \frac{1}{e^{\beta\omega}-1} \int_{\omega}^{\infty} \mathrm{d}k \ k^{2} \left(2\phi_{\mathrm{T}}-\phi_{\mathrm{L}}\right) \,, \\ \widetilde{\mathcal{K}}_{F}^{\pm} &\doteq \widetilde{\mathcal{K}}_{F}^{\pm}(T,\mu) \equiv \int_{0}^{\infty} \mathrm{d}\omega \ \frac{1}{e^{\beta[\omega\pm\mu]}+1} \int_{\omega}^{\infty} \mathrm{d}k \ k^{2}\theta_{\mathrm{q}} \,, \end{split}$$

Sylvain Mogliacci