Universality in Quantum Chaos

Summer school 'Randomness in Physics and Mathematics', Bielefeld, August 2013

Sebastian Müller
Universality

Many quantum properties of chaotic systems are universal and agree with predictions from random matrix theory, in particular the statistics of energy levels.

(Bohigas, Giannoni, Schmit 84; see also Casati, Vals-Gras, Guarneri; Berry, Tabor)

Why?
Outline

- Classical chaos
- Quantum chaos
- Semiclassical methods (Gutzwiller trace formula)
- Semiclassical approach to spectral statistics
- Resummation
1 Classical chaos
Billiards (classical)

particle moving in domain $B \subset \mathbb{R}^2$

- motion on straight line with constant velocity
- reflection at boundary
 (angle of incidence = angle of reflection)

Billiards with 'irregular' boundary show chaotic behaviour.

- diamond
- cardioid
- stadium
- Sinai
Chaos

(a) sensitive dependence on initial conditions
(b) **ergodicity**

long trajectories fill the interior almost uniformly
+ all angles are equally likely

general definition:
energy shell $\Omega = \{(q, p), H(q, p) = E\}$
a system is ergodic if for $\Omega_0 \subset \Omega$ and almost all trajectories

$$\frac{\text{time up to } T \text{ spent in } \Omega_0}{T} \rightarrow \frac{\text{vol}(\Omega_0)}{\text{vol}(\Omega)} \quad (T \rightarrow \infty)$$
Ergodicity

billiards that are **not ergodic**:
2 Quantum chaos

quantum properties of systems that are classically chaotic
Schrödinger equation in domain $B \subset \mathbb{R}^2$, no potential

$$-\frac{\hbar^2}{2m} \nabla^2 \psi(q, t) = i\hbar \frac{\partial}{\partial t} \psi(q, t)$$

Dirichlet boundary conditions:

$$\psi(q, t) = 0 \quad \text{for} \quad q \in \partial B$$

time independent Schrödinger equation

$$-\frac{\hbar^2}{2m} \nabla^2 \psi_n(q) = E_n \psi_n(q)$$

$\psi_n(q)$ – energy eigenfunctions

E_n – energy levels
(a) sensitive dependence on initial conditions?

NO, because Schrödinger equation is linear
(b) energy eigenfunctions

plot $|\psi_n(q)|^2$ for eigenfunctions with increasing energy:

\[n = 100 \quad n = 400 \quad n = 1000 \quad n = 2000 \]

eigenfunctions become more and more equidistributed (quantum ergodicity)
Quantum chaos

probability that a particle in state \(n \) is found in a part \(B_0 \) of position space \(B \):

\[
\mu_n(B_0) = \int_{B_0} d^2 q |\psi_n(q)|^2
\]

in a quantum ergodic system:

\[
\mu_n(B_0) \to \frac{\text{area}(B_0)}{\text{area}(B)}
\]

for increasing energies after taking out exceptional wavefunctions ("scars") such as this:
Quantum chaos

- Classical: chaotic and integrable
- Quantum: chaotic and integrable
Quantum chaos

\((c)\) statistics of energy levels

Integrable\hspace{2cm}\text{chaotic}

\((\text{large})\) energy levels of a chaotic system \textbf{repel} each other!
4 Semiclassical approach to spectral statistics
Two-point correlation function

\[
\int_0^\infty dE \ d \left(E + \frac{y}{2} \right) d \left(E - \frac{y}{2} \right) = \sum_{jk} \delta(y - (E_j - E_k))
\]

make everything dimensionless and average over energy and energy differences:

\[
R(\epsilon) = \frac{1}{d^2} \left\langle d \left(E + \frac{\epsilon}{2d} \right) d \left(E - \frac{\epsilon}{2d} \right) \right\rangle
\]
Random matrix predictions

Small energy differences are less likely!

