

PHYSICAL REVIEW LETTERS

Member Subscription Copy Library or Other Institutional Use Prohibited Until 2015 Articles published week ending

17 DECEMBER 2010

ATLAS results on charmonium production in Pb-Pb and pp collisions at the LHC

Alessandro Cerri (CERN) for the ATLAS collaboration

American Physical Society

Volume 105, Number 25

Introduction

Outline of this talk:

pp collisions at 7 TeV

- Motivation
- Inclusive, prompt and non-prompt J/ψ production
- Upsilon(IS) production

PbPb collisions at 2.76 TeV

- Motivation
- J/ ψ suppression as a function of centrality
- Studies of Z

Conclusions

Motivations

- No unified mechanism exists to consistently explain the heavy quarkonium production and spin-alignment in e +e-, hadron and heavy-ion colliders
- J/Ψ & Y production measurements provide constraint to physics models

Measuring J/ ψ in pp: candidate selection

Muons associated to J/ψ candidate may be:

- **Combined** (full Muon Spectrometer & Inner Detector track measurement with fit between the two)
- Tagged (Inner Detector measurement associated to at least one hit in Muon Spectrometer)

Muon spectrometer Calorimeters Inner Detector

- Tagged increases chance of fake muon signature, so require at least one of muons in pair to be combined
- At least one muon in pair must have been the object that fired the trigger:
 - ~0 GeV, 4 GeV and 6 GeV P_T thresholds as instantaneous luminosity increased.
 - Dimuon triggers in late 2010, 2011 data
- Muons must have p>3 GeV, p_T >1 GeV, $|\eta|$ <2.5, pixel hits >0, silicon hits>5

J/ψ candidate selection

Measurement of inclusive cross-section

Basic strategy of inclusive cross-section analysis method is:

Reconstruct J/ ψ candidates in p_T -y bins

Correct candidate-by-candidate for efficiency, bin migrations, acceptances

Fit resultant weighted yields to derive signal component $N_{corr} \rightarrow N^{J/\psi}_{corr}$ Extract resultant cross-section from $N^{J/\psi}_{corr}$ in given analysis bin

$$\frac{d^2\sigma(J/\psi)}{dp_Tdy} \cdot Br(J/\psi \to \mu^+\mu^-) = \frac{N_{corr}^{J/\psi}}{\mathcal{L} \cdot \Delta p_T \Delta y}$$

Spin-alignment and acceptance corrections

J/ψ efficiency corrections

Single muon trigger efficiency

- Evaluated with Monte Carlo to obtain fine granularity, corrected with Tag & Probe data measurement
- ■Efficiencies reach plateau of 80—100% at around 6—8 GeV (pseudo-rapidity dependent)

Offline reconstruction efficiency

- ■Evaluated with data (Tag & Probe) using $J/\psi \rightarrow \mu\mu$ at low p_T supported by $Z \rightarrow \mu\mu$ measurements at higher p_T for improved plateau precision
- ■Regions with efficiency < 20% excluded from analysis

ID track reconstruction efficiency

■Essentially constant (within uncertainties) at 99.5%±0.5% for muon tracks

Weighted fits and cross-section extraction

For inclusive cross-section measurement, a binned χ^2 fit was used

- \blacksquare Was found to give stable unbiased weighted fit results w.r.t unbinned maximum likelihood fits once restricted to fine p_T —y slices as in this analysis
- $-\psi(2S)$ included in fit, but yields not extracted at this time

Systematic uncertainties

Sources of systematic uncertainty, and each analysis total uncertainties in

Measurement of non-prompt fraction

Simultaneous unbinned maximum likelihood fit on invariant mass and pseudo-proper time distribution (used as discriminant for prompt/non-prompt J/ ψ) to determine fraction in p_T —y bins

Further combine inclusive cross-section and corrected non-prompt fraction to extract prompt and non-prompt differential cross-sections