- Systems without time rev. invariance: Gaussian Unitary Ensemble

\[R_{\text{GUE}}(\epsilon) = 1 - \left(\frac{\sin(\pi \epsilon)}{\pi \epsilon} \right)^2 = \text{Re} \left(1 - \frac{1}{2(\pi \epsilon)^2} + \frac{1}{2(\pi \epsilon)^2} e^{2\pi i \epsilon} \right) \]
Random matrix predictions

systems with time rev. inv.: Gaussian Orthogonal Ensemble

\[
R_{\text{GOE}}(\epsilon) = 1 - \left(\frac{\sin \pi \epsilon}{\pi \epsilon} \right)^2 + \left(\frac{\text{Si} \frac{\pi \epsilon}{\pi} - \text{sign} \epsilon}{2} \right) \left(\frac{\cos \pi \epsilon}{\pi \epsilon} - \frac{\sin \pi \epsilon}{(\pi \epsilon)^2} \right)
\]

\[
= \text{Re} \left(\sum_n c_n \left(\frac{1}{\epsilon} \right)^n + \sum_n d_n \left(\frac{1}{\epsilon} \right)^n e^{2\pi i \epsilon} \right)
\]

where \(\text{Si}(x) = \int_0^x \frac{\sin y}{y} dy \)

in both cases non-oscillatory terms and oscillatory terms
Spectral form factor

Fourier transform

\[K(\tau) = \text{Re} \int_{-\infty}^{\infty} d\epsilon \ (R(\epsilon) - 1)e^{2\pi i \epsilon \tau} \]

- systems without time rev. invariance: Gaussian Unitary Ensemble
 \[K(\tau) = \begin{cases} \tau & (\tau < 1) \\ 1 & (\tau > 1) \end{cases} \]

- systems with time rev. inv.: Gaussian Orthogonal Ensemble
 \[K(\tau) = \begin{cases} 2\tau - \tau \ln(1 + 2\tau) & (\tau < 1) \\ 2 - \ln \frac{2\tau + 1}{2\tau - 1} & (\tau > 1) \end{cases} \]
Semiclassical approximation

evaluate

\[R(\epsilon) = \frac{1}{d^2} \left\langle d \left(E + \frac{\epsilon}{2d} \right) d \left(E - \frac{\epsilon}{2d} \right) \right\rangle \]

using

\[d(E) \approx \bar{d} + \frac{1}{\pi \hbar} \text{Re} \sum_p A_p e^{i S_p(E) / \hbar} \]

\[A_p \left(E \pm \frac{\epsilon}{2d} \right) \approx A_p(E) \]

\[S_p \left(E \pm \frac{\epsilon}{2d} \right) \approx S_p(E) \pm \frac{T_p(E)\epsilon}{2d} \]

\[T_H = 2\pi \hbar \bar{d} \quad (\text{Heisenberg time}) \]

we get the double sum

\[R(\epsilon) \approx 1 + \frac{1}{T_H^2} \text{Re} \left\langle \sum_{p, p'} A_p A_{p'}^* e^{i(S_p - S_{p'}) / \hbar} e^{i \pi \epsilon (T_p + T_{p'}) / T_H} \right\rangle \]

+ similar term with \(e^{i(S_p + S_{p'}) / \hbar} \)
Semiclassical approximation

\[R(\epsilon) \approx 1 + \frac{1}{T_H^2} \text{Re} \left\langle \sum_{p,p'} A_p A_p^* \frac{e^{i(S_p - S_{p'})/\hbar}}{\hbar} e^{i\pi\epsilon(T_p + T_{p'})/T_H} \right\rangle \\
+ \text{similar term with } e^{i(S_p + S_{p'})/\hbar} \]

energy average \(\Rightarrow \) systematic contribution only from first term for small action differences (at most \(\sim \hbar \)) constructive interference!

Fourier transform gives:

\[K(\tau) \approx \frac{1}{T_H} \text{Re} \left\langle \sum_{p,p'} A_p A_p^* \frac{e^{i(S_p - S_{p'})/\hbar}}{\hbar} \delta \left(\tau T_H - \frac{T_p + T_{p'}}{2} \right) \right\rangle \]

relevant orbits have periods of the order

\[T_H = 2\pi\hbar\tilde{d} = 2\pi\hbar \frac{\Omega}{(2\pi\hbar)^n} \rightarrow \infty \quad (\hbar \rightarrow 0) \]
Diagonal approximation

(Berry; Hannay & Ozorio de Almeida)

- for systems without time reversal invariance: take $p' = p$

$$K_{\text{diag}}(\tau) = \frac{1}{T_H} \left\langle \sum_p |A_p|^2 \delta(\tau T_H - T_p) \right\rangle \sim \tau$$

sum over periodic orbits evaluated using ergodicity:

$$\left\langle \sum_p |A_p|^2 \delta(T - T_p) \right\rangle \sim T$$

- time reversal invariant systems: $p' = p$ or time reversed of p

$$K_{\text{diag}}(\tau) = 2\tau$$
Summary

Gutzwiller trace formula: \[d(E) \approx \bar{d} + \frac{1}{\pi \hbar} \text{Re} \sum_p A_p e^{i S_p(E)/\hbar} \]

Spectral form factor:

\[K(\tau) \approx \frac{1}{T_H} \text{Re} \left\langle \sum_{p,p'} A_p A_p^* e^{i (S_p - S_{p'})/\hbar} \delta \left(\tau T_H - \frac{T_p + T_{p'}}{2} \right) \right\rangle \]

RMT prediction:

- **systems without time rev. invariance:** Gaussian Unitary Ensemble
 \[K(\tau) = \begin{cases} \tau & (\tau < 1) \\ 1 & (\tau > 1) \end{cases} \]

- **systems with time rev. inv.:** Gaussian Orthogonal Ensemble
 \[K(\tau) = \begin{cases} 2\tau - \tau \ln(1 + 2\tau) & (\tau < 1) \\ 2 - \ln \frac{2\tau + 1}{2\tau - 1} & (\tau > 1) \end{cases} \]
Orbit correlations

Periodic orbits in chaotic systems come in bunches.

Example (Sieber & Richter 2001):

Realistic picture:
Periodic orbits in chaotic systems come in bunches.

Example (Sieber & Richter 2001):

- **encounters**
 = regions where parts of an orbit come close to each other (up to time reversal)

- **can switch connections** to get different (but very similar) orbits

- present example requires **time reversal invariance**
Underlying mechanism

Phase space directions in hyperbolic systems:

- **stable direction:**
 deviations shrink asymptotically like $e^{-\lambda t}$
 ($\lambda=$Lyapunov exponent)

- **unstable direction:**
 deviations grow for $t \to \infty$ and shrink for $t \to -\infty$ like $e^{\lambda t}$
 \Rightarrow sensitive dependence on initial conditions

Construction of partner orbit:
Underlying mechanism

Phase space directions in hyperbolic systems:

- **stable direction:**
 deviations shrink asymptotically like $e^{-\lambda t}$
 (λ=Lyapunov exponent)

- **unstable direction:**
 deviations grow for $t \to \infty$ and shrink for $t \to -\infty$ like $e^{\lambda t}$
 \Rightarrow sensitive dependence on initial conditions

Construction of partner orbit:
Underlying mechanism

Phase space directions in hyperbolic systems:

- **stable direction:**
 deviations shrink asymptotically like $e^{-\lambda t}$
 (λ=Lyapunov exponent)

- **unstable direction:**
 deviations grow for $t \to \infty$ and shrink for $t \to -\infty$ like $e^{\lambda t}$
 \Rightarrow sensitive dependence on initial conditions

Construction of partner orbit:

![Diagram showing deviation (mostly) along stable and unstable directions]
Underlying mechanism
Generalisation

- orbits can differ in **arbitrarily many encounters where arbitrarily many stretches come close**

- for time reversal invariant systems: stretches may be almost mutually time reversed
Generalisation

- contribution of each “diagram”

\[\kappa \frac{(-1)^V \prod_l l^{v_l}}{L(L - V - 1)!} \tau^{L - V + 1} \]

where

- \(\kappa = 2 \) with time-rev. invariance, 1 without
- \(v_l = \# \) of encounters with \(l \) stretches
- \(V = \# \) of all encounters
- \(L = \# \) of all stretches
Example: τ^3

- Orbit pairs in systems without time reversal invariance

 \Rightarrow contributions cancel, agreement with GUE

- Additional pairs requiring time reversal invariance

 $\Rightarrow 2\tau^3$, agreement with GOE

(Heusler, S.M., Braun, Haake 2003)
Summary

Spectral form factor:

\[K(\tau) \approx \frac{1}{T_H} \text{Re} \left\langle \sum_{p,p'} A_p A_{p'}^* e^{i(S_p - S_{p'})/\hbar \delta} \left(\tau T_H - \frac{T_p + T_{p'}}{2} \right) \right\rangle \]