Simultaneous mass/lifetime fit projections

Prompt cross-section

Nucl. Phys. B850, 387-444 (2011) arXiv:1104.3038

Comparisons include J/ ψ feed-down from higher states Theoretical predictions have issues to describe both shapes and normalization Color Evaporation Model: Phys. Rept. 462 (2008) 125, Phys. Lett. B 91 (1980) 253 Color Singlet Model: Phys. Rev. D 81 (2010), Eur. Phys. J. C 61 (2009) 693

Upsilon fiducial cross-section

Measurement of differential production cross-section of Upsilon(IS) in p_T & y

Similar procedure as for J/ ψ for weight correction Candidate selection: 4 GeV p_T on both muons ($|\eta|$ <2.5)

Likelihood fit to $\Upsilon(1,2,3S)$ and background templates

Backgrounds more significant than in J/ψ , larger and more complex!

Use OS/SS μ +trk data and HF MC to model

Upsilon cross-section

Measurement based on 1.13 pb⁻¹ of data, using a **single muon** trigger

Every event is reweighted by the inverse of the event efficiency: weight⁻¹ = ε_{total} = $\varepsilon_{trigger} \times \varepsilon_{muon\ reco} \times \varepsilon_{tracking}$

Efficiencies are derived from data-driven methods (e.g. J/ψ tag and probe)

Background modeling

- •Muon pT cuts are only slightly less than $M_{\Upsilon(1S)}/2$
- •BG is strongly sculpted and varies rapidly as a function of μ+μ- mass
- •We model the BG shape by selecting on
 - •opposite sign (OS) µ+track in data
 - •SS µ+track in data
 - •µ⁺µ⁻ in heavy flavor MC

Upsilon cross-section: fit of di-muon invariant mass

Upsilon cross-section results

Results are not corrected for acceptance step: defined within muon kinematics (4 GeV p_T , $|\eta|$ <2.5) – removes spin-alignment uncertainty!

- •Systematic uncertainties in central bins dominated by BG shape; 2-6%
- •In forward bins, BG and signal shape uncertainties each about ~8%
- •Upsilon(1,2,3S) fiducial/inclusive differential cross-sections coming soon...

The 2010 ATLAS Heavy Ions run

LHC 2010 Pb-Pb collisions

- •Luminosity in Pb-Pb CollisionsCenter-of-mass energy: √s = 2.76 TeV per nucleon
- •9.17 µb-1 of Pb-Pb data collected by ATLAS → data taking efficiency > 95%

Samples used

- •Measurements use ~5 µb⁻¹
- •Trigger used: Minimum Bias Trigger Scintillators ~100% efficienct
- •MC sample: Pythia J/ψ (W, Z) p-p @2.76 TeV overlaid with Hijing MC

Luminosity integrated in 2010 by ATLAS for Pb-Pb collisions

J/ψ (and Z, and W) in heavy ion collisions

ATLAS has performed studies on J/ ψ , W and Z with 2010 PbPb data

In each heavy ion collision, have N_{coll} binary collisions between N_{part} particles Any yield measurement in heavy ions must be normalised to N_{coll}

Centrality: characterized by percentage of total cross-section using the forward calorimeter transverse energy sum: $\Sigma ET (3.2 < |\eta| < 4.9)$

- ■Estimate of N_{coll} is performed using Glauber MC simulation
- ■Exclude 80-100% range due to uncertainty in determination of N_{coll}

J/ψ in HI: analysis approach

J/ψ reconstruction in heavy ions

J/ ψ candidates identified from two combined muons; p_T>3 GeV, | η |<2.5 (reduces centrality dependence of track reconstruction to ~4%)

- Sideband subtraction method to extract signal yield, cross-check with UBML fit
- Systematic uncertainties assigned from reconstruction efficiency & signal extraction

Systematics: efficiency vs centrality

- •Trigger+reconstruction efficiency $\varepsilon = 98\%$
- Small centrality dependence for Combined Muons
 - •~3-4% drop from inner detector tracks reconstruction
 - As expected: central events have higher occupancy in the ID but not in the muon chambers
- •We use this efficiency variation to correct our raw yield

Efficiency correction in centrality bins: 0-10%: 0.93 ± 0.01 10-20%: 0.91 ± 0.02 20-40%: 0.97 ± 0.01 40-80%: 1

Systematics: MC reliability

Largest efficiency dependence on centrality comes from ID occupancy effects

Systematic effects studied comparing basic track quantities in MC and data versus centrality bins

Fraction of tracks with:

- •less than 2 hits in Pixel detector,
- •less than 6 hits in Semi-Conductor Tracker (SCT),
- with hole in SCT,
- with hole in innermost Pixel layer

J/ψ suppression

Experimental acceptance: $p_T>3$ GeV, $|\eta|<2.5$ [includes both prompt/non-prompt J/ ψ]

- •Significant decrease of the ratio is observed as a function of centrality
- •Qualitatively same effect as the one seen by NA50 and PHENIX at very different center-of-mass energies
- •Main systematics: J/ ψ reconstruction efficiency ~2.3-6.8%, signal extraction ~5.2-6.8%, Rcoll estimate ~3.2-5.3%

Comparison with RHIC

R_{CP} analysis: $Z \rightarrow \mu\mu$

Analysis repeated with $Z\rightarrow \mu\mu$ decays ($p_T(\mu)>20$ GeV)

Relative Z boson yield found to be compatible with a linear scaling with binary collisions Low statistics (38 Z candidates) precludes any definite conclusions

Have presented a variety of measurements from ATLAS in pp/PbPb:

Quarkonia and heavy flavour production in pp collisions @ 7 TeV

- Prompt quarkonia continue to provoke questions in pp collisions
 - > and how does effect of spin-alignment impact PbPb results?
- Non-prompt J/ ψ in good agreement with FONLL, within scale uncertainties
- Have 2.76 TeV pp results for various observables as benchmarks for PbPb runs

Studies of suppression of J/ ψ , Z in PbPb collisions @ 2.76 TeV/nucleon

- We observe an anomalous suppression of the J/ ψ yield that increases with centrality
- Centrality suppression is consistent with PHENIX Au+Au collision

Expect many more results in quarkonia/electroweak results in pp/PbPb from ATLAS in the near future!

Additional slides

Muons in *barrel* ($|\eta|$ <1.05) only

10

At least one combined muon in muon pair

J/ ψ : 4, 2.5 GeV muon p_T thresholds U(nS): 4, 4 GeV muon p_T thresholds

12

Trigger efficiency maps derived from hybrid scheme of finely-binned Monte Carlo (needed to remove biases) reweighted using Tag & Probe data from J/ψ (low p_T) and Z (high p_T) decays

$$\mathcal{E}_{\text{trig}} = 1 - \left(1 - \mathcal{E}_{\text{trig}}^+(p_T^+, \eta^+)\right) \cdot \left(1 - \mathcal{E}_{\text{trig}}^-(p_T^-, \eta^-)\right)$$

- Significant charge dependence observed (and corrected for)
- •Muon turn-on thresholds needed accurate handling
- •Fine granularity needed to properly model features (even at high p_T)

Efficiencies plateau at around 80-100% dependent on pseudorapidity

Reconstruction efficiency maps derived from Tag & Probe data from J/ ψ supported by $Z \rightarrow \mu\mu$ derived data at higher p_T for improved precision in plateau region: exclude areas of low efficiency (<20%)

Due to the toroidal magnetic field of the ATLAS Muon Spectrometer, muons with positive (negative) charge are bent towards larger (smaller) η .