- diagonal approximation: \(2\tau\) (\(\tau\) without time reversal invariance)
- Sieber-Richter pairs: \(-2\tau^2\)
- \(2\tau^3\) from higher orders: e.g.
All orders

Method I

- relate diagrams to each other by **shrinking away links**
- example:

\[\text{here the order of } \tau \text{ remains the same} \]
\[\text{but the sign } (-1)^{\nu} \text{ changes} \]

- this leads to **cancellation** for systems **without** time-reversal invariance
- **with** time-reversal invariance:
 - steps where shrinking changes the order are relevant
 - get **recursion** between coefficients of \(K(\tau) \)
- to implement this, describe diagrams in terms of **permutations**
All orders

Result:

- **systems without time-reversal invariance**: agreement with GUE

 \[K(\tau) = \tau \quad (\tau < 1) \]

- **time-reversal invariant systems**: agreement with GOE

 \[K(\tau) = 2\tau - \tau \ln(1 + 2\tau) = 2\tau - 2\tau^2 + 2\tau^3 - \frac{8}{3}\tau^4 + \ldots \quad (\tau < 1) \]

All orders in τ

Method II

Compare to nonlinear sigma model (field theoretical implementation of RMT)

- encounters \leftrightarrow vertices
- links \leftrightarrow propagator lines
- diagrams and their contributions coincide

\Rightarrow Spectral statistics agrees with RMT
5 Resummation
Correlation function

Idea:

to get $\tau > 1$ improve semiclassical approximation
build in that $E_n \in \mathbb{R}$
change setting to make this easier

\Rightarrow go back to correlation function

\[
R(\epsilon) = \left\langle d \left(E + \frac{\epsilon}{2} \right) d \left(E - \frac{\epsilon}{2} \right) \right\rangle \quad \text{(take } \tilde{d} = 1)\\
R_{\text{GUE}}(\epsilon) = \text{Re} \left(1 - \frac{1}{2(\pi \epsilon)^2} + \frac{1}{2(\pi \epsilon)^2} e^{2\pi i \epsilon} \right)\\
R_{\text{GOE}}(\epsilon) = \text{Re} \left(\sum_n c_n \left(\frac{1}{\epsilon} \right)^n + \sum_n d_n \left(\frac{1}{\epsilon} \right)^n e^{2\pi i \epsilon} \right)
\]

non-oscillatory terms $\leftrightarrow \tau < 1$ \quad oscillatory terms $\leftrightarrow \tau > 1$
Spectral determinant

access level density from spectral determinant

\[\Delta(E) = \det(E - H) = \prod_j (E - E_j) = \exp \text{tr} \ln (E - H) \]

Motivation:
- used in random-matrix theory
- can now build in that \(\Delta(E) \in \mathbb{R} \) for \(E \in \mathbb{R} \)

Relation to level density:

\[
\frac{\partial}{\partial E} \Delta(E)^{-1} = - \text{tr} \left(\frac{1}{E - H} \Delta(E)^{-1} \right)
\]

Therefore

\[d(E) = - \frac{1}{\pi} \text{Im} \text{tr} \frac{1}{E - H} = \frac{1}{\pi} \text{Im} \frac{\partial}{\partial E'} \frac{\Delta(E)}{\Delta(E')} \bigg|_{E'=E} \]

(where \(E \) is taken with a small positive imaginary part)
correlation function can thus be accessed through generating function:

\[
Z(\alpha, \beta, \gamma, \delta) = \langle \frac{\Delta(E + \gamma)\Delta(E - \delta)}{\Delta(E + \alpha)\Delta(E - \beta)} \rangle
\]

\[
R(\epsilon) \propto \text{Re} \left. \frac{\partial^2 Z}{\partial \alpha \partial \beta} \right|_{\alpha=\beta=\gamma=\delta=\epsilon/2}
\]
Conventional semiclassics

\[\text{tr} (E - H)^{-1} \sim -i\pi \tilde{d} + \text{sum over classical periodic orbits} \]

Weyl

Gutzwiller

\[\Rightarrow \Delta (E) \sim \exp \left(\int_{E}^{E'} dE' \text{ tr} (E' - H)^{-1} \right) \]

\[\sim e^{-i\pi \tilde{d}E} \times \sum_{A} F_{A} (-1)^{n_{A}} e^{iS_{A}(E)/\hbar} \]

Weyl

sum over sets of classical periodic orbits \(A \)
"Resummed" semiclassics

But $\Delta(E)$ should be real for real E

⇒ Resummation (Berry & Keating)

$$\left(\sum \text{ over orbit sets } > \frac{T_H}{2} \right) = \left(\sum \text{ over orbit sets } < \frac{T_H}{2} \right)^*$$

⇒ Riemann-Siegel lookalike

$$\Delta(E) = e^{-i\pi \tilde{d}E} \times \sum_{A \ (T_A < T_H/2)} F_A(-1)^{n_A} e^{iS_A(E)/\hbar} + \text{c.c.}$$
Generating function

\[Z = \left\langle \frac{\Delta(E + \gamma) \Delta(E - \delta)}{\Delta(E + \alpha) \Delta(E - \beta)} \right\rangle \]

\[\sim e^{i\pi(\alpha + \beta - \gamma - \delta)} \]

Weyl factor

\[\times \left\langle \sum F_A F_B^* F_C F_D^* (-1)^{n_C + n_D} e^{i[(S_A(E + \alpha) + S_C(E + \gamma) - S_B(E - \beta) - S_D(E - \delta)]/\hbar} \right\rangle \]

sum over orbit sets \(A, B, C, D \) \((T_C, T_D < T_H/2) \)

\[+ \{ \gamma \rightarrow -\delta, \delta \rightarrow -\gamma \} \]

- Weyl factors \(\rightarrow 1 \) or \(e^{2\pi i \epsilon} \) as \(\alpha, \beta, \gamma, \delta \rightarrow \epsilon/2 \)
- need **small action differences**

\[\Delta S = S_A(E + \alpha) + S_C(E + \gamma) - S_B(E - \beta) - S_D(E - \delta) \]

\[\Rightarrow \text{orbit correlations} \]
Contributions

- Diagonal approximation:
 \((A, C)\) contain the same orbits as \((B, D)\)
Contributions

- Diagonal approximation:
 \((A, C)\) contain the same or orbits as \((B, D)\)

- Encounters:

Full agreement with RMT predictions.
without time reversal invariance

\[Z = e^{i \pi (\alpha + \gamma - \beta - \delta)} \cdot \frac{(\alpha + \delta)(\gamma + \beta)}{(\alpha + \beta)(\gamma + \delta)} + \{ \gamma \rightarrow -\delta, \delta \rightarrow -\gamma \} \]

with time reversal invariance

\[Z = e^{i \pi (\alpha + \gamma - \beta - \delta)} \cdot \left(\frac{(\alpha + \delta)(\gamma + \beta)}{(\alpha + \beta)(\gamma + \delta)} \right)^2 + \text{further terms} \]

\[+ \{ \gamma \rightarrow -\delta, \delta \rightarrow -\gamma \} \]

\[R(\epsilon) \propto \text{Re} \left. \frac{\partial^2 Z}{\partial \alpha \partial \beta} \right|_{\alpha = \beta = \gamma = \delta = \epsilon/2} \text{ agrees with GUE and GOE predictions.} \]
Classically chaotic systems: sensitive dependence on initial conditions

Gutzwiller formula: level density written as sum over periodic orbits

Chaotic systems have universal spectral statistics

Semiclassical explanation involves orbit correlations due to encounters in phase space

Use generating functions and Riemann-Siegel lookalike to understand oscillatory terms in $R(\epsilon)$
Applications

- symmetries

- higher order correlation functions

- transport through chaotic cavities \(\Rightarrow \) need open trajectories
Mathematical status

Orbit pairs:

- identical, time-reversed, differing in encounters
 ⇒ universal result in agreement with RMT
- other systematic correlations:
 should be related to further symmetries
 universality requires absence of symmetries
 need a general definition of symmetries
- ‘random’ orbit pairs with small action differences:
 contributions should cancel

Conditions for universality:

- existence of orbit pairs requires hyperbolicity
- universal contribution obtained using
 - ergodicity, mixing
 - semiclassical limit
- no other symmetries
References

- S. Müller, Quantum Chaos, Undergraduate lecture notes, University of Bristol (2013) [http://www.maths.bris.ac.uk/maxsm/qcnotes.pdf]