Introduces a charge dependence of the muon reconstruction/trigger efficiencies, particularly relevant at very large $|\eta|$, where muons of one charge may be bent outside the detector geometrical acceptance, and at low p_T , where muons of one charge may be bent back before reaching spectrometer stations

Reconstruction efficiency of Combined (CB) + Tagged (ST) muons as a function of charge*pseudorapidity in MC and data

We know acceptance can vary with spin-alignment

State has generalised angular decay distribution:

$$|\psi\rangle = a_{-1} |1, -1\rangle + a_0 |1, 0\rangle + a_{+1} |1, +1\rangle$$

$$\frac{dN}{d\Omega} = 1 + \frac{\lambda_{\theta^*} \cos^2 \theta^* + \lambda_{\phi^*} \sin^2 \theta^* \cos 2\phi^* + \lambda_{\theta^*\phi^*} \sin 2\theta^* \cos \phi^*}{\frac{1 - 3|a_0|^2}{1 + |a_0|^2}} \frac{2Re \, a_{+1}^* a_{-1}}{1 + |a_0|^2} \frac{\sqrt{2}Re \, [a_0^* (a_{+1} - a_{-1})]}{1 + |a_0|^2}$$

Before measure spin-alignment, we work with five specific working points that provide a maximal envelope for expectation \rightarrow

FLAT (unphysical, but default in Pythia MC) TRPM
$$\lambda_{\theta^{\star}} = \lambda_{\phi^{\star}} = \lambda_{\theta^{\star}\phi^{\star}} = 0 \qquad a_0 = 0, \quad a_{+1} = -a_{-1}$$
 LONG TRP0 TRPP
$$\lambda_{\theta^{\star}} = -1 \qquad \lambda_{\theta^{\star}} = +1 \qquad a_0 = 0, \quad a_{+1} = +a_{-1}$$
 A. Cerri - Quarkonia in Deconfined Matter 29 Sep 2011

Acceptance in azimuthal angle dependent on angle between J/ ψ production and decay plane

Non-trivial influence of ϕ^* acceptance on produced J/ψ , particularly at low p_T

Integrating over ϕ^* (as was/is done at e.g. Tevatron) safe only if have flat acceptance in that variable, else cos θ^* dependence and average acceptance in given bin *will* be incorrect!

Upsilon cross-section reported within fiducial cuts on muons of $p_T>4$ GeV, $|\eta|<2.5$, in two bins of Upsilon rapidity and eight bins of p_T

The decay $D^{*\pm} \rightarrow D^0 \pi^{\pm}_s$ relies on ID track reconstruction and vertexing of the $D^0 \rightarrow K^-\pi^+$

Uses MBTS trigger > 99.5% efficient; track multiplicity independent

Combine two oppositely-charged tracks assign K/π mass hypothesis to each, and $p_{\tau}(K,\pi)>1.0$ GeV

Third (soft) track added with pion mass, and $p_T(\pi) > 0.25$ GeV

Build D⁰ signal from M(K π) for D** candidates

Soft primary pion (constrained to $\Delta M = |M(D^{s+})-M(D^{0})|$ $\pi^{+}s$ Beam spot $D^{0} \text{ decay (at secondary vertex)}$ $c\tau(D^{0}) = 123 \ \mu\text{m}$ $D^{*+} \text{ (at primary vertex)}$ $K^{-}\pi^{+}$

Additional discrimination from mass difference $\Delta M = M(K\pi\pi_s) - M(K\pi)$

Use presence of secondary vertex and properties of hard process to guide cut selection to enhance signal-----

Approx. 2000 D* $^{\pm}$ in both M and Δ M peaks Mass of D⁰ compatible with PDG value

Not corrected for efficiency or detector effects

Secondary vertex fit χ^2 <5 Transverse decay length>0 mm $p_T(D^*)/\Sigma E_T$ >0.02 $p_T(D^*)$ >3.5 GeV, $p_T(K,\pi)$ >1.0 GeV $|\eta(D^*)|$ <2.1

Similar strategy to D*:

combine two oppositely charged tracks, assign pion mass, $p_T(\pi_1) > 1.0$ GeV, $p_T(\pi_2) > 0.8$ GeV

Combine with third track with kaon mass $p_T(K)>1.0 \text{ GeV}$

Secondary vertex fit χ^2 <6 Transverse decay length>1.3 mm $p_T(D+)/\Sigma E_T > 0.02$ $p_T(D+)>3.5$ GeV $|\eta(D+)|<2.1$ $\cos\theta^*(K)>-0.8$

Combinatorial background reduced with cut on angle between kaon in D⁺ rest frame and D⁺ momentum direction in lab frame

Suppression of D*+: require $M(K\pi\pi)-M(K\pi)>150$ MeV Suppression of D+_s $\rightarrow \phi(K^+K^-)\pi^+$: require $|M(K^+K^-)-M(\phi)_{PDG}|>8$ MeV

~1550 candidates seen in clear peak Mass in-good-agreement with PDG-

Secondary vertex fit χ^2 <6 Transverse decay length>0.4 mm $p_T(D_s^+)/\Sigma E_T$ >0.04 $p_T(D_s^+)$ >3.5 GeV $|\eta(D_s^+)|$ <2.1 $\cos\theta^*(\pi)$ <0.4, $|\cos^3\theta'(K)|$ >0.2

Again combine two oppositely charged tracks, assign kaon mass, $p_T(K)>0.7$ GeV

Consider good ϕ candidate if |M(KK)| < 6 MeV of PDG ϕ mass ϕ peak clearly visible on M(KK) plot

Combine with third track (π hypothesis) $p_{\tau}(\pi) > 0.8 \text{ GeV}$

326 D[±] candidates seen in M(KKπ) peak A. Cerri - Quarkonia in

ATLAS now able to reconstruct $B^{\pm} \rightarrow J/\psi(\mu\mu)K^{\pm}$

Candidates built from J/ ψ candidate with 4, 2.5 GeV muon p_T cuts Constrained vertex fit of $\mu\mu K$ system, p_T($\mu\mu K$)>10 GeV

Exploit displaced vertex of decay to improve signal/background:

B transverse decay length cut > 300 μm Signal reduction 13%, consistent with MC, background reduced by factor of **six**

PAS & J. Jia - replotted from public data $R_{CP}(J/\psi)$ 0.5 ATLAS Pb+Pb p_{τ_}>3 GeV |η_τ|<2.5 /(40-80%) PHENIX Au+Au p,_ >0 GeV ly_l<0.35 /(40-93%) 60 80 100 1-Centrality %

Attempt to replot PHENIX data vs Centrality [P.Steinberg, J.Jia] suggest suppression is energy-

independent A. Cerri - Quarkonia in Deconfined Matter

Corrected efficiency ratios for J/ψ and Z candidates from MC

Relative yields in all cases - normalise to most peripheral bin

Candidate acceptance on J/ ψ : two muons have p_T>3 GeV in $|\eta|$ <2.5

Centrality	$N^{ m meas}(J/\psi)$	$\epsilon(J/\psi)_c/$	Systema	atic Uncerta	inty
		$\epsilon(J/\psi)_{40-80}$	Reco. eff.	Sig. extr.	Total
0-10%	190 ± 20	0.93 ± 0.01	6.8 %	5.2 %	8.6 %
10-20%	152 ± 16	0.91 ± 0.02	5.3 %	6.5 %	8.4 %
20-40%	180 ± 16	0.97 ± 0.01	3.3 %	6.8 %	7.5 %
40-80%	91 ± 10	1	2.3~%	5.6~%	6.1 %

Candidate acceptance on Z: two muons have $p_T > 20$ GeV in $|\eta| < 2.5$

Centrality	N(Z)	$\epsilon(Z)_c/\epsilon(Z)_{40-80}$
0-10%	19	0.99 ± 0.01
10-20%	5	0.97 ± 0.01
20-40%	10	0.98 ± 0.01
40-80%	4	1